Chemical Shift Anisotropy &
Multidimensional Recoupling
for Uniformly Labeled Proteins

Chad M. Rienstra
University of lllinois at Urbana-Champaign
Winter School on Biomolecular Solid State NMR
Jan. 20-25, 2008
Stowe, Vermont

Tuesday, January 22, 2008




Outline

 A. Basic Concepts
= What is CSA?
= Why is CSA important, interesting, and/or useful?
= Can it be calculated accurately?
e B. CSA Measurement Methods
= Single crystal goniometer experiments
= Slow magic-angle spinning
= Recoupling in 2D and 3D
e C. Interpretation and Utility
= Relationships to ab initio quantum calculations
= Structure determination
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The “Chemical Shift”

e Not called “NMR emission
fl’eq UenCieS” Appendix B Comparison of 'H and '*C Chemical Shifts

From Application of Fourier Transform NMR ro Car-
bon-13, Varian Associates Lecture Booklet, 1974, Re-

o M O re u Sefu I ;(wl;\]xr:-)d n::h permission of Varian Associates, Palo Alto,
than that!

e EXxplicit, predictable B ——

relationship to e =1 -4 =2
electronic T e

Sﬁﬁb SOH-NE-OH,- N, CH N, T S —

structure e S

o i
3eH-CT-oH €L ony- 0 T ee—

"OH,-CeCl T] S

"

30 ="Mt —mm S

Ly em— I

"o nc 20 a0 0 [ X £0 <0 J‘a J‘J A‘D ow

. e A . a 3 : ; : : .l

g » .~ ) l‘

(ony), Ev0 —_— - /J 'I ™™

o, :c.o OCXANE GMa

Y onery O T By -0

Silverstein, Bassler, and Morrill,
Spectrometric Identification of
Organic Compounds, Appendix B
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Some things the CSA is not

e Community-supported
agriculture

o Certified senior advisors

 Confederate States of
America (a Spike Lee joint)

e Controlled substance act

e (Canadian space agency

e Continuous symmetry
analysis

GOL ]8['@ csa Cearcn) fRmolaass
Personaized Results 1 - 10 of abg

Community Supported Agriculture - LocalHarvest

A CSA, (lor Community Supported Agriculture) is a way for the food buying public to
cma! rﬁlln:lﬂhpmlh Fihhr\dt rn-l:aweamhr basket of ..

wwiw localharves! orglc 16k

CSA

Providing print and slectronic resaarch databases of citations and full text
Site includes tithe list n-‘ datm po-.mau by subject, .

wearw cRacomd - 20k

in the BCHBNCES

Community Supported Agriculture from the Altemative Farming Systems Information
Canter
ww rd usda govlafsicipubs/cea’cea sk A E

 Work for People and Business
Canadian Bll darda Alln:lﬂ:m. Mlh information about CSA, its standards, an onding shop
and consurmer inforrmati :-n
www, caa. o - 30k

Community-supported agriculture - Wikipedia, the free encyclopedia
Community-supported agriculture (CSA) is a relatively new socic-economic model of food
production, sales, I"td éilll"ltlu!.itl" a-m-od a bd!'l N!.FMI- ing tha ..

an wikipedia orgiwikl/ Commu poorted _agrcultune - 34k -
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Some things the CSA is not

e Community-supported

: GOL}SIQ - (o) platien
agriculture - m—_
e Certified senior advisors Community Supperied Agriculure Localkanest

create a relationship with a farm and to recenve a woekly basket of ...

e (CNMR Acronyms, Abbreviations, and Terms - 5:59am
CSA: Chemical Shift Anisotropy ... COCONOESY - COLOC - CONOESY - COSY - COSY-45
- COSYDEC - COSYLR - CP - CPD - CPMAS - CPMG - CRAMPS - CRINEPT - CSA - CSCM

¢ Cuwm.bmrb.wisc.edu!educatiorﬁnmr_acmnym?CSA - 18k - Cached - Similar pages

o (Csearches related to: csa b
° Ccsa airlines c re r controlled substance act sca
combat support associates csi canadian space agency ul 3
a

G{)uuuuuuuuuglﬁ' >
12345678910 Next
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Basic Qualitative Description

e |n a magnetic field (Ho)
valence electrons are
iInduced to circulate, which
generates a secondary
magnetic field that
opposes the applied field
near the nucleus. Thus a
higher field is needed to
achieve resonance. This
IS shielding.

Tuesday, January 22, 2008 6




Extreme Shielding, Stowe Edition

067 5.10 -05 05

 New dJ. Chem., 1998, 331 "

Ab initio hybrid DFT-GIAO calculations of the shielding produced
by carbon-carbon bonds and aromatic rings in *H NMR

SPCCIrOsCOpy

Thon Alkorta and José Elgeers®
Institure de Quimica Médica, C.5.1.C., Juan de la Clerva, 1, E-28008 Madrid, Spain

Theoretecal calculations of "H shiskdings by sngle, double and triple O bonds as well a3 by aromatic ring
Ibensene, cydopropenyl cation and hesaflsorobensenc) have bocn performed using ab imitie MO} theory. As an
iTustration of the methodalogical appraach, absokute chemical shicldings of "H-, '*C-, ""0- and "*F<onlaning
mclecules have born calculated. The results, both inter- and intramobecular, range rom good to excelent. The
relative chemical shifts of some large maolecules having strongly shislded profons are conveniently reproduced.

Cabeuds ab initin bybrides DFT-GIAD de Pelfet §'boran produit par des Bubsoss carbone-carbose et par de soysiy
arm tiques on RMN da "H. On rapports les calouds théorigoes ab initie des hlindages de protons par des
lazisom CC simple, double ef triple 2insi par des noyaux aromatigoes (beneéne, cation cyclopropényle el
hexaftucrobensine). Pour [ustrer Pappeoche atilisie, ks blindages des noyaun 'H, **C, V"0 et 19" ot &1
cakuls Loy raubals tant inter- que idramouculaires wal boos ou cacellnts Loy deplacementy chanmjues Je
uclgue mokécules de relativernent grande tuille sonl reprodwits de lagon convenable

8: homotropylium cation
9: 1,6-methano[10]annulene
11: 1,2,8,9-tetrahydro[14]annulene
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Origins of CSA
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Chemical Shift Anisotropy

e CSA means orientation
dependence of the chemical
shift, and arises due to the
fact that in a nuclei, the
charge distribution is rarely
spherically symmetrical.

e The degree to which
electron density affects
resonance frequency (also
known as shielding) of a
nucleus depends on the
orientation of the electron
cloud.
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Goniometer Probes

e Must have single crystal

e Shift is a function of
orientation, as discussed
by KW/Z yesterday

o Useful for small
molecules

e (Can determine absolute
orientation to the crystal
frame

e Impractical for larger
molecules

Tuesday, January 22, 2008
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Static Powder Lineshape

e Resolution limited: glycine (1-3C, as below)
e Overlapping lineshapes

CO 10 : 1
Ca
300 200 100 0 300 200 100 0
<€— 5/ppm <«— o/ppm

11
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CSA under Magic Angle Spinning

a)vgor =0 kHz 1

b) Vaor = 0.94 kHz

i

il U |
W"iﬁ“‘d I.-| |, l n".l .].il,‘ﬂillj J-',J,H‘. !

""l‘*-l-.m.—.n...

-
=5

- —

Slow spinning produces spinning
sidebands spaced w, from the

isotropic line in the spectra

Rotation
microscopic macroscopic
B, By
(a) T
X @
Bp Lpas

B, powder
average

J. Herzfeld, A. E. Berger, J. Chem. Phys., 1980, 73, 6021- 6030.
Schmidt-Rohr, Spiess, Multidimensional Solid State NMR and Polymers; Academic Press, 1994

12
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Herzfeld-Berger Convention

Principal Components, d,,, 05, and 93,

Sy / \

are ordered from highest to lowest | ©,=0KHz
frequency: ) J l N

011 2 Opp Z 033 — S w = 05z
Isotropic chemical shift:

Oiso = (Dqq Oy t+ 033)/3 | [ ‘ ) o, = 1.0 kHz

o o Gelf e R e AL L o

Span:

Q= 611 - 633 w, = 4.0 kHz

Al 1 _—

Skew:

K = 3(85, - 0i,, )/ (-1 x = +1) o = 15 kHz

J\
6000 3000 0 3000 5000 Hz

J. Herzfeld, A. E. Berger, J. Chem. Phys., 1980, 73, 6021- 6030.
Schmidt-Rohr, Spiess, Multidimensional Solid1§tate NMR and Polymers; Academic Press, 1994
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Haeberlen Convention

 Principal Components are ordered according to their magnitude
In the traceless representation:

|6zz - 6isol 2 |6xx - 6isol 2 |6yy - 6iso|
« Isotropic Chemical Shift: 8, = (9, + 0,, + 3,,)/3

« Reduced Anisotropy: 8 =9,, - d,,

 Chemical Shift Anisotropy: Ad =9,, - (0, *+ 0,,)/2 = 3/2 6

« Simplifies simulations in the basis of spherical irreducible tensors

3 1
Poo = Oi5p0 00 = \/;5’p2¢2 = 5775

Haeberlen, U. High Resolution NMR in Solids: Selective Averaging; Academic Press, 1976.
14
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Measurement Strategies

e Single crystal goniometer
= Extremely precise and accurate
= Qrientation relative to crystal frame
e Powder lineshapes (directly measured)
= High accuracy and precision
= Low signal-to-noise and resolution
o Slow MAS: Herzfeld Berger
= Slightly reduced accuracy and precision
= Resolution for ~10 to 20 sites; good sensitivity
e Recoupling methods
= High accuracy and precision (if done well)
= Resolution for hundreds of sites

15
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Methods to Measure CSA Parameters

Static lineshape and sideband manifold
Goal: measure CSA throughout protein
Site resolution is essential
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1 1
13C Chemical Shift (ppm)

Recoupling Slow MAS

Wylie, Franks, Graesser, Rienstra, JACS 2005, 127, 11946-11947.
Wylie, Sperling, Frericks, Shah, Franks, fdenstra, JACS 2007, 729, 5318-19.
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SSNMR Spin Hamiltonian
H=H,+H., +H,+ H_,

/S N/

500 MHz 1 to 50 kHz

Rotating frame eliminates Zeeman term

Internal terms of the Hamiltonian
= Anisotropic terms (solid): ~1 to 50 kHz
= |sotropic terms (solution): ~1 to 100 Hz

Experimental control
= Radio frequency pulses: Up to 125 kHz

17

S,iso

+ H,

/

<100 Hz
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Magic-Angle Spinning (MAS)

Wp = Wnax (3 Cos2P-1)/2 ﬂ maximum
o i JLTS structural
Lol information

’ maximum
&3 resolution
‘ and
>

=SS S sensitivity

[ oyt o o o | S |

13C Frequency

Lowe, I.J., Phys. Rev. Lett. 1959, 2, 285.
Andrew, Bradbury, Eades, Nature 19584882, 1659.
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High-Resolution Protein SSNMR
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56 residue protein (GB1), 6 kDa, 750 MHz 'H frequency; ~380 peaks shown

*C Chemical Shift (F2,ppm)

Heather Frericks Schmidt and Donghua Zhou
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Unique Chemical Shifts in Proteins
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Amino Acid Structures
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Residue Type Dependence

0O -
BMRB Statistics
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o ®
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Signal Patterns by Amino Acid Type
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56 residue protein (GB1), 6 kDa, 750 MHz 'H frequency; ~380 peaks shown

Heather Frericks Schmidt and Donghua Zhou
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Secondary Chemical Shifts

M«

a-helix
x~helix

. B-sheet !
" ”l
|

m U

6 4 2 0 -2 -4 6 4 2 0 -2
Sca PPM Ocg PPM

Figure 1. Contour plots of the average secondary shift, A(¢,¥), of (A)
Ca and (B) C8 resonances and (C) histograms of secondary shift dis-
tribution in a-helix and S8-sheet. The A(¢,¥) surface is calculated by
convolution of each of the §(¢.,¥;) values with a Gaussian function, prior
to addition and normalization: where the summations extend over all

I
I
I
I
I
|

 Spera & Bax, JACS 1991
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Assignments: Backbone Walk

Solid Solution
N-CA-CX H-N-CA
H-N-CO

N-CO-CX H-N-(CO)-CA

H-N-CA/CO

CO-N-CA/CB HN-CA/GB

| 1-1 | i | i+1 |

Bennett, Rienstra, Auger, Lakshmi, Griffin, J. Chem. Phys. 1995, 103, 6951. Hohwy, Rienstra,
Jaroniec, Griffin, J. Chem. Phys. 1999, 110, 7983-7992 and 2002, 117, 4973. Baldus et al., Mol.
Phys. 1998, 95, 1197. Morcombe and Zilm, JACS 2004, 126, 7196.
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GB1 Chemical Shift Assignments

100 1 1 1 | | |

—_

—

(&)}
]

120

1254

>N Chemical Shift (F1, ppm)

1307

135 T , T T
70 60 50 40 30 20

3C Chemical Shift (F2, ppm)

Franks, Zhou, Wylie, Money, Graesser, Frericks, Sahota, Rienstra, JACS 2005, 727, 12291-12305.
Wylie, Franks, Graesser, Rienstra, JACS 2005, 127,2%1 946-11947.
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DsbA, 21 kDa Microcrystals

Microcrystalline

Linewidths ~ 1/B,
Quadratic benefit in 2D 13C-13C spectra

F('H): 500 MHz
DARR: 50 ms

750 MHz
100 ms

F1- **C Chemical Shift (ppm)
W S w n
Q Q Q e

o)
Q

~
o

70 60 50 40 30
F2- *C Chemical Shift (ppm)

60 50 40 30
F2- 3C Chérflical Shift (ppm)

60 50 40 30
F2- '*C Chemical Shift (ppm)
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DsbB: 20 kDa, Membrane Protein
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Li, Berthold, Frericks, Gennis, Rienstra, ChemBioChem 2007, 8, 434-442.
Li, Berthold, Gennis, Rienstra, Protein Sci., ingress.
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aS Fibrils: 13C-13C 2D Spectra
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Secondary Chemical Shifts

M«
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Figure 1. Contour plots of the average secondary shift, A(¢,¥), of (A)
Ca and (B) C8 resonances and (C) histograms of secondary shift dis-
tribution in a-helix and S8-sheet. The A(¢,¥) surface is calculated by
convolution of each of the §(¢.,¥;) values with a Gaussian function, prior
to addition and normalization: where the summations extend over all
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Glycerol Labeling Scheme

2-3C Glycerol
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High-Resolution 2D 13C-13C (GB1)
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Scroll resonator probe: Stringer, Bronnimann, Mullen, Zhou, Stellfox, Li, Williams, Rienstra, J.
Magn. Reson. 2005, 173, 40-48. 32
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15N-13C’ Site Resolution

Slow MAS of °N,13C labeled GB1
grown in 1,3-13C-glycerol provides
50 : .
3 ci mme R WA T g R a 2D manifold of ®N and 13C
: sidebands
g 100 (R $ . g .
8 E R
g . .:- T49N-A4BC i 1
= 200 -/ gt R 105- ﬁ GMN K13C C
. THIN-K10CO G41N-D40CO
o, g mrj{ G38N-N37CO
" & ngqoggg{a BrcscalN F52C0
250 200 150 100 K2BN-E27C V21N-A20C N37N-D36C, D22N-v21C
13C Chemica| Shlﬁ (ppm) 1154 S N ", A34C" £¥ I mm{m SN-T44C on 7N-T16C

Each piece of the checker board
exhibits site-resolved peaks with
line widths of ~0.2 to 0.3 ppm.
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Wylie, Sperling, Frericks, Shah, Franks, Rienstra, JACS 2007, 7129, 5318-19.
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Slow Spinning °N-13C’ 2D
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Slow Spinning Analysis

e Each peak in the spectrum is integrated
A 1D manifold is reconstructed by summation along each dimension
e Repeated for 42 sites in the protein

‘ A ; o cut, -
. 501 2
2 ] - - - .. s " S ‘ . . .
K P8 % S o X * “
..n . R £ ot k oy | : o oo g 2t R
9 1 J.: X #:t.:.' 6' e {t{:’ y'f.:'f ” e i" -
- " “ .,‘. f " -
(BD 1001 - % e -. : ‘:..'*"'. 2 o - s "y
= R :S- }- .- - .:(.. .'r,. .7.“
S o ool M o e epis ey
n—) - % f..g - #"f.:g'f f.‘. ' . 0 f.::': f.‘ o J'_ ’;:.,’ . 1-,‘ 3
—_— 1 50 7 o . » » . - . ..... a
: J v ® - e ;o'- . / 'd & A y’ ® 'Js .-E" 5 L
-6 ] -, b/ ‘.,. Cd '~ - §< B3 ‘C 5 s
g > 3
~— 200+ 0.t " - :l_‘: :_::; . ;::3 ..:'."’ - :.:.’ ...:‘: ' z’ '.:l.; *yt ‘. ° ._:.. .:; . il . '

200 150 100
13C Chemical bt (ppm)

Tuesday, January 22, 2008




1D Fits From SPINEVOLUTION
e Results from D40N-V39C’ cross peaks

il ull n

15N
JM& »JULA U
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Dipolar Recoupling

(O) Efw imm,t zuwthezua)lctdt

m,u 0
[ | p
3
D&
C—N
Desired . T
Information N Pulses Magic Angle Spinning Magic Angle Spinning +
(Hamiltonian 13C Pulses Multiple Pulse Sequence
spatial term) B =
AAVANEYa a2 2\
= MAS averages couplings to zero B = >2/ \/ xoa
= Multiple pulse sequence A~ NP
restores dipolar couplings N7 N2

B =547° —p | | I
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Tycko’s “CRAMA” Experiment

Determination of Chemical-Shift-Anisotropy Lineshapes in a
Two-Dimensional Magic-Angle-Spinning NMR Experiment

ROBERT TYCKO, GARY DABBAGH, AND PETER A. MIRAU
AT&T Bell Laboratories, Murray Hill, New Jersey 07974
Received December 15, 1988; revised March 24, 1989

We describe a technique for measuring chemical-shift-anisotropy ( CSA ) lineshapes in
NMR spectra of polycrystalline or amorphous solids. By combining magic-angle spin-
ning ( MAS) with a radiofrequency pulse sequence synchronized with the sample rotation
in one time period of a two-dimensional experiment, we obtain two-dimensional spectra
in which the CSA lineshapes appear along one axis and the normal MAS spectrum ap-
pears along the other axis. The CSA lines are thereby resolved as long as the inequivalent
nuclei have resolved isotropic chemical shifts in the MAS spectrum. Our technique differs
from previous, related techniques in that we employ pulse sequences designed so that the
CSA lineshapes in the two-dimensional spectrum are precisely the same as those obtained
from one-dimensional spectra of nonspinning samples in the absence of spectral overlap;
the analysis of the spectra is thus simplified substantially. We describe the theory and
experimental implementation of the technique in detail, and present resolved '’C CSA
lineshapes for methyl-a-D-glucopyranoside. We analyze the effects of pulse imperfections
on the observed lineshapes and show how such effects can be minimized. © 1989 Academic
Press, Inc.
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Tycko’s CSA Recoupling Sequence

e JMR 1989, 85:265
e 2D correlation
e TT pulse schemes

e Scaling factor depends
on TT pulse duration

L LS

" ' : ; ' ' i FiG. 3. Simulated powder pattern spectra from calculations of nuclear spin dynamics under the pulse
T2 T, ~Ty o T B, T/2 sequence in Fig. 2, illustrating the effects of finite pulse amplitudes and pulse length errors. hnhndqil_-}
nuclel with chemical-shifi-anisotropy principal values o), = 2 kHz, #3; = 4 kHz, and oy; = 9 kHz (with

1’!11 respect 1o the cammier frequency ) and random orientations arc assumed. The sequence with four = pulses
— e - with theoretical anisotropy scaling factor x = 0.393 and offset scaling factor £ = 0.000 is used. Ammows
b > indicate the positions of the principal values expected in the limit of delta function = pulses. Lengths and
t flip angles for the actual nominal = pulses are (a) 1.00 us. 180.0% (b) 8.00 us, 180.0% (c) 8.00 us, 189.5%

{d) B.00 us, 200.0°,

39

Tuesday, January 22, 2008

39




SUPER (K. Schmidt-Rohr et al.)

A Robust Technique for Two-Dimensional Separation
of Undistorted Chemical-Shift Anisotropy Powder
Patterns in Magic-Angle-Spinning NMR

S-F. Liu, J-D. Mao, and K. Schmidt-Rohr!

Department of Chemistry and Ames Laboratory, lowa State University, Ames, lowa 50011

Received June 4, 2001 ; revised December 17, 2001

T 11 L |
» Separation of Undistorted QIO QI ite, TS
Powder patterns by CZ[—M [ ANDN
Effortless Recoupling P 01 'l't | l'|l.l_m,

FIG. 1. Pulse sequence of the SUPER NMR experiment. The increment of

« JMR 2002, 155:15-28
e th lution ti is i iod t,. Each of th Ise blocks i
® Better Stablllty than 1T gis:r:’ (r)oltlz:lt(i:nupr::i;:il:o(::i:s::?;xop;go" plulsesc(or0 lwoclt;‘(l)(: g:il:zs ﬂ(:;xk;x:::

I h 360° pulse; see Fig. 3). At the bottom of the figure, the function p(r) multiplying
p U Se S C e m eS the instantancous frequency is shown; see text for more details. (It should not be

confused with a trigger for rotor synchronization, which is not required in this
experiment.)

40
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SUPER Lineshapes « G

Gly B,%j:
* Robust with respect to IA\ 165
T o

variations in RF amplitude S5=——

« 21 rotations on 13C
require less "H decoupling
power (factor of 2 A A R I

mismatch; 1 pulses CHyCOO"Nat  +an-{i

require factor of 3) © i

D. d t . 1!.34 6:;,:
 Disadvantage: 300300100 ppm0

homonuclear coupling still
present

300200 100

Average literature

values _ﬁ _O-C (h)
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ROCSA: Symmetry-Based Sequence

'H rCP Nﬁveﬁmﬂinﬂc
E . 115
. ' 1.05
Cn, M“‘”
e e S _f;/\Lo,m

C' B c'-. .-/E’/\L ks

"""""""""

e S 000 1500 0  -I1500 3000
"""""""""""" "C NMR frequency [Hz)

} " | FIG. 4. Simulations of the effects of ff inhomogeneity on the ROCSA spec-
o I ’ I 1 1 tra calculated for C' in L-alanine, including coupling 1o C, &s in Fig. 3. The
il field amplitude is varied from 085 1o 1.15 times the ideal value,

aT, (a+bi T T—aebT, {1-8)T.

e Chan & Tycko, J. Chem. Phys. 2003, 118:8378
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3D ROCSA Experiments

‘ ROCSA
'Hocp | cw TPPM cw | TPPM Cn,
——nT ——\
®c [ CP | ROCSA H J ‘ SPC-5 l c[..]c..
t, t,/2 /2 e
N cwW I TPPM (o] @y () (i) @, (), |
0
aTrr (a+b)rT' rT' -(a+b)rr (1 »aTtr

&
s a0®@——__ |RECOUPLING A20 Ca » Cross peaks from SPC5
O L] L]
S | M s s | mixing
o Yot K A‘:\Sza
Q 55 @-K50
> ES6 W T - .
S | s o as® 128 e « Gaussian pulse improves
. Xio & RS resolution
g i Kz?: \;(;S; = 13¢-13¢C 2D Plane
R Ca-Cp Region . ]
N wV2 , , —— ____>=— + ROCSA trajectories extracted
° 2 1 0 -1 -2 . . .
2 13 isoiropic Chemical shit (%8, ppm) 1 Anisatropic Chemical snit F1. ki) from third dimension

Chan, J.C.C.; Tycko, R.; J. Chem Phys 2003 118 8378-8389
Wylie, B.J., Franks W. T., Graesser, D.T., Rienstra, C.M; JACS 2005, 127, 11946-11947.
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Stable Amplifiers & Air Compressors

T
F2=121.3 S
H(O) = E fa) ima, telﬂwth W(Ulctdt GsNg'Nlh;m|g§|mmnn) = ‘gg
175 £ &
0E
n,u 0 "'Q 0! B‘ 0 |s0 i-ﬁ
70 60 . 50 40 30 20 10 =
F4, *C chemical shift (ppm)
G38
S(,=0)=1
| |
0 2.2 4.3
t, (ms)
— -1, 1T,
S(7,) = cos(a)m, M)e
Franks, Kloepper, Wylie, Rienstra, J. Biomol. NMR 2007, 39, 107-131.
44
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13C ROCSA Lineshapes

K13
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Fitting Strategy: Spectra to Structure

I\
NMR Data 221 Integrated
Peak Lists Q
Xplor MINUIT Trajectories
Restraints II I \
ﬁ Fortran Code
: . : < Output .
Fit Trajectories Combining

Spinevolution

L Simulated
Pulse Sequence and Minuit
SPINEVOLUTION Curves

Veshtort, M. Griffin, R. JMR, 178, 248-282, 2006.46

F. James and M. Winkler. CERN, Geneva. 2004.
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Lineshape Acquisition and Analysis

Chemical shift anisotropy

S V54 V29
Aliphatic 13C /\
= Local conformation \ //
= Very good QM methods J/
J - _—
20};0 101)0 b \:OE; — -;0100 ZDBD |Db0 & -10‘00 -ZOIDO
Carbonyl 13C requency (Hz) requency (Hz)
= Hydrogen bond length b 8: :I172.2, 1:3 : 1‘I 4(()) b ° ==-1602-8,1PT]==_409-4
= Harder to calculate gauéhe N tr;ns
] (p-sheet) (a-helix)
Amide °N
= Critical for NMR dynamics e e nhpe
= Benchmarks needed for QM
111 PR | 1
130
_~.u'.;.JLL“_ zx'.JL.A‘,AA_ __--.AJ“U .JLA.“’LA.;_. _.JJIL,U.JLAJA_

Wylie, Franks, Graesser, Rienstra, JACS 2005, 727, 11946-11947.
Sun, Sanders, Oldfield, JACS 2002, 124, 5486-5495.
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Alanine Ca and Cf3 Tensors

24

V.
\

1 A20

*0= 6zz '6iso
« O larger in p-sheet relative to
a-helix

0= 26.0
n=0.7

T T J 1
-1000 -2000

T T T
1000 0
Frequency (Hz)

¢

T T
1000 0
Frequency (Hz)

= -156,y = 154 (-turn)

0= 20.0
n= 0.85

LS

T
-1000

1
-2000

0=-17.5

T ’ T T T
1000 0 -1000 -2000 zobo

Frequency (Hz)

¢ = -63, = -37 (a-helix)

\  0=-19.5
n= 0.8

_J

\

\
N\

0= -17.75
n= 0.55

s

T T
1000 0

Frequency (Hz)

-24 (turn)

1 T
-2000 2000

-59,y

I
-1000

¢

T
-1000

1
-2000

Wylie, B.J., Franks W. T., Graesser, D.T.,4R;3ienstra, C.M:; JACS 2005, 127, 11946-11947 .
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Valine Co Tensors
V54 V39

il c [;‘//b/ T \j,"‘_ = — | \~—|~;~’;_I
ot 2 0 =17.0, n= 1.0 0 =-16.75, n= 0.8
3 : ¢ =-121,p = 140 ¢ =-91,y =140
3 gauche + trans
(B-sheet) (turn)
V2

66
35 a4 a3 82 31 30 29 28 / ‘/29 "21
I
J
J 0

» 0 and m greater in -sheet UJ o .
relative to a-helix B i P
0=-10.75, n=04 0 =-11.75, n=0.6
« Also depends upon y, for (3- ¢ =-62,¢y=-49 ¢ =-60,y =-38
branched residues trans rotameric hopping
(a=helix) (turn)

Wylie, B.J., Franks W. T., Graesser, D.T., Rienstra, C.M; JACS 2005, 127, 11946-47.
49
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Elements of CSA tensors of Ca Resonances

Experimental and Theoretical Ca CSA Tensor Elements

O, (Experiment)

- 04 Theory)
30 30 I 10t
t =, I 5 "
Q 20- : I X §F 8 sy s T 3 "
() - t I
3 .
o 104 10 3
QL
® ; 1 = £ j 3 % I S
5 04 : : 1 ] s . f O
= g i i : 0 * I
T -104 i T
= -10- |
Nt { x 3 i I
20—4 5 . . x ‘ I s
¢ = . 3 - . 3 I o
p 3 = . _20_ I 3 ¥ 33
-304 * .
GO G14G38 G41 A20 A23 A24 A26 A34 A48 Va1 Vb4 Ti1 Ti8 T25 T44 KI3 K28

e Traceless representation
 Theoretical values assume 1PGA crystal structure geometry

e Val and Thr show the greatest variation
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Aliphatic 13C CSA Agreement with Theory

Regression Analysis of Calculated Tensor Elements vs. Experimental Values

Glycine Alanine
E 30 25+
& 25 ‘..__1‘. 200
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° 25 . B : ,
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Wylie, Franks, Graesser, Rienstra, JACS 2005, 7127, 11946-11947.
Sun, Sanders, Oldfield, JACS 2002, 124 53486-5495.
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13¢

15N

SN ROCSA

P W TPPM cw TPPM ) )
— ROCSA incorporated into
XY I @C/ I 15N-13C correlation
t1/2 .
n NWWW‘ experiment
Z-filter
P ROCSA t SPECIFIC XY
T49N-A4EC' N-C' id N-Ca
1054 mNng - G14N-K13C ° o _G14
g. -0 G“gwc u T+ G3-8» & G4t
& | Taanwasc-Qygy iaaf‘ i | B ©-T44 oS
» U-1N,13C sample L N 5, —
2} " 7 0121234‘515% ® wi- N37
. 'S 115 {Teonaze & L TinTieC 0 . @ 527F ®q o2
e 50 5N sites resolved E b S riimnrie g e °.ea A
5 120+ a axsaobﬁaqc » KMY"% &%
= 34N- 33C E ?N G14C1 “ Y33§ %036' %—Eﬁ
. . e MDY TSeN.va4 vai” Tasg Kt
« 15N CSA trajectories extracted B .\,,,32“;':22‘&. Fgnrisc| * ™ “E:.;"zs,;
. . . . . AZ20N-E19C k
from third dimension and fit in the [ "-’ Benvesc S 3T
L12N- THC LSN K»tC
time domain 1307 ouowvaoc-— ol FeanTsic & @
ES6N-T55C 56 D40
180 170 70 60 50 40

'3C Chemical Shift (ppm)

3¢ Chemical Shift (ppm)

Wylie, B. J.; Franks, T.; Rienstra, C. M., ééPhys. Chem. B 2006, 170, 10926-10936.
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Variations in 1°N Tensors

K50 K13 N35 G41

0=-116.1+3.4 ppm 0=-100.6 £4.0 ppm
n=0.34+0.07 n=0.36+0.08

0=-103.8£7.3 ppm
n=042+0.13

0=-81.2+3.5 ppm
1 =0.40 0.06

N-Co

......
.......................

d=-115.1£1.5 ppm
n=0.32+0.03

0=-99.2+5.3 ppm
n=0.36+0.08

d=-103.8+4.0 ppm
n=0.36+0.08

0=-74.8+3.0 ppm

=0.40 £ 0.07
n N-C’

2 ) 0 2 2 0 2

—_— , , ‘
-2 0 2 - 0
Frequency (kHz) Frequency (kHz) Frequency (kHz) Frequency (kHz)

Wylie, B. J.; Franks, T.; Rienstra, C. M., J. Phys. Chem. B 2006, 170, 10926-10936.
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SN CSA Tensor Results

i1 [2 a fi3 4

TABLE 3: Amide "N CSA Tensor Parameters Averaged by ‘;2 1
Secondary Structure £ ¢

structure® a* -84 4

-88 |

all’ -1035 £ 5.6 ppm E 92

helix® ~106.2 + 2.3 ppm & 96 {} { ! ¢

sheet* ~100.5 + 2.4 ppm £:-100- * }{ { { } {} } H

other’ ~103.9 % 3.1 ppm A0 t l [ }} { {}} } { :

“ Secondary structure elements are presumed to be f-sheet for :::' { § H P
residues 2—8, 13—19, 43—46, and 51 —355 and a-helix for residues 23— :120_?
36. * Uncertainties quoted in this table correspond to the standard 124
deviation within the measured values for each secondary structure 4 B 12 16 20 24 28 32 36 40 44 48 52 56
element. The value for each residue is taken as the statistical average Residue Number
of the two measurements in cases where both N—C' and N—Ca values . _ .
were available. © G41 demonstrates a large motional averaging, as Figure 8. Plot of the anisotropy parameter, 9, versus residue number.
discussed in the text, and therefore is excluded from this calculation. Secondary structural elements are labeled at the top of each column.
¢ Residues in the turns, loops, or termini (9—12, 20-22, 37-40, 42, The absolute value of d is greater in the a-helix compared to the
47-50, 56). f-sheets by an average value of 6 ppm, as discussed further within the
text.

* Reduced anisotropy magnitude varies with structure

» Magnitude greater in helix, although dependence is complex

« Backbone '°N tensors are most used probes of motion in NMR
« Asymmetry, n, slightly smaller in a-helix compared to f3-strands

Wylie, Franks, Rienstra, J. Phys. Chem. B 2006, 170, 10926-10936.
Wylie, Sperling, Frericks, Shah, FrankgRienstra, JACS 2007, 729, 5318-19.
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Carbonyl Tensor Sensitive to H-Bonding
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* Tensors depend upon secondary structure
« 9,,, tensor element increases linearly with isotropic shift

e C’ chemical shift correlated to H-bond length

Wylie, Sperling, Frericks, Shah, Franks, Rienstra, JACS 2007, 129, 5318-19.
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Computing Structure from CSA
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 Wylie et al., unpublished
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Comparison with Crystal Structure
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e RMSD = ~3 ppm (variation between predicted and
observed)

e Noise in data ~1 ppm

o7
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Wylie’s CSA Refined GB1 Structure

» Before (left) and after (right) CA CSA refinement
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