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Problem Set: Dynamics from SSNMR

1. The difference tensor Δ=σA – σB plays an important role in the
dependence of the stimulated echo and CODEX signals on the
reorientation angle. The directions of the principal axes of the difference
tensor between two uniaxial tensors are shown below:

(a) Generally, how does the nth (n = 1, 2, 3) principal value of an NMR
interaction tensor, ωn, relate to the frequency measured when the B0 field
points along the nth principal axis?

They are equal.

 (b) Calculate the frequencies   

€ 

ωA,n and ωB,n for the B0 field pointing along the nth principal

axis of the difference tensor. Express the frequencies in terms of the reorientation angle β,

assumed to be < 90˚. Use the result in (a) to calculate the principal values   

€ 

ωn
Δ  of the

difference tensor from the difference of these frequencies   

€ 

ωA,n −ωB,n.

Given the orientations of the difference tensor principal axes in the figure,

  

€ 

For ZA :                                                        For ZB

ωA,2 = 1
2
δ 3cos2 90°−1 
 
  

 
 = − 1

2
δ                    ωB,2 = 1

2
δ 3cos2 90°−1 
 
  

 
 = − 1

2
δ

ωA,1 = 1
2
δ 3cos2 45°−β 2( ) −1
 
 
  

 
                     ωB,1 = 1

2
δ 3cos2 45° +β 2( ) −1
 
 
  

 
 

ωA,3 = 1
2
δ 3cos2 45° +β 2( ) −1 
 
  

 
                    ωB,3 = 1

2
δ 3cos2 45°−β 2( ) −1 
 
  

 
 

So :

ω2
Δ = ωA,2 −ωB,2 = 0

ω1
Δ = ωA,1−ωB,1 = 3

2
δ ⋅ 1

2
cos 90°−β( ) − cos 90° +β( )[ ] = 3

2
δsinβ

ω3
Δ = ωA,3 −ωB,3 = 3

2
δ ⋅ 1

2
cos 90° +β( ) − cos 90°−β( )[ ] = − 3

2
δsinβ
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2. The CODEX pulse sequence with the basic two-step phase cycle is shown below.
Calculate the density operator or magnetization direction, along with its frequency modulation
factor, at the points specified below. Do this for the two scans separately, and show that the
detected signal after two scans is modulated by cosΦ1cosΦ2-sinΦ1sinΦ2, where Φ1 and Φ2

are the MAS phases accumulated in the first and second π-pulse trains, respectively,

  

€ 

Φ1 = N ω1 t( )dt0
tr 2∫ ,    Φ2 = −N ω2 t( )dt0

tr 2∫ .

  

€ 

scan 1                                            scan 2
ρ0 = Sy                                         ρ0 = Sy
ρ1 = Sy cosΦ1+ Sx sinΦ1              ρ1 = Sy cosΦ1+ Sx sinΦ1
ρ2 = −Sz cosΦ1+ Sx sinΦ1           ρ2 = Sy cosΦ1+ Sz sinΦ1
ρ3 = Sy cosΦ1                              ρ3 = Sx sinΦ1
ρ4 = Sy cosΦ1cosΦ2                   ρ4 = Sx sinΦ1cosΦ2 

      + Sx cosΦ1sinΦ2                           - Sy sinΦ1sinΦ2
ρ5 = −Sz cosΦ1cosΦ2                  ρ5 = Sx sinΦ1cosΦ2 
      + Sx cosΦ1sinΦ2                           - Sz sinΦ1sinΦ2
ρ6 = Sy cosΦ1cosΦ2                   ρ6 = −Sy sinΦ1sinΦ2 

       detect Sy for both scans, so the accumulated modulation factor is :

            cosΦ1cosΦ2 − sinΦ1sinΦ2 = cos Φ1+Φ2( )
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3. Consider fast trans-gauche isomerization of a C-D bond between two sites (e.g. t and g+)
at equal population. The jump angle is 109.5˚. As a good approximation η = 0 for the rigid-
limit 2H quadrupolar interaction.
(a) Calculate the three principal values of the motionally averaged quadrupolar interaction.
Sketch the resulting 2H spectrum.

  

€ 

Σ3 axis : 90˚ from both ZA and ZB,  ω 3 = 1
2
δ 3cos2 90°−1 
 
  

 
 = − 1

2
δ

Σ2 axis : β 2  from both ZA and ZB,  ω 2 = 1
2
δ 3cos2 109°5

2
−1 

 
  

 
 = 1

2
δ 3 ⋅ 1

3
−1( ) = 0

Σ1 axis : 90° ± β 2  from both ZA and ZB,  ω 1 = 1
2
δ 3cos2 90° ± 109°5

2( ) −1 
 
  

 
 

                                                            = 1
2
δ 3sin2 109°5

2( )−1 
  

 
  
= 1

2
δ 3 ⋅ 2

3
−1[ ] = 1

2
δ

(b) What is the 

€ 

η  of the averaged lineshape?

  

€ 

Since ω 3 = −ω 1 and ω 2 = 0,  η = 1.

(c) What is the ratio between 

€ 

δ  and δ?

  

€ 

δ =  ω 1− ω iso = 1
2
δ −0 = 1

2
δ,  so the ratio between δ  and δ is 1

2
.
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4. Consider a C-H vector held rigidly in a peptide that undergoes fast uniaxial rotation around
the lipid bilayer normal.
(a) What is the rigid limit coupling? Use a C-H bond length of 1.10 Å.

Rigid limit C-H dipolar coupling is 22.7 kHz.

(b) If the C-H vector is 90˚ from the bilayer normal, what is the averaged coupling? What is
the order parameter?

90˚ from the motional axis: 
  

€ 

δ =  δ ⋅ 1
2

3cos2 90°−1
 
 
  

 
 = - 1

2
δ     ⇒ S = - 1

2

(c) If the C-H vector is 35˚ from the bilayer normal, what is the averaged coupling? What is
the order parameter?

35˚ from the motional axis: 
  

€ 

δ =  δ ⋅ 1
2

3cos2 35°−1
 
 
  

 
 = 1

2
δ     ⇒ S = 1

2

(d) What is the 

€ 

η  of the averaged coupling?

  

€ 

η = 0  for both (b) and (c) due to uniaxiality of motion.
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5. Consider the equation 
  

€ 

σzz
L = δ ⋅ 1

2
3cos2Φzz −1
 
 
  

 
 + σiso for the measured NMR frequency of

a powder sample with uniaxial rotational mobility.
(a) What is the definition of the angle Φzz? Be specific about the two axes.

Φzz is the angle between the magnetic field B0 and the local motional axis.

(b) Sketch the static CSA lineshape of this system measured by direct polarization. Indicate 

€ 

δ 
in your sketch.

(c) If you measure the static CP spectrum, how will the lineshape be different from the DP
spectrum? (Hint: consider how the motionally averaged X-H dipolar tensor and the motionally
averaged CSA tensor are related).

The CP lineshape in (c) is due to the fact that the X-H dipolar coupling is also
averaged by motion to be uniaxial, so that the motionally averaged CSA and the dipolar
interactions are parallel to each other in each molecule (see problem #6). The isotropic shift
position originates from molecules whose motional axis is at the magic angle from B0. These
molecules have their averaged dipolar tensor also at the magic angle from B0, thus they have
a coupling strength of 0, thus giving no CP intensity. The rest of the powder lineshape is
similarly modulated by the motionally averaged dipolar coupling. The 90˚ intensity in the CP
spectrum relative to the DP spectrum is reduced by a factor of two compared to the 0˚
intensity.
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6. Consider a non-spinning sample of a singly 15N-labeled helical peptide in the lipid
membrane. The peptide undergoes uniaxial rotation around the membrane normal.
(a) Sketch the 1D static 15N chemical shift spectrum of the peptide. Indicate the frequency
positions at which the bilayer normal is

(i) perpendicular to B0, (ii) parallel to B0.
(b) Sketch the 1D motionally averaged N-H dipolar spectrum of the same sample. Indicate
the frequency positions at which the bilayer normal is

(i) perpendicular to B0, (ii) parallel to B0.
 (c) If you measure the 2D dipolar-chemical shift correlation spectrum of this peptide under
the non-spinning condition, what is the expected lineshape? Sketch the 2D contour spectrum.

Spectra:
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7. The 1H-decoupled T2 relaxation rate of an X spin depends on τc as: 

  

€ 

R2,X =
ωHx

2

5
τc

1+ω1,H
2 τc

2
,

where ωHX is the dipolar coupling strength, and ω1,H is the 1H decoupling field strength.
(a) Calculate the τc at which R2 is at the maximum (i.e. at T2 minimum).

  

€ 

dR2,X

dτc
=
ωHx

2

5

1

1+ω1,H
2 τc

2
−
τc ⋅2ω1,H

2 τc

1+ω1,H
2 τc

2 
 
  

 
 
2

 

 

 
 
 
 

 

 

 
 
 
 

=
ωHx

2

5
⋅

1−ω1,H
2 τc

2

1+ω1,H
2 τc

2 
 
  

 
 
2

=
!
0     

⇒  1−ω1,H
2 τc

2 = 0     ⇒ τc = 1 ω1,H  

To show that this extremem is a maximum in R2,X,

d2R2,X

dτc
2

=
ωHx

2

5
⋅

−2ω1,H
2 τc

1+ω1,H
2 τc

2 
 
  

 
 
2
−

4ω1,H
2 τc 1−ω1,H

2 τc
2 

 
  

 
 

1+ω1,H
2 τc

2 
 
  

 
 
3

 

 

 
 
 
 

 

 

 
 
 
 

=
ωHx

2 ⋅2ω1,H
2 τc

5 1+ω1,H
2 τc

2 
 
  

 
 
3
⋅ −1−ω1,H

2 τc
2 − 2 + 2ω1,H

2 τc
2 

  
 
  

=
ωHx

2 2ω1,H
2 τc

5 1+ω1,H
2 τc

2 
 
  

 
 
3
−3 +ω1,H

2 τc
2 

  
 
  

ω1,Hτc <3
 →     < 0   ⇒ maximum at ω1,Hτc = 1.

(b) Calculate the slope of the logR2 versus logτc curve for 
  

€ 

τc << ω1,H
−1 .

When 
  

€ 

τc << ω1,H
−1 .

  

€ 

R2,X =
ωHx

2

5

τc

1+ω1,H
2 τc

2
≈

τc <<ω1H
−1
ωHx

2

5
τc    ⇒    logR2,X = log

ωHx
2

5

 

 

 
 

 

 

 
 + log τc .

So the slope of the logR2 versus logτc curve is 1.

(c) Calculate the slope of the logR2 versus logτc curve for 
  

€ 

τc >> ω1,H
−1 .

  

€ 

R2,X =
ωHx

2

5

τc

1+ω1,H
2 τc

2
≈

τc >>ω1H
−1
ωHx

2

5

1

ω1,H
2 τc

    ⇒    logR2,X = log
ωHx

2

5ω1,H
2

 

 

 
 

 

 

 
 
− log τc .

So the slope of the logR2 versus logτc curve is –1.
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8. An activated motional process is characterized by   

€ 

τc = τ0eEa RT . You conduct a variable-
temperature experiment to measure R2 under 1H decoupling. Suppose the mechanism of
relaxation is dipolar coupling between 1H and the observed X spin.
(a) What is the slope of the logR2 versus 1/T curve in the extreme narrowing limit?
(b) What does the above answer mean in terms of how to determine Ea?
(c) How can you obtain τ0?

 (a) In the extreme narrowing limit 
  

€ 

τc << ω1,H
−1 .

  

€ 

logR2,X = log
ωHx

2

5

 

 

 
 

 

 

 
 + log τc = log

ωHx
2

5

 

 

 
 

 

 

 
 + log τ0eEa RT 

 
  

 
 = log

ωHx
2

5

 

 

 
 

 

 

 
 + log τ0 + 1

2.303

Ea
RT

,

So the slope of the logR2 versus 1/T curve is 
  

€ 

1
2.303

Ea
R

.

(b) Ea can be obtained from the slope of the logR2 versus 1/T plot.

(c) τ0 can be obtained from the intercept of the logR2 versus 1/T plot as long as the dipolar
coupling strength ωHx is known.


