Quantum Chemical Calculations of NMR Parameters

Tatyana Polenova University of Delaware Newark, DE

Winter School on Biomolecular NMR January 20-25, 2008 Stowe, Vermont

OUTLINE

INTRODUCTION

Relating NMR parameters to geometric and electronic structure Classical calculations of EFG tensors Molecular properties from quantum chemical calculations Quantum chemistry methods

DENSITY FUNCTIONAL THEORY FOR CALCULATIONS OF NMR PARAMETERS

Introduction to DFT Software Practical examples Tutorial

RELATING NMR OBSERVABLES TO MOLECULAR STRUCTURE

I. Calculation of experimental NMR parameters

Find unique solution to C_Q , η_Q , δ_σ , η_σ , α , β , γ

II. Theoretical prediction of fine structure constants from molecular geometry

Classical electrostatic model (EFG)- only in simple ionic compounds Quantum mechanical calculations (Density Functional Theory) (EFG, CSA)

ELECTRIC FIELD GRADIENT (EFG) TENSOR: POINT CHARGE MODEL

EFG TENSOR IS DETERMINED BY THE COMBINED ELECTRONIC AND NUCLEAR WAVEFUNCTION, NO ANALYTICAL EXPRESSION IN THE GENERAL CASE

THE SIMPLEST APPROXIMATION: CLASSICAL POINT CHARGE MODEL

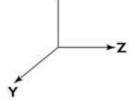
$$\langle V_{2,k} \rangle = \sum_{i=1}^{n} \frac{Z_i e}{d_i^3} \sqrt{\frac{4\pi}{5}} Y_{2,k}(\theta_i, \phi_i)$$

ATOMS CONTRIBUTING TO THE EFG TENSOR ARE TREATED AS POINT CHARGES, THE RESULTING EFG TENSOR IS THE SUM WITH RESPECT TO ALL ATOMS

VERY CRUDE MODEL, WORKS QUANTITATIVELY ONLY IN SIMPLEST IONIC SYSTEMS, BUT YIELDS QUALITATIVE TRENDS AND GENERAL UNDERSTANDING OF THE SYMMETRY AND MAGNITUDE OF THE EXPECTED TENSOR

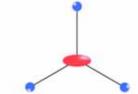
ELECTRIC FIELD GRADIENT (EFG) TENSOR: POINT CHARGE MODEL

$$\langle V_{2,k} \rangle = \sum_{i=1}^{n} \frac{Z_i e}{d_i^3} \sqrt{\frac{4\pi}{5}} Y_{2,k}(\theta_i, \phi_i)$$

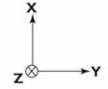

Linear, one-coordinate:

 $\theta = 0, \ \phi = 0$

$$\langle V_{2,0} \rangle = \frac{Ze}{d^3}; \langle V_{2,\pm 1} \rangle = 0; \langle V_{2,\pm 2} \rangle = 0$$


Linear, two-coordinate: $\theta_1 = 0, \phi_1 = 0; \theta_2 = \pi, \phi_2 = 0$

$$\langle V_{2,0} \rangle = \frac{2Ze}{d^3}; \langle V_{2,\pm 1} \rangle = 0; \langle V_{2,\pm 2} \rangle = 0$$



Trigonal planar:

 $\theta_1 = \pi/2, \ \phi_1 = 0; \ \theta_2 = \pi/2, \ \phi_2 = 2\pi/3; \ \theta_3 = \pi/2, \ \phi_3 = -2\pi/3$

$$\langle V_{2,0} \rangle = -\frac{3}{2} \frac{Ze}{d^3}; \langle V_{2,\pm 1} \rangle = 0; \langle V_{2,\pm 2} \rangle = 0$$

Tetrahedral:

 $\theta_1 = 0, \ \phi_1 = 0; \ \theta_2 = 2\pi/3, \ \phi_2 = 0; \ \theta_3 = 2\pi/3, \ \phi_3 = 2\pi/3; \ \theta_4 = 2\pi/3, \ \phi_4 = -2\pi/3$

 $\langle V_{2,0} \rangle = 0; \langle V_{2,\pm 1} \rangle = 0; \langle V_{2,\pm 2} \rangle = 0$

MOLECULAR PROPERTIES FROM QUANTUM CHEMICAL CALCULATIONS

$\mathbf{H} \Psi = \mathbf{E} \Psi$

Energy d	Defines the Nuclear forces					
	Electric dipole moment					
	Quadrupole moment					
Nuclear position		n &	Nuclear position		Force constants	
Electric field		&	Electric field		Electric polarizability	
Nuclear position		n &	Electric field		Infrared intensities	
Magnetic field		&	Magnetic field		Magnetic susceptibility	
Magnetic field		&	Nuclear spin		Chemical shielding	
Nuclear spin		&	Nuclear spin		Spin-spin couplings	
Nuclear position	&	Nuclear position	&	Nuclear position	Anharmonic couplings	
Nuclear position	&	Electric field	&	Electric field	Raman intensities	
Electric field	&	Electric field	&	Electric field	First hyperpolarizability	

See for example M. Head-Gordon (1996) J. Phys. Chem. 100, 13213-13225

QUANTUM CHEMISTRY METHODS

$\mathbf{H} \Psi = \mathbf{E} \Psi$

Schrödinger equation- cannot be solved exactly for multi-electron systems, and approximations have to be made

SEMI-EMPIRICAL METHODS

Based on Hartree-Fock approach. A Fock matrix is constructed, and the Hartree-Fock equations are iteratively solved. The approximations are in the construction of the Fock matrix (the energy expressions) and are based upon empirical data.

AB INITIO METHODS

Make no use of empirical information, except for the fundamental constants of nature, such as the mass of the electron, Planck's constant, etc. Do not confuse "ab initio" with "exact"!

DENSITY FUNCTIONAL THEORY METHODS

Include the electron correlation, which is introduced by adapting the expression for the density of a uniform electron gas to the molecular orbital environment. Replace the many-body electronic wavefunction with the electronic density as the basic quantity.

USEFUL DEFINITIONS

AO (ATOMIC ORBITAL)

An orbital described by a wavefunction for a single electron centered on a single atom.

ORBITAL

The wavefunction describing where an electron is within an atom or a molecule.

BASIS SET

Finite set of functions used to approximately express the molecular orbital (MO) wavefunction(s) of a system, normally atom centered, consisting of AOs differing in local angular momentum for each atom. The basis set can be interpreted as restricting each electron to a particular region of space.

ELECTRON CORRELATION

Explicitly considering the effect of the interactions of specific electron pairs, rather than the effect that each electron feels from the average of all the other electrons.

GAUSSIANS

Functions frequently used as primitive functions to expand the total wavefunction.

USEFUL DEFINITIONS

GIAO (GAUGE INDEPENDENT ATOMIC ORBITALS)

Ditchfield's method for canceling out the arbitrariness of the choice of origin & form (gauge) of the vector potential used to introduce the magnetic field in the Hamiltonian when calculating chemical shielding and chemical shift tensor. An exponential term containing the vector potential is included with each atomic orbital. Originally developed based on Hartree-Fock, improved by Pulay w/ DFT to be faster, also used w/MP2 & CCSD. Pros: less basis set dependence than IGAIM.

FOR MORE DEFINITIONS, SEE http://www.chamotlabs.com/Freebies/Acronyms.html

SEMI-EMPIRICAL METHODS

LIMITED TO HUNDREDS OF ATOMS

MNDO, AM1, PM3

Were designed to reproduce heats of formation and structures of a large number of organic molecules

INDO/S, CNDO/S

Good at prediction of electronic transitions in the UV/VIS spectral region

AB INITIO METHODS

LIMITED TO TENS OF ATOMS

GIVE THE ABSOLUTE ENERGY OF THE SYSTEM OF FIXED NUCLEI AND MOVING ELECTRONS

One of the most useful features of the ab initio MO theory is that it allows the definition of "model chemistries". A theoretical model chemistry entails a method (e.g., Hartree-Fock or MP2 etc.) and a basis set. The philosophy of a model chemistry is that it should be uniformly applicable and tested on as many systems as possible to learn about its performance.

INCLUDE THE ELECTRON CORRELATION

Electron correlation is introduced by adapting the expression for the density of a uniform electron gas to the molecular orbital environment.

Replace the many-body electronic wavefunction with the electronic density as the basic quantity. Many-body wavefunctions- dependent on 3N variables (3 spatial variables for each of the N electrons), the density- dependent on 3 spatial variables.

MOST COMMON IMPLEMENTATION- KOHN-SHAM METHOD

The intractable many-body problem of interacting electrons in a static external potential is reduced to a tractable problem of non-interacting electrons moving in an effective potential.

Effective potential- includes the external potential and the effects of the Coulomb interactions between the electrons, e.g. the exchange and correlation interactions.

To model the latter, the local-denisty approximation (LDA) is used, which is based upon exact exchange energy for a uniform electron gas (obtained from the Thomas-Fermi model), and from fits to the correlation energy for a uniform electron gas.

MANY-ELECTRON SCHRÖDINGER EQUATION:

$$H\Psi = \left[T + V + U\right]\Psi = \left[\sum_{i}^{N} -\frac{\mathsf{h}^{2}}{2m}\nabla_{i}^{2} - \sum_{i}^{N}V(\mathbf{r}_{i}) + \sum_{i < j}U(\mathbf{r}_{i}, \mathbf{r}_{j})\right]\Psi = E\Psi$$

U- interaction term for many-particle problem

Approaches: expansion of wave function in Slater determinants (HF and post-HF metthods)

Problem: computationally expensive, impractical in large systems

DFT ALTERNATIVE:

Introduce a new variable, the particle density

$$n(r) = N \int d^3 r_2 \int d^3 r_2 \dots \int d^3 r_N \Psi^*(r_1, r_2, \dots, r_N) \Psi(r_1, r_2, \dots, r_N)$$

Hohenberg and Kohn- proved (1964) that the expression is unique, i.e. to a given ground state density $n_0(r)$ it is possible to calculate the corresponding ground state wavefunction

$$\Psi_0(\stackrel{\mathsf{r}}{r_1}, \stackrel{\mathsf{r}}{r_2}, \dots, \stackrel{\mathsf{r}}{r_N})$$

 Ψ_0 is a unique functional of $n_{0^{\rm \prime}}$ i. e.

 $\Psi_0 = \Psi_0 [n_0]$

Therefore, all other ground state observables (including energy) are also functionals of n₀

$$\langle \boldsymbol{O} \rangle [\mathbf{n}_0] = \langle \Psi_0 [\mathbf{n}_0] | \boldsymbol{O} | \Psi_0 [\mathbf{n}_0] \rangle$$
$$\boldsymbol{E}_{\boldsymbol{\theta}} = \boldsymbol{E}[\mathbf{n}_0] = \langle \Psi_0 [\mathbf{n}_0] | \boldsymbol{T} + \boldsymbol{V} + \boldsymbol{U} | \Psi_0 [\mathbf{n}_0] \rangle$$

where the contribution of the external potential $\langle \Psi_0 [n_0] | U | \Psi_0 [n_0] \rangle$ can be written explicitly in terms of the density

$$V[n] = \int V(r)n(r)d^3r$$

For a particular system with V specified, minimize the functional

$$E[n] = T[n] + U[n] + \int V(r)n(r)d^3r$$

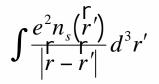
with respect to n(r), assuming reliable expressions are known for T[n] and U[n]. Successful minimization- yields ground state density n_0 and thus all other ground-state observables.

Minimization of energy functional E[n] - by Lagrangian method of undetermined multipliers. Rewrite the functional as a fictitious density functional of a non-interacting system

$$E_{s}[n] = \langle \Psi_{s}[n] | T_{s} + V_{s} | \Psi_{s}[n] \rangle$$

 T_s -non-interacting kinetic energy, V_s - external effective potential in which particles are moving

Then solve Kohn-Sham equations of this auxillary non-interacting system


$$\left[-\frac{\mathsf{h}^2}{2m}\nabla^2 + V_s(\overset{\mathsf{r}}{r_i})\right]\phi_i(\overset{\mathsf{r}}{r}) = \varepsilon_i\phi_i(\overset{\mathsf{r}}{r})$$

Which yields the orbitals ϕ_i that reproduce the density n(r) of the original many-body system

$$n(\mathbf{r})^{def} = n_s(\mathbf{r}) = \sum_{i}^{N} |\phi_i(\mathbf{r})|^2$$

EFFECTIVE SINGLE-PARTICLE POTENTIAL CAN BE WRITTEN AS

 $V_{s} = V + \int \frac{e^{2}n_{s}(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} d^{3}r' + V_{XC}[n(\mathbf{r})]$

Hartree term (describes the electron-electron Coulomb repulsion)

Exchange correlation potential, includes all the many-particle interactions

Since the Hartree term and V_{XC} depend on n(r), which depends on the orbitals ϕ_i , which in turn depend on V_S , the problem of solving the Kohn-Sham equations has to be done in a self-consistent (iterative) way. Start with an initial guess of n(r), then calculate the corresponding V_S and solve the Kohn-Sham equations for ϕ_i . From these calculate a new density and start again, repeat until convergence is reached.

APPROXIMATIONS

Problem: exact functionals for exchange and correlation are not known except for the free electron gas. Approximations are needed.

Local-density approximation (LDA)- the functional depends only on the density at the coordinate where the functional is evaluated:

$$E_{XC}[n] = \int \varepsilon_{XC}(n)n(r)d^3r$$

Local spin-density approximation (LSDA)- generalization of LDA to include electron spin:

$$E_{XC}[n_{\uparrow},n_{\downarrow}] = \int \varepsilon_{XC}(n_{\uparrow},n_{\downarrow})n(r)d^{3}r$$

Generalized gradient approximations (GGA)- take into account the gradient of the density at the same coordinate:

$$E_{XC}\left[n_{\uparrow},n_{\downarrow}\right] = \int \varepsilon_{XC}\left(n_{\uparrow},n_{\downarrow},\nabla n_{\uparrow},\nabla n_{\downarrow}\right)n(r)d^{3}r$$

GGA- yields very good results for molecular geometries and ground state energies.

BASIS SETS

THE SET OF ONE-ELECTRON WAVEFUNCTIONS USED TO BUILD MOLECULAR ORBITAL WAVEFUNCTIONS

Examples of Gaussian basis sets:

STO-3G, 3-21G (H-Xe), 6-31G (H-Cl), 6-311G (H-Kr);

6-31G (d); 6-31G (d,p); 6-31+G (d,p); 6-311+G (3df,2p);

Aug-cc-pVTZ;

Effective core potentials: LANL2MB (H-Ba, La-Bi); LANDZ; SDD- entire Periodic Table

And many more basis sets tailored to specific systems...

Useful basis set depository- EMSL basis set exchange:

http://gnode2.pnl.gov/bse/portal

http://www.gaussian.com/00000485.htm

DENSITY FUNCTIONAL THEORY (DFT): SOFTWARE

Abinit ADF AIMPRO Atomistix Toolkit Atompaw/PWPAW CADPAC **CASTEP (NMR CASTEP) CPMD** CRYSTAL06 DACAPO DALTON deMon2K DFT++ DMol3 **EXCITING Fireball FLEUR** Fsatom GAMESS (UK) GAMESS (US)

GAUSSIAN **GPAW JAGUAR** (no EFG) **MOLPRO** NRMOL **NWChem OCTOPUS OpenMX** ORCA ParaGauss PARATEC PARSEC **PCGAMESS** PLATO Parallel Quantum Solutions Priroda Q-Chem SIFSTA Socorro S/PHI/nX

SPR-KKR TURBOMOLE VASP WIEN2k (no CSA)

DENSITY FUNCTIONAL THEORY: ELECTRIC FIELD GRADIENT TENSOR

RECALL THE BASIC DEFINITIONS FOR EFG TENSOR:

Electric field (vector property):

$$E = -\nabla\phi$$

where ϕ is the electrostatic potential:

$$\phi_1 = \int \frac{\rho_2 dV_2}{4\pi\varepsilon_0 r_{12}}$$

Electric field gradient:

 $V = \nabla E$ (tensor of rank 2)

Quadrupolar coupling constant:

$$C_Q = \frac{V_{ZZ}(eQ)}{h}, \ Q - electric \ quadrupole \ moment$$

DENSITY FUNCTIONAL THEORY: MAGNETIC SHIELDING TENSOR

RECALL THE DEFINITION OF THE MAGNETIC SHIELDING ANISOTROPY TENSOR:

$$\sigma_{i,j} = \frac{\partial^2 E}{\partial \mu_i \partial B_j}$$

where μ is the nuclear magnetic moment, and B is an external magnetic field.

Early chemical shift calculations: C. Jameson, A. DeDios, E. Oldfield

DEVELOPED BY THE GROUP OF J. A. POPLE

USES GAUSSIAN BASIS SETS

ONE OF THE MOST USER-FRIENDLY PROGRAMS FOR RUNNING ELECTRONIC STRUCTURE CALCULATIONS

CAPABILITIES RELEVANT TO NMR SPECTROSCOPISTS:

Geometry optimization Calculations of EFG tensors Calculations of magnetic shielding anisotropy tensors Calculations of spin-spin coupling constants

TYPES OF CALCULATIONS:

Semi-empirical Ab initio DFT Hybrid QM/MM

GAUSSIAN CAN RUN MANY TYPES OF CALCULATIONS, AND THE USER SELECTS WHICH BY GIVING A SERIES OF "KEYWORDS", WHICH REPRESENT THE DESIRED TYPE OF CALCULATION. EACH OF THE KEYWORDS USUALLY HAS A NUMBER OF OPTIONS, SPECIFIED IN THE FORM

KEYWORD=(OPTION1,OPTION2,OPTION3)

The ordering of keywords and options is not important, and lower and upper case characters are treated equal.

Gaussian reads the keywords and other information (e.g., geometry) from an input file, which must have a name of the type

jobname.com

To run the program, type

g03 jobname.com &

which produces an output file called jobname.log

THE BASIC STRUCTURE OF A GAUSSIAN INPUT:

Link 0 Commands: Locate and name scratch files. 2 processors Memory allocation - 120 MB

Route section (# lines): Specify desired calculation type, (blank line terminated).

Title section (blank line terminated).

Molecule specification (blank line terminated).

Optional additional sections (usually blank line terminated).

EXAMPLE:

%chk=formald.chk %nproc=2 %mem=120MB

B3LYP/6-31G(d) opt NMR EFG

Title → Formaldehyde optimization

Charge → 0 1 ← multiplicity C 0.0 0.0 0.0 O 0.0 1.22 0.0 H 0.94 -0.54 0.0 H -0.94 -0.54 0.0 Cartesian Coordinates or Z-matrix

THE ROUTE SECTION OF A GAUSSIAN03 INPUT FILE SPECIFIES THE TYPE OF CALCULATION TO BE PERFORMED. THERE ARE THREE KEY COMPONENTS TO THIS SPECIFICATION:

The job type (OPT, FREQ, NMR, PROP=EFG)

http://www.gaussian.com/g_ur/m_jobtypes.htm

The method

(HF, AM1, B3LYP, CASSCF)

The basis set

(3-21G, 6-31G(d), 6-311+G(d, p), cc-pVTZ, etc.)

http://www.gaussian.com/g_ur/m_basis_sets.htm

The first line of the molecule specification section specifies the net electric charge (a signed integer) and the spin multiplicity (a positive integer).

Thus, for a neutral molecule in a singlet state, the entry 01 is appropriate.

For a radical anion, -1 2 would be used.

This is the only molecule specification input required if Geom=Check is used.

The entire molecule specification (and title section) may be omitted by including Geom=AllCheck in the route section.

SAMPLE INPUT FILE FOR CALCULATING $^{51}\mathrm{V}$ CSA AND EFG TENSORS FOR VOCl_3

%nproc=1 %mem=700MB %Chk=./VOCI3_opt_6311Gdp.chk # b3lyp/6-311+G(d,p) opt=(maxcycle=100) scf=(vshift=100,maxcycle=256)

VOCI3

0 1 V -0.000056 -0.000022 0.230882 O -0.000052 -0.000075 1.803662 Cl 1.215304 -1.787943 -0.387058 Cl -2.156194 -0.158336 -0.387084 Cl 0.940990 1.946345 -0.387011

SAMPLE OUTPUT FILE FOR CALCULATING ⁵¹V CSA AND EFG TENSORS FOR VOCl₃ (CSA ENTRIES)

Calculating GIAO nuclear magnetic shielding tensors. SCF GIAO Magnetic shielding tensor (ppm): 1 V Isotropic = -2279.3913 Anisotropy = 369.7210 XX= -2032.9731 YX= -0.0448 ZX= -0.0097 XY= -0.0404 YY= -2032.9397 ZY= -0.0515 XZ= 0.0107 YZ= -0.1385 ZZ= -2772.2612 Eigenvalues: -2772.2612 -2033.0021 -2032.9106 2 0 Isotropic = -1148.8385 Anisotropy = 1752.5744 XX= -1732.9364 YX= -0.0137 ZX= -0.0339 XY= -0.0159 YY= -1733.1237 7Y= 0.0761 XZ= -0.0323 YZ= 0.0549 ZZ= 19.5444 Eigenvalues: -1733.1248 -1732.9352 19.5444 3 Cl Isotropic = -51.5475 Anisotropy = 998.2683 XX= 376.6950 YX= -34.6272 ZX= -476.2807 XY= -34.6678 YY= 340.4831 7Y= 286.9402 XZ= -494.8562 YZ= 298.1174 ZZ= -871.8206 Eigenvalues: -1088.1035 319.4962 613.9647 4 Cl Isotropic = -51.5914 Anisotropy = 998.3747 XX= 379.3590 YX= 33.0426 ZX= 487.1986 XY= 33.1260 YY= 337.8399 ZY= 268.1242 XZ= 506.2733 YZ= 278.5711 ZZ= -871.9731 Eigenvalues: -1088.3077 319.5417 613.9917 5 Cl Isotropic = -52.0678 Anisotropy = 998.7335 XX= 318.8621 YX= 1.5137 ZX= -11.0368 XY= 1.4978 YY= 397.5075 7Y= -556.1673 XZ= -11.4555 YZ= -577.4015 ZZ= -872.5730 Eigenvalues: -1088.7912 318.8333 613.7545

SAMPLE OUTPUT FILE FOR CALCULATING ⁵¹V CSA AND EFG TENSORS FOR VOCl₃ (EFG ENTRIES)

Center		Electric			
	XX	YY	ZZ		
1 Atom	-33460.	854654	-33460.8547	707	-33459.870669
2 Atom	-1241.3	59443	-1241.35944	12	-1241.173551
3 Atom	-13077.	544551	-13077.1822	276	-13076.272504
4 Atom	-13077.	571052	-13077.1559	932	-13076.272663
5 Atom	-13076.	975620	-13077.7515	573	-13076.272758
Center			Field Gradient		
	XY	XZ	YZ		
1 Atom	-0.00	0012	-0.000023	(0.000045
2 Atom	0.00	0001	-0.000002	().000087
3 Atom	0.344	4135	0.652327	-().394042
4 Atom	-0.32	8898	-0.667307	-(0.368130
5 Atom	-0.01	5211	0.014992	(0.761941
Center			Field Gradient		
		Eigenva	lues		
1 Atom	-33460.	854709	-33460.8546	651	-33459.870669
2 Atom	-1241.3	59444	-1241.35944	11	-1241.173551
3 Atom	-13078.	074600	-13076.9745	518	-13075.950213
4 Atom	-13078.	074716	-13076.9745	577	-13075.950354
5 Atom	-13078.	074258	-13076.9753	322	-13075.950371

SAMPLE OUTPUT FILE FOR CALCULATING ⁵¹V CSA AND EFG TENSORS FOR VOCl₃ (EFG ENTRIES)

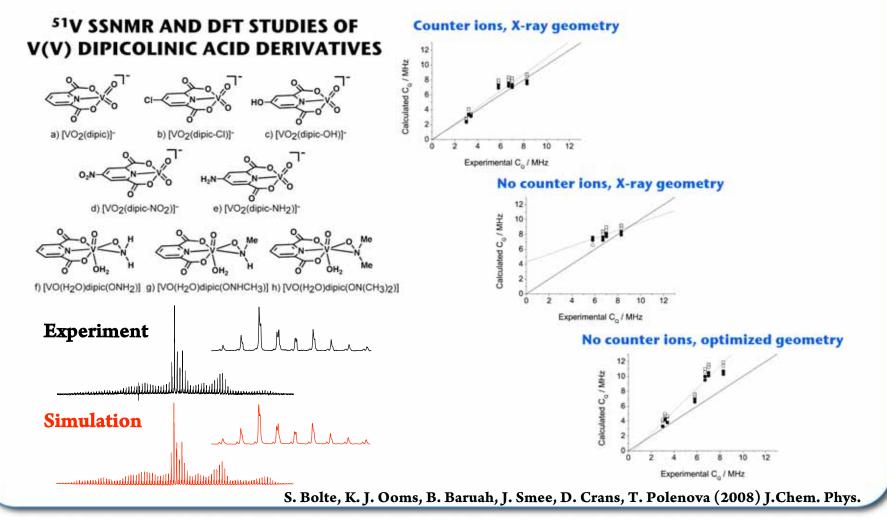
Center	Electric Field Gradient (tensor representation)							
	3XX-RR	3YY-RR	3ZZ-RR	ł				
1 Atom	-0.32797	7 -0.3	28030	0.656008				
2 Atom	-0.06196	-0.0	61963	0.12392				
3 Atom	-0.54477	4 -0.1	82499	0.72727				
4 Atom	-0.57117	0 -0.1	56050	0.72722				
5 Atom	0.02436	4 -0.7	51590	0.72722				
Center	(tensor	ectric Field (representa genvalues		-				
1 Atom	-0.32803	-0.3	27975	0.65600				
2 Atom	-0.06196	5 -0.0	61962	0.12392				
3 Atom	-1.07482	.0.02	25259	1.04956				
4 Atom	-1.07483	64 0.02	25306	1.04952				
5 Atom	-1.07427	1 0.0	24662	1.04961				

VISUALIZING THE RESULTS OF NMR PARAMETER CALCULATIONS IN GAUSSIAN03

GAUSSVIEW CAN GRAPHICALLY DISPLAY A VARIETY OF GAUSSIAN CALCULATION RESULTS, INCLUDING THE FOLLOWING:

- Optimized molecular structures
- Molecular orbitals
- Atomic charges
- Electron density surfaces from any computed density
- Electrostatic potential surfaces
- NMR shielding density
- Animation of the normal modes corresponding to vibrational frequencies

http://www.hoffmann-oberhausen.de/gvbroc.htm


CONVERTING GAUSSIAN03 RESULTS TO STANDARD NMR NOTATION

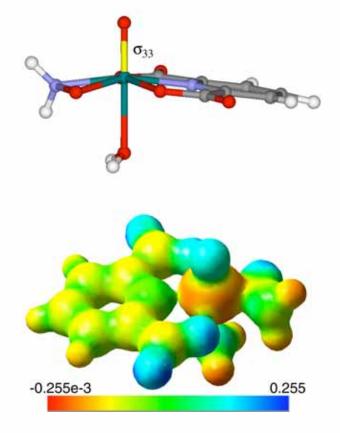
MATHEMATICA ROUTINE GAUSSIAN

- Reads every Gaussian output file in a specified directory
- Searches for CSA and EFG tensor entries for V (can be modified for any nucleus)
- Outputs EFG tensor (C_Q in MHz) and η_Q and CSA tensor (δ_σ in ppm and η_σ)
- Outputs a summary table with the NMR tensors and the Euler angles
- Available from Tatyana Polenova upon request

DFT CALCULATIONS OF NMR PARAMETERS FOR METALS: PRACTICAL CONSIDERATIONS

INCLUDING COUNTER IONS AND GENERALLY CHARGES OUTSIDE OF THE IMMEDIATE COORDINATION SPHERE IS NECESSARY

DFT CALCULATIONS CAN EXPLAIN THE MAGNITUDE OF $C_{\rm Q}$

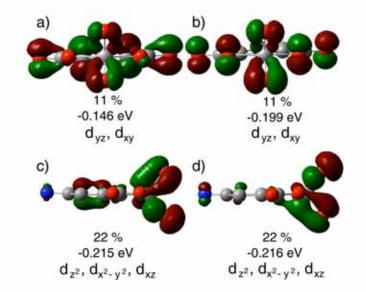

⁵¹V SPECTROSCOPY OF DIPICOLINIC ACID DERIVATIVES

Nominal coordination geometry: heptacoordinate, large C_Q expected

Experimental C_Q: 3.43 MHz (small)

Electrostatic potential surface (ESP):

Reveals capped square planar charge distribution, consistent with small $C_{\mbox{\scriptsize Q}}$



Ooms, Bolte, Baruah, Smee, Crans, Polenova (2007) Inorg. Chem. 46, 9285-9293

DFT ANALYSIS OF MOLECULAR ORBITALS

⁵¹V SPECTROSCOPY OF DIPICOLINIC ACID DERIVATIVES

EXAMINE THE SYMMETRY OF MO'S USING THE NCS METHOD TO UNDERSTAND THE CONTRIBUTIONS OF CHEMICAL BONDS AND LONE ELECTRON PAIRS TO THE ⁵¹V MAGNETIC SHIELDING TENSOR

Bolte, Ooms, Baruah, Smee, Crans, Polenova (2008) J.Chem. Phys.

DFT CALCULATIONS OF NMR PARAMETERS FOR METALS: PRACTICAL CONSIDERATIONS

ACCURACY OF EXPERIMENTALLY MEASURED EFG TENSORS

5-15% for small molecules 10-30% for proteins

BASIS SET

Compromise between the desired accuracy and the size of the system For heavier elements- need custom basis sets with additional functions for core electrons (to account for non-spherical charge distribution) Check for the basis set convergence on small model systems first

METHOD

Choice of functional and basis set-

check on small model systems first

1. CREATE A DIRECTORY ON CRUNCH (4-PROCESSOR LINUX AMD OPTERON WORKSTATION IN T. POLENOVA'S LABORATORY) YOU WILL NEED AN X11 APPLICATION (MAC) OR USE PUTTY

The login and password are available from Tatyana Polenova upon request; Once on crunch,

<pre>\$ mkdir yourlastname \$ cp -r VOCl3/*.com yourlastname</pre>	 # this will make a directory for you # copy the Gaussian executable .com files in VOCI3 directory to your directory 		
\$ Is <i>VOC13</i>	 # list the contents of the VOC13 directory; you should see a number of files (.com, .log, .chk, and .xyz) representing the input, output, checkpoint, and coordinate files for the Gaussian jobs in this tutorial 		
<pre>\$ cd yourlastname \$ ls</pre>	 # change directory to your directory # list the contents; you should see two entries: VOCI3_NMR_afteropt_Zampella.com, VOCI3_opt_b3lyp.com 		

2. EXAMINE THE CONTENTS OF YOUR GAUSSIAN INPUT FILES

\$ more VOCI3_opt_6311Gdp.com
\$ more VOCI3_NMR_afteropt_b3lyp.com

to see the VOCI3_opt_6311Gdp.com file
to see the VOCI3_NMR_afteropt_b3lyp.com file

Questions:

- 1. What type of jobs each of the two input files is written for?
- 2. What DFT method is used?
- 3. What basis sets are used?
- 4. Identify the coordinate entries
- 5. List the molecular parameters that are calculated in each file
- 6. In your spare time, identify other keywords that are used in the two files (consult Gaussian03 manual)

3. RUN GEOMETRY OPTIMIZATION ON THE VOCl₃ MOLECULE

\$ setGauss
\$ nohup g03 VOCI3_opt_Zampella.com &

set Gaussian03 environment variables
executes VOCI3_opt_Zampella.com in Gaussian03

Note that the job uses a custom basis set:

On vanadium- a LanL2DZ modified by Couty and Hall (Couty and Hall, J. Comput. Chem. 1996, 17, 1359-1370) and used by Zampella et al. for calculations of QM models of VCPO (Zampella et al., Inorg. Chem. 2004, 43, 4127-4136), and to make the geometry optimization quicker

This job will take approximately 4-15 minutes (depending on how many jobs are running simultaneously on crunch) After this job is done, examine the corresponding log file. The coordinates for the optimized geometry will be given in the last "Input Orientation" and "Standard Orientation" entries of the file.

To check whether the job is running, type "top" at any stage. Gaussian job names start with "I" followed by 3 or 4 numbers, e.g. "I703.exe", "I502.exe", "I1110.exe", etc. (read Gaussian manual for more information). To exit top, type "q".

5. CALCULATE THE EFG AND CSA TENSORS FOR THE GEOMETRY-OPTIMIZED \mathbf{VOCl}_3

\$ g03 VOCI3_NMR_afteropt_b3lyp.com &

executes VOCI3_NMR_afteropt_b3lyp.com in Gaussian03

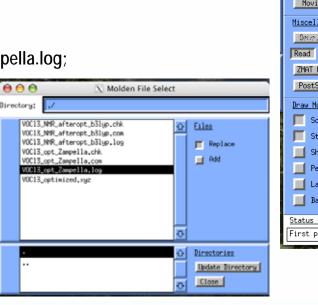
This job will take approximately 20-45 minutes depending on the how many jobs are running in parallel

This job will calculate the EFG and CSA tensors on the geometry-optimized VOCl₃ molecule, and perform the NCS (Natural Chemical Shielding) analysis to determine the contributions of the individual bonds and lone electron pairs to the shift.

After the job is done, examine the contents of the corresponding log file. The CSA tensors will be printed for each atom; the EFG tensors will be given as well (in atomic units).

Note that the 6-311+G(d,p) basis set is used, and the starting geometry is that optimized for a VOCI₃ job at the same level of theory (which we will not do because it takes 33 min, so I have run the optimization in advance)

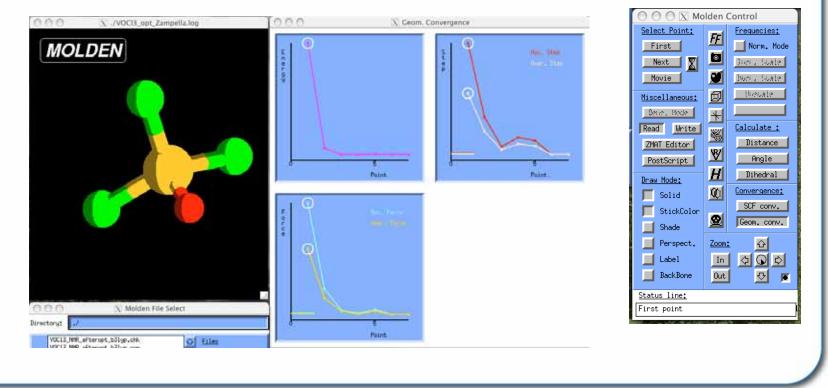
6. EXAMINE THE RESULTS OF GEOMETRY OPTIMIZATION IN MOLDEN

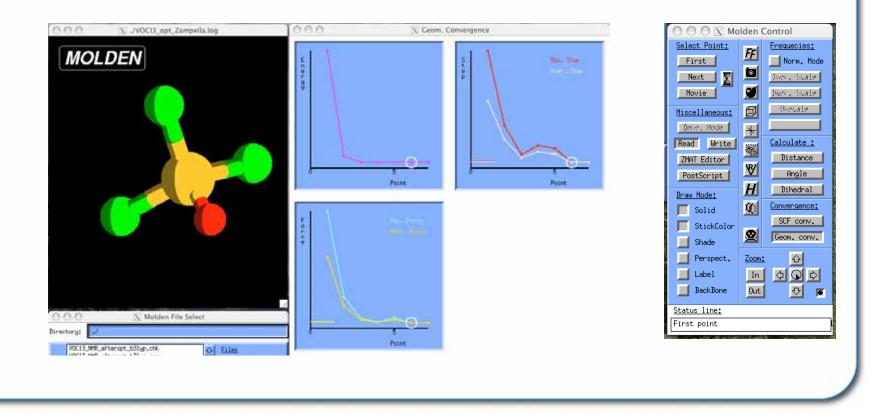

Molden- a free visualization program for displaying molecular structures; reads of Gaussian input and output files, and an easy analysis of geometry and SCF convergence

http://www.cmbi.ru.nl/molden/molden.html; http://www.cmbi.ru.nl/molden/howtoget.html

\$ molden & # executes Molden

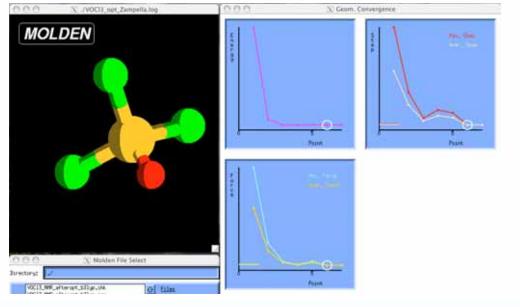
From the Molden Control menu, read VOCI3_opt_Zampella.log; Select Draw Mode: Solid/Ball-and-Stick

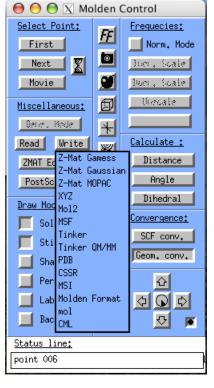

(ignore the error message about being unable to read the basis set- this is irrelevant)


6. EXAMINE THE RESULTS OF GEOMETRY OPTIMIZATION IN MOLDEN (CON'D)

Examine the geometry convergence by selecting: Convergence/Geom. Conv.

6. EXAMINE THE RESULTS OF GEOMETRY OPTIMIZATION IN MOLDEN (CON'D)


Click on each of the points along the plot; the corresponding geometry will be displayed in the molecule window



6. EXAMINE THE RESULTS OF GEOMETRY OPTIMIZATION IN MOLDEN (CON'D)

You can save the geometry produced at any step of the optimization: Select Write/XYZ (or any other coordinate file that is supported by the program)

Note that you can then directly paste the coordinates produced by saving the XYZ file into the input file for the single point calculations of the NMR parameters that you will be executing subsequently

7. EXAMINE THE RESULTS OF NMR PARAMETER CALCULATIONS USING GAUSSVIEW

\$ gview

#executes GaussView

In GaussView, open the checkpoint file VOCI_NMR_afteropt_b3lyp.chk

				and the second states in the		
Current Fra	1991		Carbor	n Tetrahedral		
	0.0.0	∑ Open Files				
	Look in	g/data4/winterschool/VOCI3/	G			
		NMR_afteropt_h3lyp.thk				
	D vocia,	_opt_Zampella.chk				
Invite.					0 Hours 22 Hindse 2012 George. 12 Rufe 24 Ints 0 IDE= 0 Dix= 1 Ser=	1
-1.807485	Fie gane	"VOCI3_NMR_afteropt_b3lyp.chk*		Open		1
-1,807481 2,0374507 =5,039e-0 [X(C1301	File type:	"VOCI3_NMR_aferopt_b3lyp.chk" Gaussian Checkpoint Files (*.chk)		Open Cancel	1 RMF= 24 Int= 0 IQE= 0 DN= 1 Ser=	1
-1.807485	File type:		1	Cancel	1 RMF= 24 Int= 0 IQE= 0 DN= 1 Ser=	1
-1,807481 2,0374507 =5,039e-0 [X(C1301	File type: Open gs: Tarpet	Gaussian Checkpoint Files (*.chk)		Landstream I	1 RMF= 24 Int= 0 IQE= 0 DN= 1 Ser=	1

7. EXAMINE THE RESULTS OF NMR PARAMETER CALCULATIONS USING GAUSSVIEW: ESP SURFACE

After opening the checkpoint file, go to Results/Surfaces; under cube actions, select New Cube; Kind: Total Density, leave all the settings at default

It will take a minute or so for the program to generate the cube; then a line of data will appear under "Cubes Available"

Under "Cube Actions", select "New Cube"/Kind: ESP, leave all the settings as defaults

It will take a few minutes to generate the ESP cube; then a line of data will also appear under "Cubes Available"

Next, select an appropriate isosurface value (0.0002 is appropriate for this example); generally adjust the isosurface value until the visualization if the difference densities is ideal

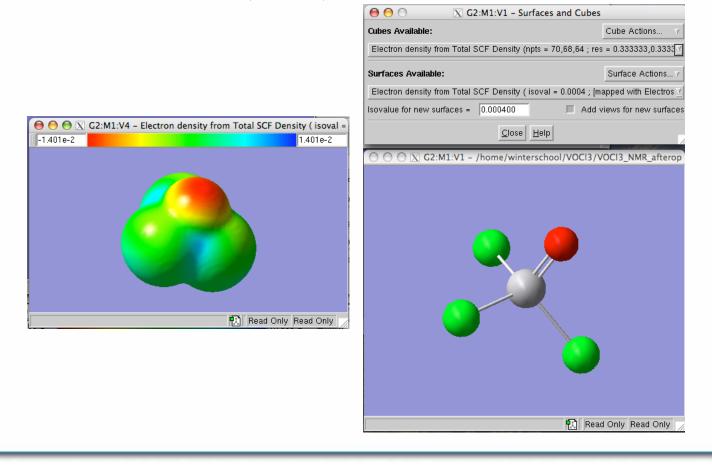
7. EXAMINE THE RESULTS OF NMR PARAMETER CALCULATIONS USING GAUSSVIEW: ESP SURFACE (CON'D)

Under Cubes Available, select "Electron Density from Total SCF Density"

Select Surface Actions; New Mapped Surface

Under Surface Mapping window, select "Use an Existing Cube"

Under Cubes Available, select "Electrostatic Potential from Total SCF Density"; click OK

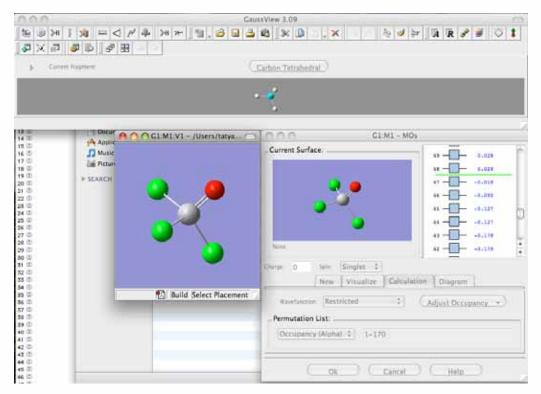

A line of data will appear under Surfaces Available;

The mapped ESP surface will be displayed in the graphical window

7. EXAMINE THE RESULTS OF NMR PARAMETER CALCULATIONS USING GAUSSVIEW: ESP SURFACE (CON'D)

Cubes Available:		Cube Actions
		Cabe Actions
Electron density from Total SCF Dens	sity (npts = 70,68,64 ;	res = 0.3333333,0.3333
Surfaces Available:		Surface Actions
		<u>.</u>
Isovalue for new surfaces = 0.00040	00 🔲 Ad	dd views for new surfaces
	ose <u>H</u> elp	and the second se
0 00 ∑ C	2:M1:V1 - Surface M	Mapping
 Use an existing cube Generate values only at surface presented on the surface of the	points	
Cubes Available:		
Electrostatic potential from Total SCE	Density (npts = 70,68	3,64 ; res = 0.3333333,0.333333,0.3333
Licencerence percinder nem reter e er		
		7

7. EXAMINE THE RESULTS OF NMR PARAMETER CALCULATIONS USING GAUSSVIEW: ESP SURFACE (CON'D)



7. VISUALIZE MOLECULAR ORBITALS IN GAUSSVIEW

Open the checkpoint file VOCI3_NMR_afteropt_b3lyp.chk in GaussView; Go to the Orbital Editor

On the right side, orbitals are listed

Under Diagram, you can arrange those with respect to Energy or occupancy

7. VISUALIZE MOLECULAR ORBITALS IN GAUSSVIEW

Under Visualize, select the set of orbitals you would like to display (e.g., LUMO)

Keep the settings as default

0 0	G1:M1 - MC)s
Current Surface:		51 - 0.044
		50 - 0.033
		49 - 0.028
		48 - 0.028
		470.018
		46
Alpha MO ((MO = 42) ; Isov	alue = 0.02.)	450.127
	ande - 0.02 /	44
Charge: 0 Spin: S	Singlet 🛟	
New	Visualize Calcula	ation Diagram
Isovalue: 0.0)2 C	ube Grid: Coarse 🛟
Add Type: LUMO	Add List: 42a	
Current List: 42a		Update
Ok	Cancel	Help

7. VISUALIZE MOLECULAR ORBITALS IN GAUSSVIEW

To display another orbital, select it in the menu on The right side and click "Update"

lect it in the menu on	$\Theta \odot \odot$	G1:M1 - MOs			
ate"	Current Surface:		42 -0.179		
			41 - 11 -0.349	• 11	
			40 1 -0.350		
			39 4 -0.350		
			38 - 1 -0.375		
			37 - 1 -0.390		
			36 - 1 - 0.390		
	Alpha MO ((MO = 41) ; Isovalue =	0.02)	35 - 1 -0.419	×	
	Charges O Saint Cingle	• •	a. [4] a. 430		
	Charge: 0 Spin: Single				
	New Visua	alize Calculation	n Diagram		
	Isovalue: 0.02 Cube Crid: Coarse 🗘				
	Add Type: Highlighted	Add List: 41a			
	Current Victor 41- 42-		<u> </u>		
	Current List: 41a-42a		Update	·	
	Ok	Cancel	Help		
F				11.	
For more details, see: I	nttp://educ.gaussian.coi	m/visual/ESP/f	ntml/ESPGaussV	iew.htm	

SOME LITERATURE

E. Oldfield "Quantum Chemical Studies of Protein Structure" Phil. Trans. R. Soc. B 360: 1347-1361 (2005)

M. Head-Godron "Quantum Chemistry and Molecular Processes" J. Phys. Chem. 100: 13213-13225 (1996)