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Abstract

I present a model of consumption and portfolio choice under market incompleteness and
imperfect information regarding the investment opportunity set. I solve analytically the con-
sumption and portfolio choice problem for an investor learning about the true state of the
economy. When prices are the only observations, the previously unspanned state variables are
spanned by the market securities under the optimal inference/learning process. The market is
observationally complete for the imperfectly informed investor. I show how learning affects both
the covariance and the duration component of the hedging portfolio. I apply the model to the
case where the Sharpe ratio is mean reverting. For the parameters presented in Wachter (2002),
I show a reduction in hedging demands due to imperfect information. I solve in closed-form for
the model implied R2 for the return forecast regression. I discuss the relationship between the
reduction in hedging demands and the reduction in the model implied R? for the return forecast

regression.
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1 Introduction

This paper studies consumption and portfolio choice when markets are incomplete and investors
cannot observe variables which determine the investment opportunity set. I establish conditions
under which the investor’s optimization problem under incomplete markets can be transformed
into a complete markets problem. Investors use prices as noisy signals to infer the value of the
unobservable state variables. The estimation process allows the agent to project the dynamics of
the unobserved variables into the space of the securites. From the investors point of view markets
are complete since the inferred processes for the state variables are spanned by the market securities.
This allows me to apply martingale methods presented in Karatzas, Lehoczky and Shreve (1987)
and Cox and Huang (1989) and solve the consumption and portfolio choice problem analytically.
I apply the model to the case where excess expected returns on the risky asset are mean revert-
ing and unobservable. This setup is motivated by the standard assumption that excess returns to
risky assets are a function of the volatility and the market price of risk. Several empirical studies,
particularly Merton (1980), have shown volatility is easily estimated. Under this assumption we
should care about parameter uncertainty for the market price of risk. Hence the problem boils
down to uncertainty regarding the current Sharpe ratio. In this case, when the investors’ infer-
ence does not reduce the estimation error for the unobservable variable, closed-form solutions are
obtained. My results are novel in two dimensions. First, I show how parameter uncertainty, a
reasonable assumption to make given the empirical evidence, can help us simplify the consumption
and portfolio choice problem. Second, I can analytically show the role of imperfect information in
the duration and covariance component of hedging demands. I calibrate to the implied model of
mean reverting returns in Wachter (2002) based on the analysis in Barberis (2000). I find imperfect
information reduces the hedging demand duration, the sensitivity of hedging demand to changes
in the state variable, as well as the covariance component of hedging demand. The reduction in
both components is due to the variance of the estimation error. For the calibration, the variance
of the estimation error has a different sign than the covariance between the shocks to the state
variable and the risky asset. Therefore, the variance of estimation error has a tempering effect in
the hedging demand of the investor. I relate the changes in hedging demand to the model implied
R? when the investor accounts for incomplete information. I find imperfect information reduces

the model implied R? for future returns at any horizon. I find the reduction in the model implied



R? is also linked to the variance of the estimation error.

Evidence of predictability in asset markets has revived the consumption and portfolio choice
literature. Recently, economists have focused on quantifying hedging demands due to changes in
the investment opportunity set. Merton (1971) derives the existence of a hedging portfolio that
accounts for changes in variables determining the attractiveness of future investment opportunities.
At the time, the empirical evidence was unable to reject the hypothesis that asset prices followed
a random walk. Without time varying returns, it followed naturally that portfolio choice should
be entirely myopic and thus their would be no hedging component to the optimal asset allocation
policy. Poterba and Summers (1988), Campbell and Shiller (1988) and Fama and French (1989) find
evidence of predictability in the time series of asset prices. Lewellen (2001a) shows mean reversion
in stock return may be even stronger than previously perceived. He shows that mean reverting
component comprises more than 25% of stock returns. With abundant evidence of time-varying
expected returns, Kim and Omberg (1996) study the role return predictability on the optimal asset
allocation problem, finding closed form solutions for the hedging demands. Recently, Brennan
(1998), Brennan, Schwartz, and Lagnado (1997), Campbell and Viceira (2002), Chacko and Viceira
(2001), Liu (2001), and Wachter (2002) extend this work in a variety of directions.

All of the papers mention above assume the current value in the estimate of expected returns is
observable. Given the amount of evidence regarding predictability in asset prices and the difficulties
associated with determining such predictability, any reasonable normative model of portfolio choice
must hence acknowledge a role for parameter uncertainty and incomplete information. Bawa and
Klein (1976) and Bawa, Brown, and Klein (1979) study the role of uncertainty in asset allocation.
Kandel and Stambaugh (1996) extend the theory to consider uncertainty about the predictability
in asset prices. They find that the predictive relation between returns and the dividend to price
ratio, although statistically weak, is economically significant even in the presence of estimation risk.
In other words, investors should account for predictability in the portfolio decision, hence it would
be suboptimal for the investor to invest under the assumption of a random walk process for asset
prices and ignore the role predictability should play in asset allocation even when the evidence of
predictability is statistically weak.

The works of Detemple (1986), Dothan and Feldman (1986), and Gennotte (1986) lay the

foundation of the portfolio choice problem under incomplete information. They show that the op-



timization problem where some parameters are unknown can be transformed into an optimization
problem using the estimates of the unknown parameters and the price and state variable dynamics
obtained by the inference problem. In continuous time, portfolio choice under incomplete infor-
mation can then be solved in two steps. First, unobservable parameters are estimated by filtering
signals from the observable data. Second, the investor chooses optimal consumption and portfolio
policies given these estimates.

My paper adopts their setup and considers the optimal portfolio strategy when the current
values of the state variables which define the investment opportunity set are not observable.! In
related work, Barberis (2000) and Xia (2001), consider uncertainty regarding the relation between
stock returns and the state variables. Unlike Barberis and Xia, I do not focus on the possibility that
assets might not be predictable, instead, I focus on how uncertainty regarding the current value
predictive variable changes the composition of the investor’s consumption and portfolio choice. One
interpretation of the model is that business cycles, as seen by time-varying expected returns, do
occur in the economy, but we are unable to pinpoint where the business cycle currently stands. The
assumption of unobservable state variables also proxies for the inability of investor to accurately
measure the effect of macroeconomics changes in the level of stock returns.

Section 2 discusses the structure of the economy and solves the optimization problem of the
agent in a partially observable economy in a general setting. I provide a simple application of the
separation theorem, the filtering theory of Lipster and Shiryayev (2001), and the complete markets
portfolio choice methods of Cox and Huang (1989) as it applies to my model. In Section 3, I
study stock price predictability under the assumption that the instantaneous Sharpe ratio is not
observable and solve for the optimal consumption and portfolio policies. In Section 4, I calibrate
the model to the VAR(1) specification of Barberis (2000).2 T compare my results to Wachter (2002)
where the investor assumes complete markets and show incomplete information has a strong effect

in the portfolio choice of the agent. In Section 5, in the context of the example considered in

'Recent articles in operations research address some of the issues raised in this paper. Lakner (1995,1998), Karatzas
and Zhao (2001), and Rishel (1999) study the asset allocation problem under incomplete information. These papers

do not consider the consumption aspect of an investor’s strategic asset allocation problem.
?Campbell, Chacko, Rodriguez, and Viceira (2002) show, in the context of a consumption and portfolio choice

model, how to correctly relate the discrete-time model of time-varying expected returns by Campbell and Viceira

(2002) to the continuous-time models in order to obtain the correct parameter values for the continuous-time model.



Section 3, I simulate how an investor, with a given prior variance for the estimation error of the
unobserved variable, learns about the variable and how the variance of the estimation error changes
with each new observation. I show, given the amount of data available to the investor, changes in
the variance of the estimation error are negligible, such that assuming steady state in the inference
process is not as strong an assumption as might be initially expected.? Section 6 derives the model
implied R? and their link to the observed reduction in hedging demand. Section 7 concludes and
offers a variety of extensions for the methodology presented in this paper including extensions for

other asset allocation models and derivative replication strategies under imperfect information.

2 The Model

I develop a model of consumption and portfolio choice when markets are incomplete and their
is uncertainty regarding the current value of the state variables. As shown by Merton (1971),
state variables determine the investment opportunity set faced by the investor and the optimal
portfolio policy contains a component to hedge the risks associated with those changes. I assume
the investor cannot accurately forecast the current value of those variables, but has information
to form an estimate of the value. Once the investor determines the forecast of the state variables
and the estimation error, the market is complete under the information set of the investor. Market
completeness under the subjective measure of the investor allows us to apply martingale methods
and obtain analytical, exact solutions to the consumption and portfolio choice problem.

Consider a finite horizon investor with horizon T'. Assume the existence of a single consump-
tion good and assume the consumption good is the numeraire. Uncertainty is represented by a
probability space (2, F,P) on which we define a dz—dimensional orthogonal Brownian Motion Z
and a dy-dimensional orthogonal Brownian Motion W. Let F denote the filtration generated by
the Brownian Motions (Z,W). Assume the filtration is right-continuous and the probability space
is complete. Assume the existence of a dz—dimensional orthogonal Brownian Motion Z and a dyy-
dimensional orthogonal Brownian Motion W on the probability space such that F is the standard

filtration generated by Z and W. The Brownian Motions Z and W are assumed to be orthogonal

3Even under steady state inference, the investor does not observe the unobservable variable because under steady
state inference the variance of the estimation error is positive. Even in the steady state the investor is not able to

precisely estimate the unobserved variable.



to each other. For all Ito processes in this paper assume all drift coefficients are defined in £ and

all diffusion term coefficients are defined in £2.4

2.0.1 Securities Market and State Variables

The securities market consists of a riskless asset, the money market account, which pays the locally
riskless rates at all times, and N risky securities which span Z, the Brownian motion related to
shocks in asset prices. The money market account grows at the riskless rate of return. The price

of money market account satisfies

dBt == ’I“tBtdt, (1)

where 7 is the locally riskless rate of return.

The prices for the risky securities follow the multidimensional Ito process

dS; = diag (St) | psy dt + os¢ dZ¢ | (2)
—— [~ ~—~
NxN Nx1 Nxdy

where pg; € (El)N and og; € (£2)NXdZ . Assume the dimension of the Z is equal to the rank of
ot almost surely. The drift component represents the instantaneous expected return for the asset,
while the diffusion is defined as the volatility of the asset.

Changes in the investment opportunity set of the agent are represented by a vector X; of state

variables. The state variables satisfy the following multidimensional Ito process:

dX; = ,uXtdt + oxt dZy + owy dWy, (3)
<~ ~— ~~
Sx1 Sxdz Sxdw

Sxd . .
“W and the Brownian motion vectors Z

where py; € ([,1)5, oxt € (EQ)SXdZ, and oyt € (£2)
and W are orthogonal. The market is incomplete as long as the dimension of W is greater than zero.
Some of the state variables might not be observable. I will assume that the number of unobservable
parameters is equal to the difference between the total number of shocks and the number of shocks

spanned by market securities. In other words, the rank of oy is equal to dyy.

4 Assume the following definition for the sets described in the paper hold:
L X€£:f0T|Xt|dt<oo a.s.},
2={xeL: [ X2t <oo as}.



2.0.2 Investors Preferences and Budget Constraint

The investor’s preferences are assumed to satisfy the standard constant relative risk aversion, power

utility function:

cl

u(Cy) = e P —t—
L=

where v is the coefficient of relative risk aversion and ¢ is the agent’s discount rate. Denote ay

dt, (4)

as the vector of portfolio weight for the investor’s optimal investment strategy in the risky assets.

The investors’ budget satisfies:
th = Wt { [’I“t + oz; (/LSt — TtL)] dt + Oé:ﬁO'StdZt} — Ctdt (5)

and the investor is subject to a non-negative wealth constraint.

2.1 Solution for the Model

This section presents the solution for the investor’s optimization problem. The agent optimization
problem is to maximize (4) subject to (5) and the non-negative wealth constraint under the filtered
processes. Similar to Detemple (1986), Dothan and Feldman (1986), and Gennotte (1986), the
investor’s consumption and portfolio choice problem follows two steps: (1) an inference problem in
which the investor updates his or her estimate of the unobservable state variables, (2) an optimiza-
tion problem in which the investor chooses her optimal consumption and portfolio policies under
the new estimate for the unobservable state variables.In this section I solve the investor’s inference

problem and optimization problem. A second solution method is provided in the Appendix.

2.1.1 Inference Problem

Assume the drifts of the stock price processes in (2) is given by

tse = Bor + BxeXt, (6)
LS
Nx1 NxS

and the drifts of the state variables processes in (3) satisfy

Kxt :&‘F@Xt- (7)
Sx1 SxS



Equations (6) and (7) represent an economy where returns are time-varying. Equation (6)
assume a linear relation modeled between expected returns and the predictive variable. Since
some of the state variables are not observable, the instantaneous expected return is not directly
observable. One interpretation of the model is to think of the assets in this economy as being
either “good” or “bad”.investments, depending on whether their current expected return is above
or below their long run expected return, but the investor cannot determine exactly the current
expected return of the assets.

The inference problem is solved with filtering methods covered in Lipster & Shiryayev (2001).
I follow their treatment as it applies to our model. Assume the investor observes instantaneous
returns to the money market account (1) and the equity (2). Assume the investor also knows
OSt, OXt, 0vt, Bors Bxts @ot, a1e. However the investor does not observe the current state of X;.In
other words, prices are the only signals investors have regarding the investment opportunity set. If
the investor commits to high-frequency trading, prices serve as the natural choice for information
regarding the investment opportunity set.’?

Let Xy be the investor’s prior, such that Xg ~ N (XO,'UO), where vy represents the investors’
prior variance-covariance matrix for the state variables. In terms of the filtering literature, equations
(1) and (2) are the observation equations and (3) are the system equations. The filtering theory for
continuous time developed by Lipster and Shiryayev, allows us to describe the dynamics of the mean
and the variance of the distribution of the unobservable stochastic process X;. The instantaneous

changes in the drift and the variance-covariance matrix of X; are given by:

A~ A~ —1 3 _ ~
aX; = oo+ axi K] dt+ [oxiols, +viBy] [osiol) " [diag (S7) aSy = (Bor + Bxi X ) d(8)
dvy -1
= axivr + vy, + ox10'x, + owiolyy — [oxi0% + B [0s10%,] T [oxi0% + viBxi] (9)
where th is the investor’s estimate of the unobservable state variable and v; represents the variance
of the estimation error for the unobservable state variable at time £.
When the agent has incomplete information, the agent’s portfolio hedging demand needs to

account for the unobserved state variables, but also for the reduction in variance the estimation

error as new observations come about. I assume inference has reached a steady state. In other

’ An exception to the low frequency issues with predictive variable is trading volume. Recently Cremers (2002),

considers the role of trading volume as a predictive variable.



words, the variance of the distribution for the estimated parameter does not change with each
new observation. Thus dv; = 0, and v; does not need to be considered a state variable in the
consumption and portfolio choice problem. Denote the steady state variance matrix as vgs. From

the definition of steady state variance and equation (9), vss is a positive definite matrix such that

1 /
0 = axvss + Ussaf)(t + UXtU/)(t + O'Wto'i/Vt - [O'XtO'{St + USSB/XI‘J [O'Sto'g't] [O'Xto'{St + /USSB_Xt} .

In Section 5, I discuss the merits of the steady state learning assumption and show that with a
reasonable amount of data, the variance of the estimation error is very close to the variance implied
by the steady state results.

The new innovation process, defined as the normalized deviation of the return from its condi-

tional estimated mean is given by

CTStdZ = [,USt - <50t + 5)(9@)} dt + osidZy (10)

Although Z; is not observable, the innovation process Z is derived from observable processes and
is thus observable. The process (10) implies that the risky securities returns (2) are observable
under the form

ds, = 8, [(,Bm v ﬂxt)?t) dt + agtdZ] (11)

The dynamics for the state variables also become observable under the new innovation process.

The state variables dynamics are given by the equation

-1

dX; = [aﬂt + aXt)?t} dt + {UXths‘t + vssﬁlx,:] (UStUiSt> UStdZt (12)

As long as the securities span the rank of 7 , the investor’s own state price density is uniquely
defined. It is this result which will allow us to tackle the optimization problem with martingale
methods. The assumption of steady state variance allows us to reduce the state variable space
considerably and in some cases solve the optimization problem in closed form. The assumption of
steady state variance formalizes the decision not to have the variance of the estimation error as a

state variable.6

Barberis (2000) also reduces the state space by assuming the investor’s learning does not reduce the variance of

the estimation error once the investor starts investing.



2.1.2 Optimization Problem

As far as the investor is concerned, the stochastic changes to the price and the state variable are
perfectly correlated because the price serves as the signal of the state variable. After filtering the
unobservable processes and assuming the variance of the estimates of the state variables reaches
its steady state, the securities span the number of observable Brownian Motions. The investor
has a uniquely determined stochastic discount factor, therefore I can apply martingale methods
developed in Cox-Huang (1989) to solve for the agent’s optimal consumption and portfolio choice.

The agent assumes the prices of the money market account and the risky securities are given

by the equations

dBt = Bt [Ttdt], (13)

s, = S [ﬁStdt+03td2t , (14)

where [ig, is chosen to match equation (11). Also, the investor assumes the state variables satisfy
the following equation

dX; = fix,dt + G xedZ;, (15)

where Jiy, and 7 x; are chosen to match equation (12).

Although the market is incomplete, a unique stochastic discount factor can be defined for the
investor. Under the information set of the investor, the state variables are spanned by the securities,
therefore the investor can define a stochastic discount factor. Let M; be the stochastic discount
factor, the process for M; must satisfy the following condition: M;B; and MS; are martingales. 1
define a stochastic discount factor that satisfies the martingale properties under the information set
of the investor. Denote by ]\Z the stochastic discount factor under the investor’s information set
such that j\ZtBt and ]\ZS,: are martingales. Assuming that ]\/Zt follows an Ito process, an application
of Ito’s Lemma given (13) and (14) yields the following process for the stochastic discount factor:

A - n,dZ,  My=1 (16)
M,

where
~ /! 71 / o~
= (UStUSt) o5t (Hst — Tet)
and 7), satisfies Novikov’s Condition and ¢ represents a vector of ones. Note 7, is the investor’s

estimate of the Sharpe ratio and a affine function of X;. Equation (16) can be solved to obtain M,

10



in its exponential form:

t
Mt—exp{_ [ras - / 7.dZs — / 7.1 ds}
0

Similar to the incomplete markets consumption and portfolio choice model of He and Pearson
(1991), the investor in my model is able to determine a unique stochastic discount factor, but
unlike He and Pearson, the stochastic discount factor for the investor is straightforward to obtain
and does not require the use of a dual problem. Although the investor has a unique stochastic
discount factor, this does not imply it is the unique discount factor for the economy. Basak (2000)
studies a dynamic equilibrium model of heterogeneous beliefs and finds individual-specific Arrow-
Debreu prices can differ. Similar to Basak, the investor has a uniquely define stochastic discount
factor based on their beliefs on certain parameters in the economy. Therefore even when markets
are incomplete, the consumption and portfolio choice problem of the investor can be solved with
martingale methods.

Let the superscript I denote operations taken under the information set of the investor. Given
the process governing the dynamics of the stochastic discount factor, the agent’s optimization
problem can be solved with martingale methods. As stated previously in this section, the agent’s

optimization problem is to maximize the expected lifetime utility of consumption J; where

r 7
Pls—t) L3 d 17
(& S
/t 1=~ an

subject to the dynamic budget constraint under the estimated processes for the securities and a

Ji = sup Etl
{as,Cs}

non-negative wealth constraint.The existence of the stochastic discount factor allows us to write

the agent’s dynamic budget constraint as a static budget constraint given by
T —
Ef [ / MSCSds] < Wp. (18)
t

where the expectation is defined under the investor’s information set as represented by the results of
the inference process described previously. Equation (18) states the agent’s expected consumption
stream in the future appropriately discounted will be less than or equal to his current wealth.
The investor’s problem can now be solved as a static optimization problem as described in Cox
and Huang (1989) and Karatzas and Shreve (1998, Chapter 3). Intuitively, since the stochastic

discount factor is well defined for the investor, the investor can dynamically trade the long-lived

11



securities to obtain the optimal consumption profile in a manner similar to that of an investor
with access to complete markets. Thus, there is no uncertainty regarding the consumption and
portfolio choice of the agent conditional of knowing the state, the only uncertainty that remains
is the realization of a given state. The investor’s portfolio allocation changes accordingly with the
optimal consumption choice.

The first order condition for utility maximization under the budget constraint is given by

1

C, = (Ate¢(8—t)%>_7 , (19)

1
where )\; is the Lagrangian multiplier. Notice also A, 7 represents the choice of consumption at

time t given the information of the agent at time ¢. Substituting the first order condition for
consumption (19) into the static budget constraint (18) yields the following expression for the

static budget constraint:

wo—pl | L <>\ AZ>_ e 5D g (20)
t t . M, tMt .

Equation (20) states that wealth is a function of the stochastic discount factor and the processes
that drive the distribution of the stochastic discount factor. As shown in (16), the only processes
that matter for the distribution of the stochastic discount factor are the interest rate and the
Sharpe ratio.l assume the sharpe ratio is a function of the state variable vector Xn therefore the
current values for both the stochastic discount factor and the estimated state variable determine
the information set the agent uses in forming conditional expectations.” The wealth at time s > ¢

following the optimal policy is given by

T
W, = E! { / %C’udu} (21)

- (o) e[ () o

Define the function Fj, as follows

Fou=E! [(%)11 (22)

s

F, , is the agent’s expectation of how the investment opportunity set is going to look like at time

u, with a weighing function related to the risk aversion of the investor. Notice that for v = 1,

"This is due to the fact that both M; and )?t are Markov processes.
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the expectation yields a constant, regardless of the value of the fraction.. As will be shown in the
portfolio choice of the investor, Fj, is directly linked to the hedging demand component of the
investor’s portfolio.
Define G, 1 as
T 4
Gor = / e I, udu (23)
S

such that G,; is also function of X s- Gst weighs the investor reaction to changes in the future
investment opportunity set by the investor’s impatience and risk aversion. If the investor discounts
future utility heavily, then the investor assigns greater weigh to the short-term future investment
opportunity set. Highly risk averse investors will penalize longer horizon opportunity set changes
less since they care about maintaining a low variance in their consumption.

Let Q denote the investor specific risk-neutral measure. The wealth of the investor under the
risk-neutral measure is given by

-1 T Y o
Wy = (Al I) / 2 =9=(1=3) (1 rede) g [(%> } "

t s

Under the investor specific risk-neutral measure, the rate of return to wealth is equal to the in-
stantaneous rate of return for the money market account, thus the drift of the wealth process,
as obtained by the applying Ito’s Lemma, must equal the locally riskless rate times the agent’s
current wealth. The equation above implies the following partial differential equation is solved by

the agent’s wealth function:

TN"r  OW, OW,—~ nn oW, >
Wy = (nete0 L) S S (o Bl ) 200 (0 e R) (2
" t€ My + 88 8Ms r + 2 + 3XS a08+aXs ( )
1OPWs o, 1 |, O*W; PW, — .
—— ]\/4\377;778+—tr Oxs0xs— | — —=——=—M;0 x5s7];
2 92 2 0X?2 OM;0X,

where a9 are the coefficients of the drift for the state variables under the investor specific risk

neutral measure and ¢r (.) is the trace function. Equation (24) is solved by
-1
W, = (Ateﬂs—ﬂ%) Ry (25)
M, ’
where the boundary condition for (24) is given by

Gy =1 (26)

)
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A functional form to the investor’s wealth can be obtained by attempting to solve (24) or alterna-
tively, equation (25) can be simplified furthermore as shown in the Appendix. One can also use
the intuition in Wachter (2002) to solve the consumption and portfolio problem by considering the
portfolio problem for each period separately and scaling the solution with the Lagrange multiplier

obtained from the first order condition for consumption.

2.2 Portfolio Choice

Since the investor beliefs the markets are complete, I follow Cox-Huang (1989) to find the optimal
asset allocation strategy for the investor. In complete markets, the portfolio allocation has to be
such that the magnitude and direction stochastic changes in the wealth process are hedged by the

portfolio allocation. The investor’s percentage allocation of wealth to the risky assets is given by

M; OW,; 1 1 oW, o
/ / ~ ! ~/
op = ——(0st0%g;) 08 + ——= (05t0g;) 050y (27)
Wi OM; ( ) Wi 0X; ( )
myopic\aemand hedgingvdemand

The portfolio choice of the agent can be decomposed into its myopic demand, the demand due
to the current state of the economy, and the hedging demand, the demand due to expected changes
in the investment opportunity set. In the model, the hedging demand is due to the stochastic
nature of the estimated state variables. Both the myopic and hedging components are subject to
the estimation risk due to the unobserved state variables. The myopic demand of the agent is
affected by the estimated state variables by how those estimates change the investors perception
of the current investment opportunity set as proxied by the Sharpe ratio. The hedging demand of
the agent is affected by the investor’s perception of the diffusion for the estimated state variables
(how the investment opportunity set changes with time) as well as by the current estimate of
the unobserved state variables. Given (27) and the second boundary condition in (25), write the

investors’ portfolio as

1 — - 1 0G
ozft = ; (O’Sto'g,t) 1 osin; + @a—f{t (UStJ/St)

t

gy, (28)

The function G which determines the magnitude of the hedging demand is the agent’s current
wealth to consumption ratio. As in the complete markets framework, the relation between the

agent’s current consumption relative to expected future consumption is related to how the agent
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determines to hedge changes in the investment opportunity set. Although our model is one of
incomplete markets, investors, via the inference problem, are able to obtain individual-specific
Arrow-Debreu prices, therefore their behavior maps to that of a complete markets investor.

Write the hedging demand component of the agent’s portfolio choice as

0G:
hedgi X, -1 ~

The magnitude of the hedging demand is given by the sensitivity of the wealth to consumption ratio
to the state variables. The duration of the hedging component will change relative to the perfect
information case due to the difference between the estimate and the true value of the variable and
because of the estimation error. The hedging demand also depends on the perceived covariance

between the state variables and the stock prices since

~ /
UStOJXt = [UXtUISt + USS/gl)(t}

the covariance component of the hedging demand will also change due to the variance of the
estimation error.

The value function can be used to obtain the optimal consumption policy to obtain the optimal
portfolio policy of the agent. Define J; as the indirect utility function, the indirect utility function
obtained via the optimal consumption and portfolio policy solves

T 1=y
/ e 1) fs—ds] (30)
t

J; = sup EI
-7

{Ct,at}

I substitute consumption in (30) by the first order condition (19) to obtain

1 T 1=
Jy = —EtI [/ e 90s—1) ()\te‘ﬁ(sft)%) 7 ds]
- t My
)\17% T —~ . 1-1
= 2 [ [(%) } s
L=~/ My
1—1
= 1 Gir
From (20),
v
then the value function can be stated as
W,

15



where Gy 1 is defined as in the previous section. The optimal portfolio allocation to risky assets is

given by
a = = (rg0ly) " osiil - 2 (osils) ! (osi,)
Widww Widww
1 ;o\ —1 . 1 8GtT ;) =1 —~
= —(ost0 o5ty + ———=— (0s¢0 o5t0
7( t St) t7t Gir 0x, ( t St) ( t Xt)
where, by Leibniz’s Rule,
oG T 6is_p OF,
LT :/ e T b g (31)
8Xt t 8Xt

Since F} s is a function of the ratio of the state price density at time s relative to the state price
density at time ¢, equation (31) formalizes the relation between the hedging demand and changes
in the investment opportunity set. Also, notice the hedging demand is a weighted function of
the expected changes in the investment opportunity set for all horizons up to retirement. The
weighting function is related negatively to the investor’s impatience and positively to its relative
risk aversion. Therefore, the more impatient investors care more about hedging demand in a shorter
horizon, while more risk averse investor care about longer horizon consumption needs.

The assumption steady state variance is not necessary to obtain an expression for the optimal
portfolio policy since the Cox-Huang methodology would still apply even if the diffusion component
of the state variable decays deterministically. In those cases where an analytical solution does not
obtain, the investor could use the Monte Carlo methods of Detemple, Garcia, and Rindisbacher
(2003) or Cvitanic, Goukasian, and Zapatero (2002) to obtain a numerical solution. Both methods

require market completeness which is satisfied under the information set of the investor.

2.3 Consumption to Wealth Ratio

The consumption to wealth ratio is easily obtain by applying some algebra to equations (19) and

(25)

T (32)
Wi N T Ger
or
Cy _
W, = Gur- (33)
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An application of equation (33) to the portfolio hedging demand (29) yields the following ex-

pression for the investor’s hedging demand:

c; 9 (%Yt

hedging Ut t 7 1 ~/

e . 34
Y Wi 0x, (7s17%5:) "~ (05i0%1) (34

Equation (34) shows the link between future expected consumption and the hedging strategy of the
investor. When markets are complete, the investor essentially can plan the consumption strategy
for each possible outcome at each possible horizon, equation (34) shows how the investor changes

the portfolio strategy to maintain the desired consumption plan.

3 Portfolio Choice with Unobservable Time-Varying Expected Re-

turns

A useful example of the strength of our technique is to analyze the consumption and portfolio
choice problem when the Sharpe ratio is mean reverting. Liu (2001) and Wachter (2002) finds a
closed-form solutions to the consumption and portfolio choice where the predictive variable is fully
observable and markets are complete. In order to solve the model, Wachter assumes the market is
complete and the shocks to the proxy for the predictive variable and the stock price are perfectly
negatively correlated. The assumption of perfect negative correlation does not seem controversial
given that the empirically estimated correlation for the shocks to the dividend price ratio and the
stock price is -0.93. Accounting for parameter uncertainty greatly decreases the demand of the
risky asset due to hedging for changes in the investment opportunity set.

In this section of the paper, I extend Wachter to account for incomplete information in the
agent’s optimization problem. Unlike Wachter, I will not assume market completeness. Instead,
I assume uncertainty regarding the current value of the predictive process. Note the assumption
regarding steady-state estimation does not allow us to study the role of the variance of the esti-
mation error for the unobservable parameters as a state variable in the agent’s policies.® In this
model the predictive relation is known, since the predictive relation in our model is given by the

standard deviation of the risky asset.

In a related paper, Lewellen and Shanken (2002) study the equilibrium effects of learning on asset prices. They
find mean reversion in asset prices can be explained by the learning of the agents regarding the dividend process. Xia

(2001) solves a similar model where learning plays a role in the hedging demand of the investor.

17



Assume the existence of a money market account where the risk free rate is constant and the

existence of one risky securities whose price process satisfies

s,
St

such that the Sharpe ratio, n,, is mean reverting, and satisfies

= (r+osn,)dt +osdZs, (35)

dny = k(0 —ny) dt + oypdZ,. (36)

Assume the correlation between shocks to the stock price and shocks to the Sharpe ratio are
imperfectly correlated. The correlation coefficient is denoted by p. The imperfect correlation
between (35) and (36) implies the market is incomplete. Yet, when the Sharpe ratio is not observable
and under assumptions explained in Section 2.1.2, the optimization problem can be restated in a

complete markets framework.

3.1 Inference Problem

I apply the filtering methods of Lipster and Shiryayev (2001) to find a observationally equivalent
economy under the subjective measure of the investor. Applying the results of section 2.1.1 to the

current problem yields the following processes for the stock price and the state variable dynamics

respectively:
ds, R ~
Tt = (r+ogsn,)dt+osdZsg, (37)
t
dn;, = k(0 —1,) dt+5nd23’ (38)
where
En = Vss + POy
and
dZs = [(n, —7;) dt + dZs]. (39)

The measurement error (variance) of the Sharpe ratio solves the following Riccatti Equation

dvt

pr —2Kv + 0,,27 — vt + pan]2 . (40)

Equation (40) can be solved following the appendix of Detemple (1986).
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Following the methodology presented in Section 2, when computing for the optimal consumption
and portfolio policies, assume learning has reached a steady state in which new data and estimation

9 Let vss denote the variance of the

does not reduce the measurement error of the Sharpe ratio.
estimation error under the steady state.!® By applying the definition of steady state filtering to

(40), vss is determined by the quadratic equation
0= —2Kvgs + 0727 — [vss + pan]2 . (41)

The resulting variance will be the positive root of the quadratic equation obtained from our as-
sumption in (40). If two positive roots are obtained, I study both cases: the high-prior equilibrium

and the low-prior equilibrium.

3.2 Consumption and Portfolio Choice

After the investor solves the inference problem and estimates the Sharpe ratio, the estimated
processes for the stock price and the Sharpe ratio are perfectly correlated. The investor sees this
processes as perfectly correlated because the inference problem essentially projects the unobserv-
able variable (the Sharpe ratio) into the space of the signal (the stock price), thus the source of
uncertainty for both processes after the inference is the same. As seen in (38) the true correlation
is accounted for in the diffusion coefficient for the estimated Sharpe ratio. In this section I show
the main steps and results of the consumption and portfolio problem. The details of the derivation
are provided in the Appendix.

I derive the agent’s portfolio choice by applying (28) to the model. Let oy be the proportion of
wealth allocated to the risky asset. The portfolio choice of the agent can be decomposed into its

myopic and hedging component.

o = a;nyopic + a?edging (42)
where
v _ L7 )

)
Yos

A closed form solution is obtainable for equation (40). Please refer to Detemple (1986, Appendix) for details.
'"Barberis (2000) also reduces the state space by not considering variance of estimation error, but he does not

assume this occurs due to a steady-state in the equation determining the variance of the estimates. In the Barberis
model, steady state learning occurs when parameter uncertainty disappears. My setup allows for the separation of

parameter uncertainty and learning about the variance of the estimation error.
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and
ahedging En ft S — t + C (8 - t) nt) Ht sds
t
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The hedging demand of the investor has the usual properties found for hedging demand in the

(44)

presence of excess return predictability. The Sharpe ratio does not only come into play in the
assigning of relative weight for the hedging demand via the function H, the wealth to consumption
ratio, it also comes into play linearly as a measure of market timing. As was shown in (29), when
the solution to H is of the exponential form, the sensitivity of the log wealth to consumption ratio
to the state variable determines the relative weight each period in the agent’s horizon has on the
hedging strategy.

The consumption to wealth ratio for the agent is given by

([ na)

The duration or sensitivity of the wealth to consumption ratio relative to changes in the investment

-1

opportunity set is given by

Wi
a2(8)  JFBe-n+Cls -7 Huds
Wi o, ’yft H; qds

: (45)

as shown generally in Section 2.3, (45) establishes the relationship between the agent’s hedging
demand and the sensitivity of the agent’s consumption and savings decision to changes in the
investment opportunity set. This relation is straightforward due to market completeness under the
filtered processes and the inextricable link between the agent’s hedging demands and the expected

consumption in the future.

4 Calibration and Results

Campbell and Viceira (1999) study optimal consumption and portfolio choice when expected returns
are mean reverting. They assume the riskless rate of return is constant and the log excess return

for stocks is given by the following VAR(1) specification:

log St,+at = 1§+ x4, +Et,4At, (46)

Topar = (1—0)u+ oz, + 1y ¢
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Campbell and Viceira use the dividend to price ratio as a proxy for changes in the investment
opportunity set. They derive parameters for (46) from quarterly data. I adopt the results from
Wachter (2002), which give the monthly parameters for the models by Campbell and Viceira (1999)
and Barberis (2000). As explained previously, I maintain imperfect correlation between the state
variable and stock returns and set the correlation to -0.93.

Table II consider the portfolio choice of the investor with incomplete information under various
assumptions for the current estimate of the Sharpe ratio. The myopic and the hedging demand
of the investor seems to increase monotonically with increases in the Sharpe ratio. Yet, the per-
centage of the portfolio dedicated to hedging changes in the investment opportunity set decreases
monotonically with increases in the Sharpe ratio. The result is highly intuitive: When the investor
estimates a low value for the Sharpe ratio, the investor is more willing to time the market because
he expects the returns to be higher in the future due to the mean reversion in the parameter. This
effect is also stronger when the investment horizon is longer.As 7, increases so does the myopic and
hedging demand of the agent, but there is a reduction in the amount of the portfolio allocated to
hedging changes in the investment opportunity set. For each panel, the hedging demand of the
investor increases with the time horizon and decreases with respect to relative risk aversion. Yet,
the percentage of wealth held in the risky asset due to hedging demand increases with both the
time horizon and risk aversion. This result implies more risk averse investor reduce their exposure
to risky assets, but increase the amount of the exposure that is due to changes in the investment
opportunity set. Compared to Campbell and Viceira (1999) and Wachter (2002), hedging demands
for investors considering the role of parameter uncertainty are lower.

Table III compares the consumption and portfolio strategy of an investor which estimates the
current Sharpe ratio and computes his or her strategy according to the methods in this paper
against an investor with perfect information about the economy under the assumption of perfect
negative correlation between stock returns and the predictive process, the mean-reverting Sharpe
ratio. The second investor type corresponds to the model presented in Wachter (2002). In Table III
I assume the Sharpe ratio, as estimated by the first investor and observed by the second investor, is
the long run value. The comparison in Table III allows us to concentrate on the role of parameter
uncertainty in the hedging demand of the investor and does not account for the possibility of

further differences in the consumption and the portfolio strategies of both investors due to the
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incomplete information structure. In other words, I do not account for further differences due
to differences in each agent’s belief of the current value of the Sharpe ratio. As expected, the
differences in the proportion of wealth allocated to stock in both examples is due to differences in
the hedging demand. The hedging demand for the investor with incomplete information is much
lower. In the case where the investor has a coefficient of relative risk aversion of 5 and a 30-year
investment horizon, the difference in the percentage of wealth allocated to the risky asset is 24%. As
expected, the percentage of the portfolio dedicated to hedging demands is lower when accounting
for parameter uncertainty. A major driver in the difference in this results is the perceived volatility

of the state variable. For the calibration the standard deviation of the predictive variable is

ey = Uss+ poy (47)
= 0.0035+ (—0.93)0.0189

= —0.0141

As expected, this is smaller than the standard deviation that would be obtained under the assump-
tion of complete markets and full information. The reduction of the volatility of the predictive
variable is the main reason why hedging demands under parameter uncertainty are considerably
smaller than those obtained under the complete markets assumption.

Although in our calibration parameter uncertainty reduces the magnitude of the hedging de-
mand, it is possible that under a different calibration the hedging demand of the investor would be
high in magnitude. The investor takes a negative position in the risky asset due to the measurement

error. This can be clearly seen by substituting (47) in the hedging demand (44):

ahedging &y Ct Ct
t - v
os Wy  Ony

v G (%) | poy 0 (%)
os Wi O, . Us Wy On, )

<0 >0

Had the negative hedging component due to estimation error dominated the positive hedging com-
ponent due to changes in the investment opportunity set, the results could have been different. A
second lever in which the perceived volatility determines the hedging demand is in the value of the

functions B (.) and C'(.). Under the complete markets assumption, Wachter (2002) shows B (.) < 0
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and C (.) < 0. Under incomplete information the perceived covariance is smaller, but the functions
B (.) and C(.) are still negative. It follows that another possible reason for the reduction in the
hedging demand of the investor is the reduction in the duration of the hedging demand as measure
by the sensitivity of the consumption to wealth ratio to changes in the state variable. In Table IV,
I compare changes in hedging demand due to changes in the duration measure and changes in the

perceived volatility of the state variable. I do the comparison via the following decomposition

. . —0 —0 £
a?ed‘qmg’CM - oz?edgmg =1 (DUTCM - Dur)+ <—77 — _n> Dur (48)
g gs gs
Duration Ef fect Covariance Ef fect

where the superscript CM represents the complete markets investor assuming perfect negative

correlation between the state variable and stock returns and Dur®™ and Dur is given by

ftT (BCM (s—1t)+ ccM (s —1) nt) Ht(“;Mds

Dur®M = 7 : ,
v J; HESMdS
T .
Dur — J; (B(s—1t)+C(s—1t)7,) Hysds
ur = = )
v [, Hisds

The solutions to the functions A“M (.), BEM (), and C“M (.) are provided in Wachter (2002). To
concentrate on the role of the perceived volatility in the hedging demand, I assume the current
Sharpe ratio and the estimate of the second investor for the Sharpe ratio are equal. I analyze
equation (48) in Table IV for various assumptions of the current Sharpe ratio, relative risk aversion,
and investment horizon.The covariance effect seems to dominate the change in the hedging demand
for short-horizon investors.'! In general, for the longer-horizon investors, it is the duration effect
that carries the most weight in the change in hedging demands. For the low risk aversion investor,
the covariance effect dominates. As risk aversion increases, the covariance effect is reduced and the
duration effect increases.

Using the decomposition of the portfolio demand into its market timing and non-market timing

components allows the comparison of the market timing aggressiveness implied by the Wachter

" Barberis (2000) also mentions the reduction in sensitivity to the state variable in the portfolio demand when
parameter uncertainty is taken into account. Yet, his model does not allow for the separate analysis of the reduction
in the hedging demand as it pertains to changes in the preceived covariance and changes in the duration, the sensitivity

of hedging demands to changes in the state variable.
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model relative to my model. The agent’s portfolio in terms of its timing component and its non-

timing component are

v 0 en J (B(s=#)+Cls — 1)) Hyuds )
70-5 OS ’)/‘ft Ht SdS ’
—t) Hyods |
o't = pall Co-iudl e ) (50)

Yos U s v ft H; sds
Similar to Campbell and Viceira (1999) equatins (49) is the intercept of the portfolio demand and
the coefficient in (50) is the slope of the portfolio. Let the coefficient of the market timing component
divided by the non-market timing component be the measure of market timing aggressiveness for
the investor. For various assumptions of the degree of relative risk aversion and retirement horizon,
Table V shows the market timing and non-market timing component of the two models when the
expected return is equal to the long-run return. The table also shows the measure of market timing
aggressiveness. As expected from the previous discussion about the hedging demand differences,
Table V shows a reduction in the slope and intercept of the portfolio allocation when parameter
uncertainty is considered. Our measure of market timing aggressiveness shows the parameter
uncertainty investor to have a higher slope (when normalized to its non-market timing demand)
than the complete markets investors. The results follows from the subjective distribution attributed
to the predictive variable by the investor accounting for parameter uncertainty. The investor has a
more precise signal than the complete markets investor due to how the variance of the estimation
error reduces the implied variance of the state variable. Therefore, the investor is willing to market

time more aggressively than an investor who does not consider the role of parameter uncertainty.

5 The Longevity of Learning

A crucial assumption made to obtain closed-form solution to the investors consumption and in-
vestment problem is that learning has reached a steady-state process. In other words, any new
observation of the securities will be accounted for by the agent is his new estimates of the unob-
servable parameters, but the new observation will not contribute in reducing the estimation risk,
the variance of the estimates. This assumption begs two questions: (1) How quickly would an
agent on average, regardless of prior, reach the steady state in the learning process? (2) Can the

estimation risk in the steady state significantly change the investment strategy of the agent? This
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section provides answers to both questions in the context of the model presented in this section.
To answer the first question, I construct a simulation of how the estimation risk of the agent
changes after each observation through time. For the case of stock price predictability, I first obtain
the steady state variance of the measurement error and the simulate the learning of the agent under
the assumption of priors that are multiples of the steady-state estimation risk. I assume changes
in the variance of the estimation error follow (40). I assume that new observations are made
every 1/10th of a quarter. As expected, from Merton (1980), our results are not sensitive to the
assumption of the sampling frequency. Figure 1 shows how the agent’s estimation risk under the
assumption that the prior is two-times, five-times, ten-times, and twenty-times the steady state
value. Notice that by the time 15 years (180 months) pass by, all variance estimates, regardless of
prior, are lower than even two-times the steady state variance. By the 30 year mark (360 months),
the agent is not significantly far away from the steady state regardless of the assumption of the
prior. The figure provides strong evidence that our assumption of steady-state learning is not out of
line and makes sense given the amount of data the agent has available to estimate these parameters.
Assume the agent has access to the CRSP database, then it is fair to state agents have about 40
years (480 months) of daily data and about 75 years (900 months) of monthly data to earn from
before deciding on their consumption and portfolio strategies, thus it is quite believable that a
rational agent would achieve a level of learning such that the steady state assumption is innocuous.
In order to understand how the estimation error is reduced with each new observation, I check
the magnitude in which the estimation error variance is reduced with each new observation. Figure
2 plots the instantaneous reduction in variance for a given point in time. By the time the agent
has observed 15 years (180 months) of data, the reduction in the variance of the estimates of the
unobservable variables are negligible. This implies, the learning effect should be negligible in the
hedging component of the agent’s portfolio for our model. Our results imply parameter uncertainty,
not learning, drives the changes in the portfolio composition in comparison to the portfolio model

under perfect observability of all processes.
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6 Return Predictability and the model implied R?

In this section I discuss the implication of parameter uncertainty for the forecasting of prices.
Campbell (1991) offers a description of how predictive variables seems to increase the forecasting
power of returns.'? For the parameters in Table I, I solve analytically the model implied R? under
three different specifications: (1) the parameters of the model, (2) the model under the assumption
of perfect correlation, (3) the model when parameter uncertainty is considered. Let R (t,7) be the
return on the stock from time ¢ to time t+7. Let E} [R (t,7)] be the expected return conditional on
the information set implied by model i. Define the model implied R? as the fraction of the variance
of returns explained by the model. The model implied R? at time ¢ for forecast horizon 7 is given

by ' '
e 2 Vo BIRED) V(BRG]
’ Var (R (t,7)) Var (E; [R(t, T)]) + Var(e* (¢, 1))

where £ (¢,7) is the variance not explained under model 3. For the model presented in section 3,

the model implied R? can be obtained analytically:

i (1—erm)?

R? (t,7) = o2 o2 2 .
5 (1 — er)? s [fr=2(1—e ")+ 5 (1—e 27| + 28 [kr + e — 1] + 7

Details of the derivation are provided in the appendix.

Figure 3 presents the model implied R? under three different specifications for various horizons.
tablel is the model implied R? under the parameters of Table I. cm is the model implied R? under
the assumption of perfect negative correlation between the predictive variable and stock prices.
pu is the model implied R? under the estimation of the model provided by the filtering process.
The model implied R? peak at around a 10-15 year horizon. Notice that for both the complete
markets assumption and the parameter uncertainty model, the implied R? decay slower than under
the values obtained from the VAR. The model implied R? under parameter uncertainty peak at
around 0.15, and at 0.32 under the complete markets assumption.

The model implied R? allows us to gain a sense of the difference in hedging for both models. The
reduction in hedging for investors accounting for parameter uncertainty is linked to their model

implied R?. The lower R? in the parameter uncertainty case should come as no surprise since

"2Mamaysky (2002) also uses model implied R? to study the forecasting power of return predictability.
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parameter uncertainty allows us to quantify the reduction in forecasting power due to the noise of

the current estimate for the predictive variable.

7 Conclusion

I study the incomplete markets consumption and portfolio choice optimization problem under
partially observable parameters. Under suitable assumptions regarding the number of securities
in the market as well as which parameters are unobservable, I can transform the problem into
one where the market is observationally complete after estimating unobservable parameters and
accounting for parameter uncertainty. Obtaining an observationally complete market, allows us
to solve exactly the investor’s optimization problem and obtain exact consumption and portfolio
rules. I consider a example for which the assumption of parameter uncertainty is sensible: the
mean reverting Sharpe ratio model. For both examples, I show how the separation theorem of
Simon (1956) as extended to continuous time by Detemple (1986), Dothan and Feldman (1986),
and Gennotte (1986) and the Cox-Huang (1989) method allow us to solve the model and find
analytical solutions for both the consumption and portfolio strategy.

I apply the methodology of the paper to the consumption and portfolio choice problem under
mean reverting returns, when the current value for the Sharpe ratio, our proxy for the investment
opportunity set, is not observable. I calibrate the results to the parameters in Wachter (2002) and
compare the investor’s policies under parameter uncertainty to those of an investor with complete
information as modeled by Wachter (2002). I find significant quantitative changes in the demand
for the risky asset when parameter uncertainty is considered. Yet, the qualitative portfolio choice
implications of the model are not different from those of Barberis (2000) and Wachter. I complete
the analysis with a study of the longevity of learning to validate our assumption regarding steady-
state in the learning process and a discussion of the link between hedging demands and the investor’s
model forecasting ability.

The methodology of this paper could be extended to consider stochastic volatility and the role
of derivatives in strategic asset allocation. The model would allow us to find exact consumption
and portfolio policies when volatility follows a central tendency model similar to the one I have used

in this paper to describe interest rate dynamics in Balduzzi, Das, and Foresi (1998). The results

27



would complement those of Liu and Pan (2002). The focus of their papers is the disentanglement
of volatility and jump risk in an investor’s portfolio through the use of derivative securities in the
dynamic asset allocation strategy. The proposed model would allow for a similar risk disentangle-
ment (between market and volatility risk) and also provide us with normative exact consumption
rules under the assumption of stochastic volatility. I can also consider the implications of incom-
plete information when interest rates are time-varying and the market includes a long-term bonds.
The results of this model would complement those of Campbell and Viceira (2001) for the optimal
allocation of long-term bonds for long-lived investors.

An exciting research question would be to study the combined effect of imperfect informa-
tion and uncertainty aversion in the hedging demand of investors. Recent work by Knox (2002),
considers the consumption and investment problem with both learning and uncertainty aversion.
He obtains an analytical solution to the consumption and portfolio choice of an investor learning
about the expected return of a risky asset. His work can be extended to find analytical solutions for
the consumption and portfolio problem when markets are incomplete by utilizing the framework
presented in this paper.

Currently, Rodriguez (2002b) applies the model presented to this paper to a consumption and
portfolio choice variable with multiple predictive variables and considers the role for hedging de-
mands for various linear combinations of such variables. In this companion paper, I apply the
techniques presented in Campbell, Chacko, Rodriguez, and Viceira (2002) to obtain accurate con-
tinuous time parameters values for the parameters obtained from the discrete time VAR. The
versatility of the model is enhanced in this setting where the author can use predictive variables
with low correlations with the stock returns and still obtain closed-form solutions for the optimal

consumption and portfolio demand.
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A Alternative Solution for Section 2

A solution for the wealth process presented in Section 2 is obtained by an application of the
Feynman-Kac formula. First, notice than under the investor specific “risk-neutral” measure, the

wealth of the agent at time s is

s t
1 T u N
_ b(s—t) ML\ 7 B 9, 1Q | (M~
()\te Mt) /S exp < /S 7o dv 5 (u s)) E; [(Ms) ] du

Define ]\/4\u = exp (— fou rvdv) Zu Under the risk-neutral measure of the investor,

T 1
W, = Ei’Q [/ e r(u=s) (Ate‘z’(“_t)%) 7du}

~ 1 u . u/\ ~
G~ exp(1 / 72 do — / 7,429
:, 2/, .

dz8 = dZ,—7,dt

where 2? is the Brownian motion under this measure as defined by Girsanov’s theorem.

) ).

(51)

Write the wealth process as follows:

W, = (Ate¢(s‘t) ]‘]:é)% {/sTexp (— <1 -~ %) (/:rvdv> - % (u— s)> ELQ [(

Solving (51) requires finding a solution for the conditional expectation. The solution can be found

o

by applying Girsanov’s theorem to find an alternate equivalent martingale measure:
g

o (e 1,Q L[ e L[y 2q
EL (%) = El —— | AP+ = [ #,dZ
2 [(@) 7] = mefew(—5 [ nPa+t [(Raze)]

= 519 exp (222 [P - 2 [ Pae + 2 [ 5az9
° 292 g 292 J, ) T

1-— v
£ o (! [l ) (52)

Define the equivalent measure ()7 such that EQW, the brownian motion defined under the new

measure is given by

~ ~ 1.
dz9 = dz8 — ;n;.

The equality between the second and third equation follow from Bayes’ rule.
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Let D <)?S, 5) = g [exp < > [ 17, 1% dv)}. The Feynman-Kac formula states equation ()

is solved by the partial differential equation

11—~ , oD 0D ( ,
29 X)
oyz sl = s T ox, \10 Tax

—i—lt
r
2

O' g
XsO xs 8X2

" 82D]

where o are the coefficients of the drift for the state variables under the measure Q"7 and the

terminal condition is given by
D (Xyu) =0
The derivation above shown the expectation is indeed a function of the state variables and time.

The wealth process can be stated now as

oty i) 7 [T “ ¢ >
W, = ()\te ﬁj) /S [eXp <—/S rydv — ; (u— s)> D <XS, s)} du (53)
From (27), the demand for the risky asset is

o/—MtaWt(a o )_10 +L%(o— 0's) 050"
t Ws 901 StO st St77t W, 90X, StO S StO Xt

Substituting (53) in (27) gives

J |exp (— S rodv — £ (u S)> % du
fST [(_axp (— fsu rydv — % (u— 5)) D (5587 Sj} du
1 1 0G;

7 \—1 ~
= —|\0S§t0 g —_ =
,y( St0%)  OSiTly + Gi 0%,

1 -1
04 = ; (O’StO'fgt) TSt +

(0510%;) L osidye,

(O'Sta'fgt) 0510

The second equality follows from the definition of Gjy.
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B Derivation of Optimal Consumption and Portfolio Policy for

Unobservable Time-Varying Expected Returns

The solution to the optimal consumption and portfolio problem under time-varying returns follows
closely the derivations by Munk (2002) and Wachter (2002). Following Lipster and Shirvayev (2001),
the optimal filter results in the following dynamics for the stock price and the state variable:

s,
St
dn; = k(0 —7n;)dt+ (poy + i) dZs,

= (r+ogh,)dt+osdZs,

where v¢, the variance of the estimation error, satisfies the Ricatti Equation
d’l}t = |:—2K,’Ut + O'z) - (po’n —+ Ut)2 dt

and

dZs = (1, — ) dt + dZs

Under the filtered dynamics, the market is complete. I can apply martingale methods to solve for
the optimal consumption and portfolio choice.

The investors’ value function at time ¢ is defined as

T 1—y
/ oG gl
t 1—~v

th — (T‘Wt — Ct) dt + atWt [USﬁtdt + O'SdZ\S] .

J (W, 5, T —t) = sup E}
{a37CS}

subject to the dynamic budget constraint

Define ]\/ft as the state price density at time ¢, such that

M, .
g = —rdt — /ﬁtdZS,
M,

The consumption strategy is financiable if
T __
E] [/ %C’Sds} < Wi
¢ M

The first order condition for consumption is given by
e*¢(5*t)CS*'Y — /\t%j’
1
Co = (Aett )
M
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The wealth at time ¢ under the optimal consumption policy can be expressed as
T _1 —~ 1=
W, = B! / A e S (%) " as
t My

_1 T 11
= A [ e OB (B as
t My

Let ]\/J\t = e*"@,

3
where
~ 1 S S
& exp <—— [ - [ %dZS>
t 2 t t
Since
Bl %] =1
&

I can apply Bayes’ rule to obtain

e P
t

&

where I, Q) represents an equivalent martingale measure to the investor’s original information set.

For I, @, the dynamics of the stock price and the state variable are given by

— = rdt—i—asdzg,

iy = (50 =7,) — (poy + ) 7,) dt + (poy + vy) dZ,
where by Girsanov’s Theorem,

dZ2 =T,dt + dZs.

is a Brownian motion under the measure I, Q.

The ratio % is given by.
t

o
Il
¢
o]
ko]
/l\\
N~ N
r\
w0
3)
SO
QL
IS
|
@\
w
3)
g
N
m)
~~_

37



Thus

—
|
2=
Il
@
o]
hol
/?
[\V]
Bl=
v\m
=)
S
QU
IS
+
= |
v\m
I)
IS
N
O
N———

/N
S ns

Bl [(

Lo
N—
|
2|~
[ |
Il
&=
~
Q
i
(@}
"
o]
N\ /T
[\
Bl=
r\m
i~
S o
QU
IS
+
I
r\m
S)
N
2Fa)
N—
[

where

~or .0 1.
dZg :dzg—;ntdt

is a Brownian Motion under the measure I, Q7. The equality between the second and third equation
follow from Bayes’ rule.

The state variable process is now given by
@i = (50 =70~ (poy + o))t + (oo + ) (42 + 2.
= (a—bm,)dt + (poy, +vr) dZS,
where
a = kb,

1
b = k+ (1—;) (poy +vt) .

Assume v; = vgs such that dvss = 0 and b = k + (1 - %) (poy + vss). Following Munk (2002) we
apply Feynman-Kac formula and define the function D (7, s — t) as

1 _ S
D s~ 1) = L oxp (457 [ita) | (54)
t

Equation (54) solves the differential equation

1= oD oD 1 5 02D

D="= —,) — + = o)’ —.
2y + (a m)aﬁt+2(mn+v) o

T (55)

under the terminal condition D (7;,0) = 1. The differential equation (55) admits a exponential

quadratic solution
N 1 1 9
D (1,8 —t) = exp S Ap(s=t) + B(s =), + 5C (s = )
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where

b(r) = Br)R0+5C () (oo + ) + 3B (1) (pory + i) (56)
B'(r) = B(r) [1_77 (poy + vss) — /1] +C(r) R+ %B (1) C(7) (poy +vss)?,  (57)
() = 20(r) [1_77 (poy + vss) — n} + %02 (7) (pory + vss)? + “T” (58)

and the terminal condtion for D can be restated in terms of the terminal condtions for Ap,B, and

C:

Equations (56), (57), and (58) are solved in similar fashion to Kim and Omberg (1996), Wachter
(2002), and Chacko and Viceira (2001). The solutions to (56), (57), and (58) are

_ 202 2
Ap(r) = L= [ 2 29 + i T
v 0 §—2 (1—;257, - Ii)

41—;25292 {(4 (ﬂen - /-i) + 6) e 0T -8 <1—;75n - /@) e 07/ 4 4 <1_;an - /@') - 5}
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(62 (550 =) + (042 (52 =) ) e
1—y 1— —67
L 2()d -2+ (e )|
5% —4 (1%577 — n) 20

By — 412240 (1 - e97/2)?

5 [(5_2 (1—75,] = m)) + (5+2 (1775,] = m)) e (ﬂ

2127 (1 — e797)

C(r) 2

where

Define H (1,,s — t) as

H(%S—t)_e 7 ( W>(s t)G(% )



Then H (7,,s —t) also has an exponential quadratic solution of the form

H (s — ) = oxp E {A(s—t)+B(s—t)ﬁt+%C’(s—t)ﬁfH,
where
A(t)=—=¢r+r(1—v)7+ Ap (7).

I can now apply use the methods in Cox-Huang (1989) to obtain the optimal portfolio policy.

Using the results above, we can write the value function as:
—~ \ 1=
T (Meote0 M) 7
J (W, T—t) = Ef / =0 — ds
t -7

The optimal portfolio policy for the investor as a function of derivatives of the value function is

__Jw I _Jwy &y
WJlww os W Jww US’

n 1 0G
= Dy o o (59)
vos  vos Gir On,

oy =

where the derivative of G with respect to the estimate of the Sharpe ratio can be expressed as

e a[ftTH(ﬁt,s—t)ds
on on ’
T > _
_ / 8H(77t/,\s t)ds,
t 8771:
1 T
_ ;/ (B(s— 1)+ C (s —)7,) H (7,5 — ) ds. (60)
t

Applying (60) to (59) results in the following expression for the allocation to the risky asset

B en Jy (Bls =)+ C(s— 1)) H (s — 1) ds

Vos YOS ftTH(ﬁt,s—t)ds

oy =
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Which is indeed the result for (42) when the myopic demand is given by (43) and the hedging
demand by (44).
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C Derivation of Model Implied R?

Assume the model presented in Section 3. Define R (¢,7) as follows

R(t,7) = log—

T o2 T
= / (r - 73 + USWtJrv) dv + / 05AZ3 t+v
0 0

Then
ER(EL)] = (r—0%/2)7+0s (eT L )> |
0'20'2
Var(B[R(7)]) = 238 (1-e )",

Let €(t,7) be the unexplained component of returns such that e (t,7) = R(¢,7) — E;[R (¢, 7)].
Then,

e(t,7) = og (/ Ny v — 0T — nt; 0 (1 — e"’”)) +/ 05AZs 4
0 0

T v 1 v
(] e o)

.
+ / O—SdZS,t—H)
0

The variance of the unexplained component is given by

2
Var (e (t, 7)) = 0% [% |:/€T—2(1 — e + % (1 _6—257)] +2% 7+ e —1] +7

Define R? (t,7) as the ratio of variance of returns explained by the model relative to the total

variance of returns, then

2 (r) = Var (E¢[R(t,T)]) _ Var (E¢[R(t,7)])
Var (R(t, 7)) Var (E¢[R(t,7)]) + Var (e (t,7))
o2 2

2_’;% (1 _ e—m')

i (1—e )2 + % [T —2(1—e ")+ 3(1—e )] + 282 [k + e — 1]+ 7

213
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TABLE 1

Continuous Time Parameter Values

Taken from Barberis (2000), Campbell and Viceira (1999), and Wachter (2002)

Model:
% = rdt

Lo = (r + o)) dt + 05dZs,
dij, = k(0 —7,) dt + e,dZs,
Ep = Vss + POy,

Vss 1 0 = —2KUgs + U?] — [vss + ,0077]2.

Parameter values at monthly frequency:

r = 0.0014,
og = 0.0436,
K = 0.0226,
6 = 0.0788,
o, = 0.0189,
p=—0.93,
Vs = 0.0035,
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Figure 1: Path of the variance v; of the estimation error of the unobservable Sharpe ratio for various

assumptions on the prior vyg.
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