Related Reading

Reviews

M. Konishi, “Birdsong:From Behavior to Neuron,” Ann. Rev. Neurosci., vol. 8, pp. 125-70, 1985. [PDF]

A. J. Doupe and P. K. Kuhl, “Birdsong and human speech: common themes and mechanisms.,” Ann Rev Neurosci, vol. 22, pp. 567-631, 1999.

Anatomy

M. Wild, “Neural pathways for the control of birdsong production.,” J Neurobiol., vol. 33, pp. 653-70, 1997.

D. S. Vicario and F. Nottebohm, “Organization of the zebra finch song control system: I. Representation of syringeal muscles in the hypoglossal nucleus.,” J Comp Neurol, vol. 271, pp. 346-354, 1988.

F. Nottebohm, D. B. Kelley, and J. A. Paton, “Connections of vocal control nuclei in the canary telencephalon.,” J Comp Neurol, vol. 207, pp. 344-357, 1982.

J. M. Wild, “Descending Projections of the Songbird Nucleus Robustus Archistriatalis,” J. Comp. Neurol., vol. 338, pp. 225-241, 1993.

F. Nottebohm, T. M. Stokes, and C. M. Leonard, “Central control of song in the canary, Serinus canarius.,” J Comp Neurol, vol. 165, pp. 457-486, 1976.

A. J. Doupe, “A neural circuit specialized for vocal learning.,” Curr Opin Neurobiol, vol. 116, pp. 104-111, 1993.

H. J. Karten, “Homology and evolutionary origins of the "neocortex.",” Brain Behav Evol, vol. 38, pp. 264-272, 1991.

G. F. Streidter and E. T. Vu, “Bilateral feedback projections to the forebrain in the premotor network for singing in zebra finches.,” J Neurobiol, vol. 34, pp. 27-40, 1998.

Chronic Recording

A. C. Yu and D. Margoliash, “Temporal hierarchical control of singing in birds.,” Science, vol. 273, pp. 1871-1875, 1996. [PDF]

A. S. Dave and D. Margoliash, “Song replay during sleep and computational rules for sensorimotor vocal learning.,” Science, vol. 290, pp. 812-816, 2000. [PDF]

J. S. McCasland, “Neuronal control of Bird Song Production,” J. Neurosci., vol. 7, pp. 23-39, 1987.

Electrophysiology

R. Mooney, “Synaptic basis for developmental plasticity in a birdsong nucleus.,” J Neurosci, vol. 12, pp. 2464-2477, 1992.

P. Dutar, H. M. Vu, and D. J. Perkel, “Multiple cell types distinguished by physiological, pharmacological, and anatomic properties in nucleus HVc of the adult zebra finch.,” J Neurophysiol, vol. 80, pp. 1828-1838, 1998.

R. Mooney, “Different Subthreshold Mechanisms Underlie Song Selectivity in Identified HVc Neurons of the Zebra Finch,” J. Neurosci , vol. 201, pp. 5420-5436, 2000.

M. Luo and D. J. Perkel, “A GABAergic, strongly inhibitory projection to a thalamic nucleus in the zebra finch song system.,” J Neurosci, vol. 19, pp. 6700-6711, 1999.

Antidromic Identification

H. Swadlow, “Neocortical efferent neurons with very slowly conducting axons: strategies for reliable antidromic identification,” J Neurosci Meth, vol. 79, pp. 131-141, 1998.

Neural Models of Sequence Generation


D. J. Amit, “Neural networks counting chimes,” Proc Natl Acad Sci U S A, vol. 85, pp. 2141-2145, 1988.

D. Kleinfeld and H. Sompolinsky, “Associative network models for central pattern generators,” in Methods in Neuronal Modeling, C. Koch and I. Segev, Eds. Cambridge, MA: MIT Press, 1989, pp. 195-246.

M. Hermann, J. Hertz, and A. Prugel-Bennet, “Analysis of synfire chains.,” in Network: Comput. Neural Syst., vol. 6, 1995, pp. 403-414.