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Abstract

I present a model of consumption and portfolio choice under market incompleteness and

imperfect information regarding the investment opportunity set. I solve analytically the con-

sumption and portfolio choice problem for an investor learning about the true state of the

economy. When prices are the only observations, the previously unspanned state variables are

spanned by the market securities under the optimal inference/learning process. The market is

observationally complete for the imperfectly informed investor. I show how learning affects both

the covariance and the duration component of the hedging portfolio. I apply the model to the

case where the Sharpe ratio is mean reverting. For the parameters presented in Wachter (2002),

I show a reduction in hedging demands due to imperfect information. I solve in closed-form for

the model implied R2 for the return forecast regression. I discuss the relationship between the

reduction in hedging demands and the reduction in the model implied R2 for the return forecast

regression.
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1 Introduction

This paper studies consumption and portfolio choice when markets are incomplete and investors

cannot observe variables which determine the investment opportunity set. I establish conditions

under which the investor’s optimization problem under incomplete markets can be transformed

into a complete markets problem. Investors use prices as noisy signals to infer the value of the

unobservable state variables. The estimation process allows the agent to project the dynamics of

the unobserved variables into the space of the securites. From the investors point of view markets

are complete since the inferred processes for the state variables are spanned by the market securities.

This allows me to apply martingale methods presented in Karatzas, Lehoczky and Shreve (1987)

and Cox and Huang (1989) and solve the consumption and portfolio choice problem analytically.

I apply the model to the case where excess expected returns on the risky asset are mean revert-

ing and unobservable. This setup is motivated by the standard assumption that excess returns to

risky assets are a function of the volatility and the market price of risk. Several empirical studies,

particularly Merton (1980), have shown volatility is easily estimated. Under this assumption we

should care about parameter uncertainty for the market price of risk. Hence the problem boils

down to uncertainty regarding the current Sharpe ratio. In this case, when the investors’ infer-

ence does not reduce the estimation error for the unobservable variable, closed-form solutions are

obtained. My results are novel in two dimensions. First, I show how parameter uncertainty, a

reasonable assumption to make given the empirical evidence, can help us simplify the consumption

and portfolio choice problem. Second, I can analytically show the role of imperfect information in

the duration and covariance component of hedging demands. I calibrate to the implied model of

mean reverting returns in Wachter (2002) based on the analysis in Barberis (2000). I find imperfect

information reduces the hedging demand duration, the sensitivity of hedging demand to changes

in the state variable, as well as the covariance component of hedging demand. The reduction in

both components is due to the variance of the estimation error. For the calibration, the variance

of the estimation error has a different sign than the covariance between the shocks to the state

variable and the risky asset. Therefore, the variance of estimation error has a tempering effect in

the hedging demand of the investor. I relate the changes in hedging demand to the model implied

R2 when the investor accounts for incomplete information. I find imperfect information reduces

the model implied R2 for future returns at any horizon. I find the reduction in the model implied
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R2 is also linked to the variance of the estimation error.

Evidence of predictability in asset markets has revived the consumption and portfolio choice

literature. Recently, economists have focused on quantifying hedging demands due to changes in

the investment opportunity set. Merton (1971) derives the existence of a hedging portfolio that

accounts for changes in variables determining the attractiveness of future investment opportunities.

At the time, the empirical evidence was unable to reject the hypothesis that asset prices followed

a random walk. Without time varying returns, it followed naturally that portfolio choice should

be entirely myopic and thus their would be no hedging component to the optimal asset allocation

policy. Poterba and Summers (1988), Campbell and Shiller (1988) and Fama and French (1989) find

evidence of predictability in the time series of asset prices. Lewellen (2001a) shows mean reversion

in stock return may be even stronger than previously perceived. He shows that mean reverting

component comprises more than 25% of stock returns. With abundant evidence of time-varying

expected returns, Kim and Omberg (1996) study the role return predictability on the optimal asset

allocation problem, finding closed form solutions for the hedging demands. Recently, Brennan

(1998), Brennan, Schwartz, and Lagnado (1997), Campbell and Viceira (2002), Chacko and Viceira

(2001), Liu (2001), and Wachter (2002) extend this work in a variety of directions.

All of the papers mention above assume the current value in the estimate of expected returns is

observable. Given the amount of evidence regarding predictability in asset prices and the difficulties

associated with determining such predictability, any reasonable normative model of portfolio choice

must hence acknowledge a role for parameter uncertainty and incomplete information. Bawa and

Klein (1976) and Bawa, Brown, and Klein (1979) study the role of uncertainty in asset allocation.

Kandel and Stambaugh (1996) extend the theory to consider uncertainty about the predictability

in asset prices. They find that the predictive relation between returns and the dividend to price

ratio, although statistically weak, is economically significant even in the presence of estimation risk.

In other words, investors should account for predictability in the portfolio decision, hence it would

be suboptimal for the investor to invest under the assumption of a random walk process for asset

prices and ignore the role predictability should play in asset allocation even when the evidence of

predictability is statistically weak.

The works of Detemple (1986), Dothan and Feldman (1986), and Gennotte (1986) lay the

foundation of the portfolio choice problem under incomplete information. They show that the op-
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timization problem where some parameters are unknown can be transformed into an optimization

problem using the estimates of the unknown parameters and the price and state variable dynamics

obtained by the inference problem. In continuous time, portfolio choice under incomplete infor-

mation can then be solved in two steps. First, unobservable parameters are estimated by filtering

signals from the observable data. Second, the investor chooses optimal consumption and portfolio

policies given these estimates.

My paper adopts their setup and considers the optimal portfolio strategy when the current

values of the state variables which define the investment opportunity set are not observable.1 In

related work, Barberis (2000) and Xia (2001), consider uncertainty regarding the relation between

stock returns and the state variables. Unlike Barberis and Xia, I do not focus on the possibility that

assets might not be predictable, instead, I focus on how uncertainty regarding the current value

predictive variable changes the composition of the investor’s consumption and portfolio choice. One

interpretation of the model is that business cycles, as seen by time-varying expected returns, do

occur in the economy, but we are unable to pinpoint where the business cycle currently stands. The

assumption of unobservable state variables also proxies for the inability of investor to accurately

measure the effect of macroeconomics changes in the level of stock returns.

Section 2 discusses the structure of the economy and solves the optimization problem of the

agent in a partially observable economy in a general setting. I provide a simple application of the

separation theorem, the filtering theory of Lipster and Shiryayev (2001), and the complete markets

portfolio choice methods of Cox and Huang (1989) as it applies to my model. In Section 3, I

study stock price predictability under the assumption that the instantaneous Sharpe ratio is not

observable and solve for the optimal consumption and portfolio policies. In Section 4, I calibrate

the model to the VAR(1) specification of Barberis (2000).2 I compare my results to Wachter (2002)

where the investor assumes complete markets and show incomplete information has a strong effect

in the portfolio choice of the agent. In Section 5, in the context of the example considered in

1Recent articles in operations research address some of the issues raised in this paper. Lakner (1995,1998), Karatzas

and Zhao (2001), and Rishel (1999) study the asset allocation problem under incomplete information. These papers

do not consider the consumption aspect of an investor’s strategic asset allocation problem.
2Campbell, Chacko, Rodriguez, and Viceira (2002) show, in the context of a consumption and portfolio choice

model, how to correctly relate the discrete-time model of time-varying expected returns by Campbell and Viceira

(2002) to the continuous-time models in order to obtain the correct parameter values for the continuous-time model.
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Section 3, I simulate how an investor, with a given prior variance for the estimation error of the

unobserved variable, learns about the variable and how the variance of the estimation error changes

with each new observation. I show, given the amount of data available to the investor, changes in

the variance of the estimation error are negligible, such that assuming steady state in the inference

process is not as strong an assumption as might be initially expected.3 Section 6 derives the model

implied R2 and their link to the observed reduction in hedging demand. Section 7 concludes and

offers a variety of extensions for the methodology presented in this paper including extensions for

other asset allocation models and derivative replication strategies under imperfect information.

2 The Model

I develop a model of consumption and portfolio choice when markets are incomplete and their

is uncertainty regarding the current value of the state variables. As shown by Merton (1971),

state variables determine the investment opportunity set faced by the investor and the optimal

portfolio policy contains a component to hedge the risks associated with those changes. I assume

the investor cannot accurately forecast the current value of those variables, but has information

to form an estimate of the value. Once the investor determines the forecast of the state variables

and the estimation error, the market is complete under the information set of the investor. Market

completeness under the subjective measure of the investor allows us to apply martingale methods

and obtain analytical, exact solutions to the consumption and portfolio choice problem.

Consider a finite horizon investor with horizon T . Assume the existence of a single consump-

tion good and assume the consumption good is the numeraire. Uncertainty is represented by a

probability space (Ω,F ,P) on which we define a dZ−dimensional orthogonal Brownian Motion Z

and a dW -dimensional orthogonal Brownian Motion W . Let F denote the filtration generated by

the Brownian Motions (Z,W ). Assume the filtration is right-continuous and the probability space

is complete. Assume the existence of a dZ−dimensional orthogonal Brownian Motion Z and a dW -
dimensional orthogonal Brownian Motion W on the probability space such that F is the standard

filtration generated by Z and W . The Brownian Motions Z and W are assumed to be orthogonal

3Even under steady state inference, the investor does not observe the unobservable variable because under steady

state inference the variance of the estimation error is positive. Even in the steady state the investor is not able to

precisely estimate the unobserved variable.
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to each other. For all Ito processes in this paper assume all drift coefficients are defined in L1 and
all diffusion term coefficients are defined in L2.4

2.0.1 Securities Market and State Variables

The securities market consists of a riskless asset, the money market account, which pays the locally

riskless rates at all times, and N risky securities which span Z, the Brownian motion related to

shocks in asset prices. The money market account grows at the riskless rate of return. The price

of money market account satisfies

dBt = rtBtdt, (1)

where rt is the locally riskless rate of return.

The prices for the risky securities follow the multidimensional Ito process

dSt = diag (St)| {z }
N×N

µSt|{z}
N×1

dt+ σSt|{z}
N×dZ

dZt

 , (2)

where µSt ∈
¡L1¢N and σSt ∈

¡L2¢N×dZ . Assume the dimension of the Z is equal to the rank of

σSt almost surely. The drift component represents the instantaneous expected return for the asset,

while the diffusion is defined as the volatility of the asset.

Changes in the investment opportunity set of the agent are represented by a vector Xt of state

variables. The state variables satisfy the following multidimensional Ito process:

dXt = µXt|{z}
S×1

dt+ σXt|{z}
S×dZ

dZt + σWt|{z}
S×dW

dWt, (3)

where µXt ∈
¡L1¢S , σXt ∈

¡L2¢S×dZ , and σWt ∈
¡L2¢S×dW and the Brownian motion vectors Z

andW are orthogonal. The market is incomplete as long as the dimension ofW is greater than zero.

Some of the state variables might not be observable. I will assume that the number of unobservable

parameters is equal to the difference between the total number of shocks and the number of shocks

spanned by market securities. In other words, the rank of σWt is equal to dW .

4Assume the following definition for the sets described in the paper hold:

L1 =
n
X ∈ L : R T

0
|Xt| dt <∞ a.s.

o
,

L2 =
n
X ∈ L : R T

0
X2
t dt <∞ a.s.

o
.
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2.0.2 Investors Preferences and Budget Constraint

The investor’s preferences are assumed to satisfy the standard constant relative risk aversion, power

utility function:

u (Ct) = e−φt
C1−γt

1− γ
dt, (4)

where γ is the coefficient of relative risk aversion and φ is the agent’s discount rate. Denote αt

as the vector of portfolio weight for the investor’s optimal investment strategy in the risky assets.

The investors’ budget satisfies:

dWt =Wt

©£
rt + α0t (µSt − rtι)

¤
dt+ α0tσStdZt

ª− Ctdt (5)

and the investor is subject to a non-negative wealth constraint.

2.1 Solution for the Model

This section presents the solution for the investor’s optimization problem. The agent optimization

problem is to maximize (4) subject to (5) and the non-negative wealth constraint under the filtered

processes. Similar to Detemple (1986), Dothan and Feldman (1986), and Gennotte (1986), the

investor’s consumption and portfolio choice problem follows two steps: (1) an inference problem in

which the investor updates his or her estimate of the unobservable state variables, (2) an optimiza-

tion problem in which the investor chooses her optimal consumption and portfolio policies under

the new estimate for the unobservable state variables.In this section I solve the investor’s inference

problem and optimization problem. A second solution method is provided in the Appendix.

2.1.1 Inference Problem

Assume the drifts of the stock price processes in (2) is given by

µSt = β0t|{z}
N×1

+ βXt|{z}
N×S

Xt, (6)

and the drifts of the state variables processes in (3) satisfy

µXt = a0t|{z}
S×1

+ aXt|{z}
S×S

Xt. (7)
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Equations (6) and (7) represent an economy where returns are time-varying. Equation (6)

assume a linear relation modeled between expected returns and the predictive variable. Since

some of the state variables are not observable, the instantaneous expected return is not directly

observable. One interpretation of the model is to think of the assets in this economy as being

either “good” or “bad”.investments, depending on whether their current expected return is above

or below their long run expected return, but the investor cannot determine exactly the current

expected return of the assets.

The inference problem is solved with filtering methods covered in Lipster & Shiryayev (2001).

I follow their treatment as it applies to our model. Assume the investor observes instantaneous

returns to the money market account (1) and the equity (2). Assume the investor also knows

σSt, σXt, σY t, β0t, βXt, a0t, a1t. However the investor does not observe the current state of Xt.In

other words, prices are the only signals investors have regarding the investment opportunity set. If

the investor commits to high-frequency trading, prices serve as the natural choice for information

regarding the investment opportunity set.5

Let X0 be the investor’s prior, such that X0 ∼ N
³ bX0, v0

´
, where v0 represents the investors’

prior variance-covariance matrix for the state variables. In terms of the filtering literature, equations

(1) and (2) are the observation equations and (3) are the system equations. The filtering theory for

continuous time developed by Lipster and Shiryayev, allows us to describe the dynamics of the mean

and the variance of the distribution of the unobservable stochastic process Xt. The instantaneous

changes in the drift and the variance-covariance matrix of Xt are given by:

d bXt =
h
a0t + aXt

bXt

i
dt+

£
σXtσ

0
St + vtβ

0
Xt

¤ £
σStσ

0
St

¤−1 h
diag

¡
S−1t

¢
dSt −

³
β0t + βXt

bXt

´
dt
i
,(8)

dvt
dt

= aXtvt + vta
0
Xt + σXtσ

0
Xt + σWtσ

0
Wt −

£
σXtσ

0
St + vtβ

0
Xt

¤ £
σStσ

0
St

¤−1 £
σXtσ

0
St + vtβXt

¤0
.(9)

where bXt is the investor’s estimate of the unobservable state variable and vt represents the variance

of the estimation error for the unobservable state variable at time t.

When the agent has incomplete information, the agent’s portfolio hedging demand needs to

account for the unobserved state variables, but also for the reduction in variance the estimation

error as new observations come about. I assume inference has reached a steady state. In other

5An exception to the low frequency issues with predictive variable is trading volume. Recently Cremers (2002),

considers the role of trading volume as a predictive variable.
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words, the variance of the distribution for the estimated parameter does not change with each

new observation. Thus dvt = 0, and vt does not need to be considered a state variable in the

consumption and portfolio choice problem. Denote the steady state variance matrix as vss. From

the definition of steady state variance and equation (9), vss is a positive definite matrix such that

0 = aXtvss + vssa
0
Xt + σXtσ

0
Xt + σWtσ

0
Wt −

£
σXtσ

0
St + vssβ

0
Xt

¤ £
σStσ

0
St

¤−1 £
σXtσ

0
St + vssβXt

¤0
.

In Section 5, I discuss the merits of the steady state learning assumption and show that with a

reasonable amount of data, the variance of the estimation error is very close to the variance implied

by the steady state results.

The new innovation process, defined as the normalized deviation of the return from its condi-

tional estimated mean is given by

σStd bZt =
h
µSt −

³
β0t + βXt

bXt

´i
dt+ σStdZt (10)

Although Zt is not observable, the innovation process bZt is derived from observable processes and

is thus observable. The process (10) implies that the risky securities returns (2) are observable

under the form

dSt = St

h³
β0t + βXt

bXt

´
dt+ σStd bZt

i
(11)

The dynamics for the state variables also become observable under the new innovation process.

The state variables dynamics are given by the equation

d bXt =
h
a0t + aXt

bXt

i
dt+

h
σXtσ

0
St + vssβ

0
Xt

i ³
σStσ

0
St

´−1
σStd bZt (12)

As long as the securities span the rank of bZ, the investor’s own state price density is uniquely
defined. It is this result which will allow us to tackle the optimization problem with martingale

methods. The assumption of steady state variance allows us to reduce the state variable space

considerably and in some cases solve the optimization problem in closed form. The assumption of

steady state variance formalizes the decision not to have the variance of the estimation error as a

state variable.6

6Barberis (2000) also reduces the state space by assuming the investor’s learning does not reduce the variance of

the estimation error once the investor starts investing.
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2.1.2 Optimization Problem

As far as the investor is concerned, the stochastic changes to the price and the state variable are

perfectly correlated because the price serves as the signal of the state variable. After filtering the

unobservable processes and assuming the variance of the estimates of the state variables reaches

its steady state, the securities span the number of observable Brownian Motions. The investor

has a uniquely determined stochastic discount factor, therefore I can apply martingale methods

developed in Cox-Huang (1989) to solve for the agent’s optimal consumption and portfolio choice.

The agent assumes the prices of the money market account and the risky securities are given

by the equations

dBt = Bt [rtdt] , (13)

dSt = St

hbµStdt+ σStd bZt

i
, (14)

where bµSt is chosen to match equation (11). Also, the investor assumes the state variables satisfy
the following equation

d bXt = bµXtdt+ bσXtd bZt, (15)

where bµXt and bσXt are chosen to match equation (12).

Although the market is incomplete, a unique stochastic discount factor can be defined for the

investor. Under the information set of the investor, the state variables are spanned by the securities,

therefore the investor can define a stochastic discount factor. Let Mt be the stochastic discount

factor, the process for Mt must satisfy the following condition: MtBt and MtSt are martingales. I

define a stochastic discount factor that satisfies the martingale properties under the information set

of the investor. Denote by cMt the stochastic discount factor under the investor’s information set

such that cMtBt and cMtSt are martingales. Assuming that cMt follows an Ito process, an application

of Ito’s Lemma given (13) and (14) yields the following process for the stochastic discount factor:

dcMtcMt

= −rtdt− bηtd bZt, cM0 = 1 (16)

where bηt = ³σ0StσSt´−1 σ0St (bµSt − rtι)

and bηt satisfies Novikov’s Condition and ι represents a vector of ones. Note bηt is the investor’s
estimate of the Sharpe ratio and a affine function of bXt. Equation (16) can be solved to obtain cMt
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in its exponential form:

cMt = exp

½
−
Z t

0
rsds−

Z t

0
bηsd bZs − 1

2

Z t

0
kbηsk2 ds¾ .

Similar to the incomplete markets consumption and portfolio choice model of He and Pearson

(1991), the investor in my model is able to determine a unique stochastic discount factor, but

unlike He and Pearson, the stochastic discount factor for the investor is straightforward to obtain

and does not require the use of a dual problem. Although the investor has a unique stochastic

discount factor, this does not imply it is the unique discount factor for the economy. Basak (2000)

studies a dynamic equilibrium model of heterogeneous beliefs and finds individual-specific Arrow-

Debreu prices can differ. Similar to Basak, the investor has a uniquely define stochastic discount

factor based on their beliefs on certain parameters in the economy. Therefore even when markets

are incomplete, the consumption and portfolio choice problem of the investor can be solved with

martingale methods.

Let the superscript I denote operations taken under the information set of the investor. Given

the process governing the dynamics of the stochastic discount factor, the agent’s optimization

problem can be solved with martingale methods. As stated previously in this section, the agent’s

optimization problem is to maximize the expected lifetime utility of consumption Jt where

Jt = sup
{αs,Cs}

EI
t

"Z T

t
e−φ(s−t)

C1−γs

1− γ
ds

#
(17)

subject to the dynamic budget constraint under the estimated processes for the securities and a

non-negative wealth constraint.The existence of the stochastic discount factor allows us to write

the agent’s dynamic budget constraint as a static budget constraint given by

EI
s

·Z T

t

cMsCsds

¸
≤W0. (18)

where the expectation is defined under the investor’s information set as represented by the results of

the inference process described previously. Equation (18) states the agent’s expected consumption

stream in the future appropriately discounted will be less than or equal to his current wealth.

The investor’s problem can now be solved as a static optimization problem as described in Cox

and Huang (1989) and Karatzas and Shreve (1998, Chapter 3). Intuitively, since the stochastic

discount factor is well defined for the investor, the investor can dynamically trade the long-lived
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securities to obtain the optimal consumption profile in a manner similar to that of an investor

with access to complete markets. Thus, there is no uncertainty regarding the consumption and

portfolio choice of the agent conditional of knowing the state, the only uncertainty that remains

is the realization of a given state. The investor’s portfolio allocation changes accordingly with the

optimal consumption choice.

The first order condition for utility maximization under the budget constraint is given by

Cs =
³
λte

φ(s−t) cMscMt

´− 1
γ
, (19)

where λt is the Lagrangian multiplier. Notice also λ
− 1
γ

t represents the choice of consumption at

time t given the information of the agent at time t. Substituting the first order condition for

consumption (19) into the static budget constraint (18) yields the following expression for the

static budget constraint:

Wt = EI
t

·Z T

t

cMscMt

³
λt

cMscMt

´− 1
γ
e−

φ
γ
(s−t)ds

¸
. (20)

Equation (20) states that wealth is a function of the stochastic discount factor and the processes

that drive the distribution of the stochastic discount factor. As shown in (16), the only processes

that matter for the distribution of the stochastic discount factor are the interest rate and the

Sharpe ratio.I assume the sharpe ratio is a function of the state variable vector bXt, therefore the

current values for both the stochastic discount factor and the estimated state variable determine

the information set the agent uses in forming conditional expectations.7 The wealth at time s > t

following the optimal policy is given by

Ws = EI
s

·Z T

s

cMucMs
Cudu

¸
(21)

=
³
λte

φ(s−t) cMscMt

´− 1
γ
EI
s

·Z T

s
e−

φ
γ
(u−s) ³cMucMs

´1− 1
γ
du

¸
Define the function Fs,u as follows

Fs,u = EI
s

·³ cMucMs

´1− 1
γ

¸
(22)

Fs,u is the agent’s expectation of how the investment opportunity set is going to look like at time

u, with a weighing function related to the risk aversion of the investor. Notice that for γ = 1,

7This is due to the fact that both Mt and bXt are Markov processes.
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the expectation yields a constant, regardless of the value of the fraction.. As will be shown in the

portfolio choice of the investor, Fs,u is directly linked to the hedging demand component of the

investor’s portfolio.

Define Gs,T as

Gs,T =

Z T

s
e−

φ
γ
(u−s)Fs,udu (23)

such that Gs,t is also function of bXs. Gs,t weighs the investor reaction to changes in the future

investment opportunity set by the investor’s impatience and risk aversion. If the investor discounts

future utility heavily, then the investor assigns greater weigh to the short-term future investment

opportunity set. Highly risk averse investors will penalize longer horizon opportunity set changes

less since they care about maintaining a low variance in their consumption.

Let Q denote the investor specific risk-neutral measure. The wealth of the investor under the

risk-neutral measure is given by

Ws =
³
λte

φ(s−t) cMscMt

´− 1
γ

Z T

s
e
−φ
γ
(u−s)−

³
1− 1

γ

´
(
R u
s rvdv)EI,Q

s

·³ cMucMs

´− 1
γ

¸
du

Under the investor specific risk-neutral measure, the rate of return to wealth is equal to the in-

stantaneous rate of return for the money market account, thus the drift of the wealth process,

as obtained by the applying Ito’s Lemma, must equal the locally riskless rate times the agent’s

current wealth. The equation above implies the following partial differential equation is solved by

the agent’s wealth function:

rsWs =
³
λte

φ(s−t) cMscMt

´− 1
γ
+

∂Ws

∂s
− ∂Ws

∂cMs

cMs

µ
rs +

bη0sbηs
2

¶
+

∂Ws

∂ bXs

³
aQ0s + aQXs

bXs

´
(24)

+
1

2

∂2Ws

∂cM2
s

cM2
s bη0sbηs + 12tr

"bσXsbσ0Xs

∂2Ws

∂ bX2
s

#
− ∂2Ws

∂cMs∂ bXs

cMsbσXsbηs
where aQ.s are the coefficients of the drift for the state variables under the investor specific risk

neutral measure and tr (.) is the trace function. Equation (24) is solved by

Ws =
³
λte

φ(s−t) cMscMt

´− 1
γ
Gs,T . (25)

where the boundary condition for (24) is given by

Gs,s = 1 (26)
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A functional form to the investor’s wealth can be obtained by attempting to solve (24) or alterna-

tively, equation (25) can be simplified furthermore as shown in the Appendix. One can also use

the intuition in Wachter (2002) to solve the consumption and portfolio problem by considering the

portfolio problem for each period separately and scaling the solution with the Lagrange multiplier

obtained from the first order condition for consumption.

2.2 Portfolio Choice

Since the investor beliefs the markets are complete, I follow Cox-Huang (1989) to find the optimal

asset allocation strategy for the investor. In complete markets, the portfolio allocation has to be

such that the magnitude and direction stochastic changes in the wealth process are hedged by the

portfolio allocation. The investor’s percentage allocation of wealth to the risky assets is given by

α0t =
cMt

Wt

∂Wt

∂cMt

¡
σStσ

0
St

¢−1
σStbηt| {z }

myopic demand

+
1

Wt

∂Wt

∂ bXt

¡
σStσ

0
St

¢−1
σStbσ0Xt| {z }

hedging demand

. (27)

The portfolio choice of the agent can be decomposed into its myopic demand, the demand due

to the current state of the economy, and the hedging demand, the demand due to expected changes

in the investment opportunity set. In the model, the hedging demand is due to the stochastic

nature of the estimated state variables. Both the myopic and hedging components are subject to

the estimation risk due to the unobserved state variables. The myopic demand of the agent is

affected by the estimated state variables by how those estimates change the investors perception

of the current investment opportunity set as proxied by the Sharpe ratio. The hedging demand of

the agent is affected by the investor’s perception of the diffusion for the estimated state variables

(how the investment opportunity set changes with time) as well as by the current estimate of

the unobserved state variables. Given (27) and the second boundary condition in (25), write the

investors’ portfolio as

α0t =
1

γ

¡
σStσ

0
St

¢−1
σStbηt + 1

Gt

∂Gt

∂ bXt

¡
σStσ

0
St

¢−1
σStbσ0Xt (28)

The function G which determines the magnitude of the hedging demand is the agent’s current

wealth to consumption ratio. As in the complete markets framework, the relation between the

agent’s current consumption relative to expected future consumption is related to how the agent
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determines to hedge changes in the investment opportunity set. Although our model is one of

incomplete markets, investors, via the inference problem, are able to obtain individual-specific

Arrow-Debreu prices, therefore their behavior maps to that of a complete markets investor.

Write the hedging demand component of the agent’s portfolio choice as

αhedgingt =
∂Gt
∂Xt

Gt

¡
σStσ

0
St

¢−1
σStbσ0Xt (29)

The magnitude of the hedging demand is given by the sensitivity of the wealth to consumption ratio

to the state variables. The duration of the hedging component will change relative to the perfect

information case due to the difference between the estimate and the true value of the variable and

because of the estimation error. The hedging demand also depends on the perceived covariance

between the state variables and the stock prices since

σStbσ0Xt =
£
σXtσ

0
St + vssβ

0
Xt

¤0
the covariance component of the hedging demand will also change due to the variance of the

estimation error.

The value function can be used to obtain the optimal consumption policy to obtain the optimal

portfolio policy of the agent. Define Jt as the indirect utility function, the indirect utility function

obtained via the optimal consumption and portfolio policy solves

Jt = sup
{Ct,αt}

EI
t

"Z T

t
e−φ(s−t)

C1−γs

1− γ
ds

#
(30)

I substitute consumption in (30) by the first order condition (19) to obtain

Jt =
1

1− γ
EI
t

·Z T

t
e−φ(s−t)

³
λte

φ(s−t) cMscMt

´−1−γ
γ

ds

¸

=
λ
1− 1

γ

t

1− γ

Z T

t
e−

φ
γ
(s−t)EI

t

·³ cMscMt

´1− 1
γ

¸
ds

=
λ
1− 1

γ

t

1− γ
Gt,T

From (20),

λ
− 1
γ

t =
Wt

Gt,T

then the value function can be stated as

Jt = Gγ
t,T

W 1−γ
t

1− γ
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where Gt,T is defined as in the previous section. The optimal portfolio allocation to risky assets is

given by

αt =
−JW

WtJWW

¡
σStσ

0
St

¢−1
σStbηt − JWX

WtJWW

¡
σStσ

0
St

¢−1 ¡
σStbσ0Xt

¢
=

1

γ

¡
σStσ

0
St

¢−1
σStbηt + 1

Gt,T

∂Gt,T

∂ bXt

¡
σStσ

0
St

¢−1 ¡
σStbσ0Xt

¢
where, by Leibniz’s Rule,

∂Gt,T

∂ bXt

=

Z T

t
e−

φ
γ
(s−t)∂Ft,s

∂ bXt

ds. (31)

Since Ft,s is a function of the ratio of the state price density at time s relative to the state price

density at time t, equation (31) formalizes the relation between the hedging demand and changes

in the investment opportunity set. Also, notice the hedging demand is a weighted function of

the expected changes in the investment opportunity set for all horizons up to retirement. The

weighting function is related negatively to the investor’s impatience and positively to its relative

risk aversion. Therefore, the more impatient investors care more about hedging demand in a shorter

horizon, while more risk averse investor care about longer horizon consumption needs.

The assumption steady state variance is not necessary to obtain an expression for the optimal

portfolio policy since the Cox-Huang methodology would still apply even if the diffusion component

of the state variable decays deterministically. In those cases where an analytical solution does not

obtain, the investor could use the Monte Carlo methods of Detemple, Garcia, and Rindisbacher

(2003) or Cvitanic, Goukasian, and Zapatero (2002) to obtain a numerical solution. Both methods

require market completeness which is satisfied under the information set of the investor.

2.3 Consumption to Wealth Ratio

The consumption to wealth ratio is easily obtain by applying some algebra to equations (19) and

(25)

Ct

Wt
=

λ
− 1
γ

t

λ
− 1
γ

t Gt,T

, (32)

or
Ct

Wt
= G−1t,T . (33)
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An application of equation (33) to the portfolio hedging demand (29) yields the following ex-

pression for the investor’s hedging demand:

αhedgingt =
Ct

Wt

∂
³
Wt
Ct

´
∂ bXt

¡
σStσ

0
St

¢−1 ¡
σStbσ0Xt

¢
. (34)

Equation (34) shows the link between future expected consumption and the hedging strategy of the

investor. When markets are complete, the investor essentially can plan the consumption strategy

for each possible outcome at each possible horizon, equation (34) shows how the investor changes

the portfolio strategy to maintain the desired consumption plan.

3 Portfolio Choice with Unobservable Time-Varying Expected Re-

turns

A useful example of the strength of our technique is to analyze the consumption and portfolio

choice problem when the Sharpe ratio is mean reverting. Liu (2001) and Wachter (2002) finds a

closed-form solutions to the consumption and portfolio choice where the predictive variable is fully

observable and markets are complete. In order to solve the model, Wachter assumes the market is

complete and the shocks to the proxy for the predictive variable and the stock price are perfectly

negatively correlated. The assumption of perfect negative correlation does not seem controversial

given that the empirically estimated correlation for the shocks to the dividend price ratio and the

stock price is -0.93. Accounting for parameter uncertainty greatly decreases the demand of the

risky asset due to hedging for changes in the investment opportunity set.

In this section of the paper, I extend Wachter to account for incomplete information in the

agent’s optimization problem. Unlike Wachter, I will not assume market completeness. Instead,

I assume uncertainty regarding the current value of the predictive process. Note the assumption

regarding steady-state estimation does not allow us to study the role of the variance of the esti-

mation error for the unobservable parameters as a state variable in the agent’s policies.8 In this

model the predictive relation is known, since the predictive relation in our model is given by the

standard deviation of the risky asset.
8 In a related paper, Lewellen and Shanken (2002) study the equilibrium effects of learning on asset prices. They

find mean reversion in asset prices can be explained by the learning of the agents regarding the dividend process. Xia

(2001) solves a similar model where learning plays a role in the hedging demand of the investor.
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Assume the existence of a money market account where the risk free rate is constant and the

existence of one risky securities whose price process satisfies

dSt
St

= (r + σsηt) dt+ σsdZS, (35)

such that the Sharpe ratio, ηt, is mean reverting, and satisfies

dηt = κ (θ − ηt) dt+ σηdZx. (36)

Assume the correlation between shocks to the stock price and shocks to the Sharpe ratio are

imperfectly correlated. The correlation coefficient is denoted by ρ. The imperfect correlation

between (35) and (36) implies the market is incomplete. Yet, when the Sharpe ratio is not observable

and under assumptions explained in Section 2.1.2, the optimization problem can be restated in a

complete markets framework.

3.1 Inference Problem

I apply the filtering methods of Lipster and Shiryayev (2001) to find a observationally equivalent

economy under the subjective measure of the investor. Applying the results of section 2.1.1 to the

current problem yields the following processes for the stock price and the state variable dynamics

respectively:

dSt
St

= (r + σSbηt) dt+ σSd bZS , (37)

dbηt = κ (θ − bηt) dt+ εηd bZS , (38)

where

εη = vss + ρση

and

d bZS = [(ηt − bηt) dt+ dZS] . (39)

The measurement error (variance) of the Sharpe ratio solves the following Riccatti Equation

dvt
dt
= −2κvt + σ2η − [vt + ρση]

2 . (40)

Equation (40) can be solved following the appendix of Detemple (1986).
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Following the methodology presented in Section 2, when computing for the optimal consumption

and portfolio policies, assume learning has reached a steady state in which new data and estimation

does not reduce the measurement error of the Sharpe ratio.9 Let vss denote the variance of the

estimation error under the steady state.10 By applying the definition of steady state filtering to

(40), vss is determined by the quadratic equation

0 = −2κvss + σ2η − [vss + ρση]
2 . (41)

The resulting variance will be the positive root of the quadratic equation obtained from our as-

sumption in (40). If two positive roots are obtained, I study both cases: the high-prior equilibrium

and the low-prior equilibrium.

3.2 Consumption and Portfolio Choice

After the investor solves the inference problem and estimates the Sharpe ratio, the estimated

processes for the stock price and the Sharpe ratio are perfectly correlated. The investor sees this

processes as perfectly correlated because the inference problem essentially projects the unobserv-

able variable (the Sharpe ratio) into the space of the signal (the stock price), thus the source of

uncertainty for both processes after the inference is the same. As seen in (38) the true correlation

is accounted for in the diffusion coefficient for the estimated Sharpe ratio. In this section I show

the main steps and results of the consumption and portfolio problem. The details of the derivation

are provided in the Appendix.

I derive the agent’s portfolio choice by applying (28) to the model. Let αt be the proportion of

wealth allocated to the risky asset. The portfolio choice of the agent can be decomposed into its

myopic and hedging component.

αt = αmyopic
t + αhedgingt (42)

where

αmyopic
t =

1

γ

bηt
σS

, (43)

9A closed form solution is obtainable for equation (40). Please refer to Detemple (1986, Appendix) for details.
10Barberis (2000) also reduces the state space by not considering variance of estimation error, but he does not

assume this occurs due to a steady-state in the equation determining the variance of the estimates. In the Barberis

model, steady state learning occurs when parameter uncertainty disappears. My setup allows for the separation of

parameter uncertainty and learning about the variance of the estimation error.
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and

αhedgingt =
εη
R T
t (B (s− t) + C (s− t)bηt)Ht,sds

γσS
R T
t Ht,sds

(44)

The hedging demand of the investor has the usual properties found for hedging demand in the

presence of excess return predictability. The Sharpe ratio does not only come into play in the

assigning of relative weight for the hedging demand via the function H, the wealth to consumption

ratio, it also comes into play linearly as a measure of market timing. As was shown in (29), when

the solution to H is of the exponential form, the sensitivity of the log wealth to consumption ratio

to the state variable determines the relative weight each period in the agent’s horizon has on the

hedging strategy.

The consumption to wealth ratio for the agent is given by

Ct

Wt
=

µZ T

t
Ht,sds

¶−1
.

The duration or sensitivity of the wealth to consumption ratio relative to changes in the investment

opportunity set is given by

Ct

Wt

∂
³
Wt
Ct

´
∂bηt =

R T
t (B (s− t) + C (s− t)bηt)Ht,sds

γ
R T
t Ht,sds

, (45)

as shown generally in Section 2.3, (45) establishes the relationship between the agent’s hedging

demand and the sensitivity of the agent’s consumption and savings decision to changes in the

investment opportunity set. This relation is straightforward due to market completeness under the

filtered processes and the inextricable link between the agent’s hedging demands and the expected

consumption in the future.

4 Calibration and Results

Campbell and Viceira (1999) study optimal consumption and portfolio choice when expected returns

are mean reverting. They assume the riskless rate of return is constant and the log excess return

for stocks is given by the following VAR(1) specification:

logStn+∆t = rf + xtn + εtn+∆t, (46)

xtn+∆t = (1− φ)µ+ φxtn + ηtn+∆t.
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Campbell and Viceira use the dividend to price ratio as a proxy for changes in the investment

opportunity set. They derive parameters for (46) from quarterly data. I adopt the results from

Wachter (2002), which give the monthly parameters for the models by Campbell and Viceira (1999)

and Barberis (2000). As explained previously, I maintain imperfect correlation between the state

variable and stock returns and set the correlation to -0.93.

Table II consider the portfolio choice of the investor with incomplete information under various

assumptions for the current estimate of the Sharpe ratio. The myopic and the hedging demand

of the investor seems to increase monotonically with increases in the Sharpe ratio. Yet, the per-

centage of the portfolio dedicated to hedging changes in the investment opportunity set decreases

monotonically with increases in the Sharpe ratio. The result is highly intuitive: When the investor

estimates a low value for the Sharpe ratio, the investor is more willing to time the market because

he expects the returns to be higher in the future due to the mean reversion in the parameter. This

effect is also stronger when the investment horizon is longer.As ηt increases so does the myopic and

hedging demand of the agent, but there is a reduction in the amount of the portfolio allocated to

hedging changes in the investment opportunity set. For each panel, the hedging demand of the

investor increases with the time horizon and decreases with respect to relative risk aversion. Yet,

the percentage of wealth held in the risky asset due to hedging demand increases with both the

time horizon and risk aversion. This result implies more risk averse investor reduce their exposure

to risky assets, but increase the amount of the exposure that is due to changes in the investment

opportunity set. Compared to Campbell and Viceira (1999) and Wachter (2002), hedging demands

for investors considering the role of parameter uncertainty are lower.

Table III compares the consumption and portfolio strategy of an investor which estimates the

current Sharpe ratio and computes his or her strategy according to the methods in this paper

against an investor with perfect information about the economy under the assumption of perfect

negative correlation between stock returns and the predictive process, the mean-reverting Sharpe

ratio. The second investor type corresponds to the model presented in Wachter (2002). In Table III

I assume the Sharpe ratio, as estimated by the first investor and observed by the second investor, is

the long run value. The comparison in Table III allows us to concentrate on the role of parameter

uncertainty in the hedging demand of the investor and does not account for the possibility of

further differences in the consumption and the portfolio strategies of both investors due to the
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incomplete information structure. In other words, I do not account for further differences due

to differences in each agent’s belief of the current value of the Sharpe ratio. As expected, the

differences in the proportion of wealth allocated to stock in both examples is due to differences in

the hedging demand. The hedging demand for the investor with incomplete information is much

lower. In the case where the investor has a coefficient of relative risk aversion of 5 and a 30-year

investment horizon, the difference in the percentage of wealth allocated to the risky asset is 24%. As

expected, the percentage of the portfolio dedicated to hedging demands is lower when accounting

for parameter uncertainty. A major driver in the difference in this results is the perceived volatility

of the state variable. For the calibration the standard deviation of the predictive variable is

εη = vss + ρση (47)

= 0.0035 + (−0.93) 0.0189
= −0.0141

As expected, this is smaller than the standard deviation that would be obtained under the assump-

tion of complete markets and full information. The reduction of the volatility of the predictive

variable is the main reason why hedging demands under parameter uncertainty are considerably

smaller than those obtained under the complete markets assumption.

Although in our calibration parameter uncertainty reduces the magnitude of the hedging de-

mand, it is possible that under a different calibration the hedging demand of the investor would be

high in magnitude. The investor takes a negative position in the risky asset due to the measurement

error. This can be clearly seen by substituting (47) in the hedging demand (44):

αhedgingt =
εη
σS

Ct

Wt

∂
³
Wt
Ct

´
∂bηt

=
vss
σS

Ct

Wt

∂
³
Wt
Ct

´
∂bηt| {z }

<0

+
ρση
σS

Ct

Wt

∂
³
Wt
Ct

´
∂bηt| {z }

>0

Had the negative hedging component due to estimation error dominated the positive hedging com-

ponent due to changes in the investment opportunity set, the results could have been different. A

second lever in which the perceived volatility determines the hedging demand is in the value of the

functions B (.) and C (.). Under the complete markets assumption, Wachter (2002) shows B (.) < 0
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and C (.) < 0. Under incomplete information the perceived covariance is smaller, but the functions

B (.) and C (.) are still negative. It follows that another possible reason for the reduction in the

hedging demand of the investor is the reduction in the duration of the hedging demand as measure

by the sensitivity of the consumption to wealth ratio to changes in the state variable. In Table IV,

I compare changes in hedging demand due to changes in the duration measure and changes in the

perceived volatility of the state variable. I do the comparison via the following decomposition

αhedging,CMt − αhedgingt =
−ση
σS

¡
DurCM −Dur

¢
| {z }

Duration Effect

+

µ−ση
σS
− εη

σS

¶
Dur| {z }

Covariance Effect

(48)

where the superscript CM represents the complete markets investor assuming perfect negative

correlation between the state variable and stock returns and DurCM and Dur is given by

DurCM =

R T
t

¡
BCM (s− t) +CCM (s− t) ηt

¢
HCM
t,s ds

γ
R T
t HCM

t,s ds
,

Dur =

R T
t (B (s− t) + C (s− t)bηt)Ht,sds

γ
R T
t Ht,sds

.

The solutions to the functions ACM (.) , BCM (.) , and CCM (.) are provided in Wachter (2002). To

concentrate on the role of the perceived volatility in the hedging demand, I assume the current

Sharpe ratio and the estimate of the second investor for the Sharpe ratio are equal. I analyze

equation (48) in Table IV for various assumptions of the current Sharpe ratio, relative risk aversion,

and investment horizon.The covariance effect seems to dominate the change in the hedging demand

for short-horizon investors.11 In general, for the longer-horizon investors, it is the duration effect

that carries the most weight in the change in hedging demands. For the low risk aversion investor,

the covariance effect dominates. As risk aversion increases, the covariance effect is reduced and the

duration effect increases.

Using the decomposition of the portfolio demand into its market timing and non-market timing

components allows the comparison of the market timing aggressiveness implied by the Wachter

11Barberis (2000) also mentions the reduction in sensitivity to the state variable in the portfolio demand when

parameter uncertainty is taken into account. Yet, his model does not allow for the separate analysis of the reduction

in the hedging demand as it pertains to changes in the preceived covariance and changes in the duration, the sensitivity

of hedging demands to changes in the state variable.
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model relative to my model. The agent’s portfolio in terms of its timing component and its non-

timing component are

αNMT
t =

θ

γσS
+

εη
σS

R T
t (B (s− t) + C (s− t) θ)Ht,sds

γ
R T
t Ht,sds

, (49)

αMT
t =

"
1

γσS
+

εη
σS

R T
t C (s− t)Ht,sds

γ
R T
t Ht,sds

#
(bηt − θ) . (50)

Similar to Campbell and Viceira (1999) equatins (49) is the intercept of the portfolio demand and

the coefficient in (50) is the slope of the portfolio. Let the coefficient of the market timing component

divided by the non-market timing component be the measure of market timing aggressiveness for

the investor. For various assumptions of the degree of relative risk aversion and retirement horizon,

Table V shows the market timing and non-market timing component of the two models when the

expected return is equal to the long-run return. The table also shows the measure of market timing

aggressiveness. As expected from the previous discussion about the hedging demand differences,

Table V shows a reduction in the slope and intercept of the portfolio allocation when parameter

uncertainty is considered. Our measure of market timing aggressiveness shows the parameter

uncertainty investor to have a higher slope (when normalized to its non-market timing demand)

than the complete markets investors. The results follows from the subjective distribution attributed

to the predictive variable by the investor accounting for parameter uncertainty. The investor has a

more precise signal than the complete markets investor due to how the variance of the estimation

error reduces the implied variance of the state variable. Therefore, the investor is willing to market

time more aggressively than an investor who does not consider the role of parameter uncertainty.

5 The Longevity of Learning

A crucial assumption made to obtain closed-form solution to the investors consumption and in-

vestment problem is that learning has reached a steady-state process. In other words, any new

observation of the securities will be accounted for by the agent is his new estimates of the unob-

servable parameters, but the new observation will not contribute in reducing the estimation risk,

the variance of the estimates. This assumption begs two questions: (1) How quickly would an

agent on average, regardless of prior, reach the steady state in the learning process? (2) Can the

estimation risk in the steady state significantly change the investment strategy of the agent? This
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section provides answers to both questions in the context of the model presented in this section.

To answer the first question, I construct a simulation of how the estimation risk of the agent

changes after each observation through time. For the case of stock price predictability, I first obtain

the steady state variance of the measurement error and the simulate the learning of the agent under

the assumption of priors that are multiples of the steady-state estimation risk. I assume changes

in the variance of the estimation error follow (40). I assume that new observations are made

every 1/10th of a quarter. As expected, from Merton (1980), our results are not sensitive to the

assumption of the sampling frequency. Figure 1 shows how the agent’s estimation risk under the

assumption that the prior is two-times, five-times, ten-times, and twenty-times the steady state

value. Notice that by the time 15 years (180 months) pass by, all variance estimates, regardless of

prior, are lower than even two-times the steady state variance. By the 30 year mark (360 months),

the agent is not significantly far away from the steady state regardless of the assumption of the

prior. The figure provides strong evidence that our assumption of steady-state learning is not out of

line and makes sense given the amount of data the agent has available to estimate these parameters.

Assume the agent has access to the CRSP database, then it is fair to state agents have about 40

years (480 months) of daily data and about 75 years (900 months) of monthly data to earn from

before deciding on their consumption and portfolio strategies, thus it is quite believable that a

rational agent would achieve a level of learning such that the steady state assumption is innocuous.

In order to understand how the estimation error is reduced with each new observation, I check

the magnitude in which the estimation error variance is reduced with each new observation. Figure

2 plots the instantaneous reduction in variance for a given point in time. By the time the agent

has observed 15 years (180 months) of data, the reduction in the variance of the estimates of the

unobservable variables are negligible. This implies, the learning effect should be negligible in the

hedging component of the agent’s portfolio for our model. Our results imply parameter uncertainty,

not learning, drives the changes in the portfolio composition in comparison to the portfolio model

under perfect observability of all processes.
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6 Return Predictability and the model implied R2

In this section I discuss the implication of parameter uncertainty for the forecasting of prices.

Campbell (1991) offers a description of how predictive variables seems to increase the forecasting

power of returns.12 For the parameters in Table I, I solve analytically the model implied R2 under

three different specifications: (1) the parameters of the model, (2) the model under the assumption

of perfect correlation, (3) the model when parameter uncertainty is considered. Let R (t, τ) be the

return on the stock from time t to time t+τ . Let Ei
t [R (t, τ)] be the expected return conditional on

the information set implied by model i. Define the model implied R2 as the fraction of the variance

of returns explained by the model. The model implied R2 at time t for forecast horizon τ is given

by

R2 (t, τ) =
V ar

¡
Ei
t [R (t, τ)]

¢
V ar (R (t, τ))

=
V ar

¡
Ei
t [R (t, τ)]

¢
V ar

¡
Ei
t [R (t, τ)]

¢
+ V ar (εi (t, τ))

where εi (t, τ) is the variance not explained under model i. For the model presented in section 3,

the model implied R2 can be obtained analytically:

R2 (t, τ) =

σ2η
2κ3
(1− e−κτ )2

σ2η
2κ3 (1− e−κτ )2 + σ2η

2κ3

£
κτ − 2 (1− e−κτ ) + 1

2 (1− e−2κτ )
¤
+ 2

ρση
κ2 [κτ + e−κτ − 1] + τ

.

Details of the derivation are provided in the appendix.

Figure 3 presents the model implied R2 under three different specifications for various horizons.

table1 is the model implied R2 under the parameters of Table I. cm is the model implied R2 under

the assumption of perfect negative correlation between the predictive variable and stock prices.

pu is the model implied R2 under the estimation of the model provided by the filtering process.

The model implied R2 peak at around a 10-15 year horizon. Notice that for both the complete

markets assumption and the parameter uncertainty model, the implied R2 decay slower than under

the values obtained from the VAR. The model implied R2 under parameter uncertainty peak at

around 0.15, and at 0.32 under the complete markets assumption.

The model implied R2 allows us to gain a sense of the difference in hedging for both models. The

reduction in hedging for investors accounting for parameter uncertainty is linked to their model

implied R2. The lower R2 in the parameter uncertainty case should come as no surprise since

12Mamaysky (2002) also uses model implied R2 to study the forecasting power of return predictability.
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parameter uncertainty allows us to quantify the reduction in forecasting power due to the noise of

the current estimate for the predictive variable.

7 Conclusion

I study the incomplete markets consumption and portfolio choice optimization problem under

partially observable parameters. Under suitable assumptions regarding the number of securities

in the market as well as which parameters are unobservable, I can transform the problem into

one where the market is observationally complete after estimating unobservable parameters and

accounting for parameter uncertainty. Obtaining an observationally complete market, allows us

to solve exactly the investor’s optimization problem and obtain exact consumption and portfolio

rules. I consider a example for which the assumption of parameter uncertainty is sensible: the

mean reverting Sharpe ratio model. For both examples, I show how the separation theorem of

Simon (1956) as extended to continuous time by Detemple (1986), Dothan and Feldman (1986),

and Gennotte (1986) and the Cox-Huang (1989) method allow us to solve the model and find

analytical solutions for both the consumption and portfolio strategy.

I apply the methodology of the paper to the consumption and portfolio choice problem under

mean reverting returns, when the current value for the Sharpe ratio, our proxy for the investment

opportunity set, is not observable. I calibrate the results to the parameters in Wachter (2002) and

compare the investor’s policies under parameter uncertainty to those of an investor with complete

information as modeled by Wachter (2002). I find significant quantitative changes in the demand

for the risky asset when parameter uncertainty is considered. Yet, the qualitative portfolio choice

implications of the model are not different from those of Barberis (2000) and Wachter. I complete

the analysis with a study of the longevity of learning to validate our assumption regarding steady-

state in the learning process and a discussion of the link between hedging demands and the investor’s

model forecasting ability.

The methodology of this paper could be extended to consider stochastic volatility and the role

of derivatives in strategic asset allocation. The model would allow us to find exact consumption

and portfolio policies when volatility follows a central tendency model similar to the one I have used

in this paper to describe interest rate dynamics in Balduzzi, Das, and Foresi (1998). The results
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would complement those of Liu and Pan (2002). The focus of their papers is the disentanglement

of volatility and jump risk in an investor’s portfolio through the use of derivative securities in the

dynamic asset allocation strategy. The proposed model would allow for a similar risk disentangle-

ment (between market and volatility risk) and also provide us with normative exact consumption

rules under the assumption of stochastic volatility. I can also consider the implications of incom-

plete information when interest rates are time-varying and the market includes a long-term bonds.

The results of this model would complement those of Campbell and Viceira (2001) for the optimal

allocation of long-term bonds for long-lived investors.

An exciting research question would be to study the combined effect of imperfect informa-

tion and uncertainty aversion in the hedging demand of investors. Recent work by Knox (2002),

considers the consumption and investment problem with both learning and uncertainty aversion.

He obtains an analytical solution to the consumption and portfolio choice of an investor learning

about the expected return of a risky asset. His work can be extended to find analytical solutions for

the consumption and portfolio problem when markets are incomplete by utilizing the framework

presented in this paper.

Currently, Rodriguez (2002b) applies the model presented to this paper to a consumption and

portfolio choice variable with multiple predictive variables and considers the role for hedging de-

mands for various linear combinations of such variables. In this companion paper, I apply the

techniques presented in Campbell, Chacko, Rodriguez, and Viceira (2002) to obtain accurate con-

tinuous time parameters values for the parameters obtained from the discrete time VAR. The

versatility of the model is enhanced in this setting where the author can use predictive variables

with low correlations with the stock returns and still obtain closed-form solutions for the optimal

consumption and portfolio demand.
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A Alternative Solution for Section 2

A solution for the wealth process presented in Section 2 is obtained by an application of the

Feynman-Kac formula. First, notice than under the investor specific “risk-neutral” measure, the

wealth of the agent at time s is

Ws = EI,Q
s

·Z T

s
e−r(u−s)

³
λte

φ(u−t) cMucMt

´− 1
γ
du

¸
=

³
λte

φ(s−t) cMscMt

´− 1
γ

Z T

s
exp

µ
−
Z u

s
rvdv − φ

γ
(u− s)

¶
EI,Q
s

·³ cMucMs

´− 1
γ

¸
du

Define cMu = exp
¡− R u0 rvdv

¢bξu. Under the risk-neutral measure of the investor,
bξubξs = exp

µ
1

2

Z u

s
kbηvk2 dv − Z u

s
bη0vd bZQ

v

¶
d bZQ

v = d bZv − bηtdt
where bZQ

s is the Brownian motion under this measure as defined by Girsanov’s theorem.

Write the wealth process as follows:

Ws =
³
λte

φ(s−t) cMscMt

´− 1
γ

½Z T

s
exp

µ
−
µ
1− 1

γ

¶µZ u

s
rvdv

¶
− φ

γ
(u− s)

¶
EI,Q
s

·³bξubξs ´−
1
γ

¸
du

¾
.

(51)

Solving (51) requires finding a solution for the conditional expectation. The solution can be found

by applying Girsanov’s theorem to find an alternate equivalent martingale measure:

EI,Q
s

·³bξubξs ´−
1
γ

¸
= EI,Q

s

·
exp

µ
− 1
2γ

Z u

s
kbηvk2 dv + 1

γ

Z u

s
bη0vd bZQ

v

¶¸
= EI,Q

s

·
exp

µ
1− γ

2γ2

Z u

s
kbηvk2 dv − 1

2γ2

Z u

s
kbηvk2 dv + 1

γ

Z u

s
bη0vd bZQ

v

¶¸
= EI,Qγ

s

·
exp

µ
1− γ

2γ2

Z u

s
kbηvk2 dv¶¸ (52)

Define the equivalent measure Qγ such that bZQγ

S , the brownian motion defined under the new

measure is given by

d bZQγ

v = d bZQ
v −

1

γ
bη0v.

The equality between the second and third equation follow from Bayes’ rule.
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Let D
³ bXs, s

´
= EI,Qγ

s

h
exp

³
1−γ
2γ2

R u
s kbηvk2 dv´i. The Feynman-Kac formula states equation ()

is solved by the partial differential equation

−1− γ

2γ2
η0sηs =

∂D

∂s
+

∂D

∂ bXs

³
aQ

γ

0 + aQ
γ

X
bXs

´
+
1

2
tr

"bσXsbσ0Xs

∂2D

∂ bX2
s

#

where aQ
γ

.s are the coefficients of the drift for the state variables under the measure Qγ and the

terminal condition is given by

D
³ bXu, u

´
= 0

The derivation above shown the expectation is indeed a function of the state variables and time.

The wealth process can be stated now as

Ws =
³
λte

φ(s−t) cMscMt

´− 1
γ

Z T

s

·
exp

µ
−
Z u

s
rvdv − φ

γ
(u− s)

¶
D
³ bXs, s

´¸
du (53)

From (27), the demand for the risky asset is

α0t =
cMt

Wt
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σStσ

0
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¢−1
σStbηt + 1

Wt
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Substituting (53) in (27) gives
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·
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The second equality follows from the definition of Gt.
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B Derivation of Optimal Consumption and Portfolio Policy for

Unobservable Time-Varying Expected Returns

The solution to the optimal consumption and portfolio problem under time-varying returns follows

closely the derivations by Munk (2002) andWachter (2002). Following Lipster and Shirvayev (2001),

the optimal filter results in the following dynamics for the stock price and the state variable:

dSt
St

= (r + σSbηt) dt+ σSd bZS ,

dbηt = κ (θ − bηt) dt+ (ρση + vt) d bZS,

where vt, the variance of the estimation error, satisfies the Ricatti Equation

dvt =
h
−2κvt + σ2η − (ρση + vt)

2
i
dt

and

d bZS = (ηt − bηt) dt+ dZS

Under the filtered dynamics, the market is complete. I can apply martingale methods to solve for

the optimal consumption and portfolio choice.

The investors’ value function at time t is defined as

J (Wt,bηt, T − t) = sup
{αS ,CS}

EI
t

"Z T

t
e−φ(s−t)

C1−γs

1− γ
ds

#
,

subject to the dynamic budget constraint

dWt = (rWt − Ct) dt+ αtWt

h
σSbηtdt+ σSd bZS

i
.

Define cMt as the state price density at time t, such that

dcMtcMt

= −rdt− bηtd bZS ,

The consumption strategy is financiable if

EI
t

·Z T

t

cMscMt
Csds

¸
≤Wt.

The first order condition for consumption is given by

e−φ(s−t)C−γs = λt
cMscMt

,

Cs =
³
λte

φ(s−t) cMscMt

´− 1
γ
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The wealth at time t under the optimal consumption policy can be expressed as

Wt = EI
t
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I can apply Bayes’ rule to obtain
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where I,Q represents an equivalent martingale measure to the investor’s original information set.

For I,Q, the dynamics of the stock price and the state variable are given by

dSt
St

= rdt+ σSd bZQ
S ,

dbηt = (κ (θ − bηt)− (ρση + vt)bηt) dt+ (ρση + vt) d bZQ
S ,

where by Girsanov’s Theorem,

d bZQ
S = bηtdt+ d bZS .

is a Brownian motion under the measure I,Q.

The ratio
bξsbξt is given by.
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d bZQγ

S = d bZQ
S −
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γ
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is a Brownian Motion under the measure I,Qγ . The equality between the second and third equation

follow from Bayes’ rule.

The state variable process is now given by

dbηt = (κ (θ − bηt)− (ρση + vt)bηt) dt+ (ρση + vt)

µ
d bZQγ
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Assume vt = vss such that dvss = 0 and b = κ+
³
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´
(ρση + vss). Following Munk (2002) we

apply Feynman-Kac formula and define the function D (bηt, s− t) as
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exp
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Equation (54) solves the differential equation
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under the terminal condition D (bηt, 0) = 1. The differential equation (55) admits a exponential

quadratic solution

D (bηt, s− t) = exp

·
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½
AD (s− t) +B (s− t)bηt + 12C (s− t)bη2t¾¸
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where
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and the terminal condtion for D can be restated in terms of the terminal condtions for AD,B, and

C :

AD (0) = B (0) = C (0) = 0.

Equations (56), (57), and (58) are solved in similar fashion to Kim and Omberg (1996), Wachter

(2002), and Chacko and Viceira (2001). The solutions to (56), (57), and (58) are
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The wealth process is now
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Then H (bηt, s− t) also has an exponential quadratic solution of the form

H (bηt, s− t) = exp

·
1
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A (s− t) +B (s− t)bηt + 12C (s− t)bη2t¾¸ ,

where

A (τ) = −φτ + r (1− γ) τ +AD (τ) .

I can now apply use the methods in Cox-Huang (1989) to obtain the optimal portfolio policy.

Using the results above, we can write the value function as:

J (Wt,bηt, T − t) = EI
t

Z T

t
e−φ(s−t)

³
λte

φ(s−t) cMscMt

´−1−γ
γ

1− γ
ds


=

λ
− 1−γ

γ

t

1− γ

Z T

t
e−

φ
γ
(s−t)EI

t

·³cMscMt

´1− 1
γ

¸
ds

=
W 1−γ

t

1− γ

·Z T

t
e−

φ
γ
(s−t)EI

t

·³ cMscMt

´1− 1
γ

¸
ds

¸γ
=

·Z T

t
H (bηt, s− t) ds

¸γ
W 1−γ

t

1− γ

= Gγ
t,T

W 1−γ
t

1− γ

The optimal portfolio policy for the investor as a function of derivatives of the value function is

αt = − JW
WJWW

bηt
σS
− JWη

WJWW

εη
σS

,

=
bηt
γσS

+
εη
γσS

1

Gt,T

∂Gt,T

∂bηt , (59)

where the derivative of Gt,T with respect to the estimate of the Sharpe ratio can be expressed as

∂Gt,T

∂η
=

∂
hR T

t H (bηt, s− t) ds
i

∂η
,

=

Z T

t

∂H (bηt, s− t)

∂bηt ds,

=
1

γ

Z T

t
(B (s− t) + C (s− t)bηt)H (bηt, s− t) ds. (60)

Applying (60) to (59) results in the following expression for the allocation to the risky asset

αt =
bηt
γσS

+
εη
γσS

R T
t (B (s− t) + C (s− t)bηt)H (bηt, s− t) dsR T

t H (bηt, s− t) ds
.
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Which is indeed the result for (42) when the myopic demand is given by (43) and the hedging

demand by (44).

41



C Derivation of Model Implied R2

Assume the model presented in Section 3. Define R (t, τ) as follows

R (t, τ) = log
St+τ
St

=

Z τ

0

µ
r − σ2S

2
+ σSηt+v

¶
dv +

Z τ

0
σSdZS,t+v

Then

Et [R (t, τ)] =
¡
r − σ2S/2

¢
τ + σS

µ
θτ +

ηt − θ

κ

¡
1− e−κτ

¢¶
,

V ar (Et [R (t, τ)]) =
σ2Sσ

2
η

2κ3
¡
1− e−κτ

¢2
.

Let ε (t, τ) be the unexplained component of returns such that ε (t, τ) = R (t, τ) − Et [R (t, τ)].

Then,

ε (t, τ) = σS

µZ τ

0
ηt+vdv − θτ − ηt − θ

κ

¡
1− e−κτ

¢¶
+

Z τ

0
σSdZS,t+v

= σS

µZ τ

0

·
ρ

Z v

0
σηe

−κ(v−s)dZS,t+s +
¡
1− ρ2

¢ 1
2

Z v

0
σηe

−κ(v−s)dZη,t+s

¸
dv

¶
+

Z τ

0
σSdZS,t+v

The variance of the unexplained component is given by

V ar (ε (t, τ)) = σ2S

"
σ2η
κ3

·
κτ − 2 ¡1− e−κτ

¢
+
1

2

¡
1− e−2κτ

¢¸
+ 2

ρση
κ2

£
κτ + e−κτ − 1¤+ τ

#

Define R2 (t, τ) as the ratio of variance of returns explained by the model relative to the total

variance of returns, then

R2 (τ) =
V ar (Et [R (t, τ)])

V ar (R (t, τ))
=

V ar (Et [R (t, τ)])

V ar (Et [R (t, τ)]) + V ar (ε (t, τ))

=

σ2η
2κ3 (1− e−κτ )2

σ2η
2κ3
(1− e−κτ )2 + σ2η

2κ3

£
κτ − 2 (1− e−κτ ) + 1

2 (1− e−2κτ )
¤
+ 2

ρση
κ2
[κτ + e−κτ − 1] + τ
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TABLE I

Continuous Time Parameter Values

Taken from Barberis (2000), Campbell and Viceira (1999), and Wachter (2002)

Model:

dBt
Bt
= rdt

dSt
St
= (r + σsbηt) dt+ σsd bZS ,

dbηt = κ (θ − bηt) dt+ εηd bZS ,

εη = vss + ρση,

vss : 0 = −2κvss + σ2η − [vss + ρση]
2 .

Parameter values at monthly frequency:

r = 0.0014,

σS = 0.0436,

κ = 0.0226,

θ = 0.0788,

ση = 0.0189,

ρ = −0.93,
vss = 0.0035,
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Figure 1: Path of the variance vt of the estimation error of the unobservable Sharpe ratio for various

assumptions on the prior v0.
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