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Abstract

The focus of our paper is on the implications of model uncertainty for the cross-

sectional properties of returns. We perform our analysis in the context of a tractable

single-period mean-variance framework. We show that there is an uncertainty premium

in equilibrium expected returns on financial assets and study how the premium varies

across the assets. In particular, the cross-sectional distribution of expected returns can

be formally described by a two-factor model, where expected returns are derived as

compensation for the asset’s contribution to the equilibrium risk and uncertainty of

the market portfolio. In light of the large empirical literature on the cross-sectional

characteristics of asset returns, understanding the implications of model uncertainty

even in such a simple setting would be of significant value. By characterizing the cross-

section of returns we are also able to address some of the observational equivalence

issues raised in the literature. That is, whether model uncertainty in financial markets

can be distinguished from risk, and whether uncertainty aversion at an individual level

can be distinguished from risk aversion.
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1 Introduction

The purpose of this paper is to study the implications of model uncertainty for the cross-

sectional properties of asset prices in a simplest possible equilibrium setting.

The focus on model uncertainty is motivated by the difficulty of reconciling existing asset

pricing theories with the empirical data. Limited success of the standard theories could be in

part due to the commonly made assumption that economic agents possess perfect knowledge

of the data generating process. For instance, the classical theories of Sharpe (1964), Lucas

(1978), Breeden (1979) and Cox, Ingersoll and Ross (1985), assume that, while the payoffs

of financial assets are random, agents know the underlying probability law exactly. In reality

this is often not the case. The natural question is how the properties of financial assets are

affected by the fact that investors are not certain of the correctness of the model they use

to describe the probability laws in the economy.

The importance of model uncertainty has long been recognized in finance. While the

literature appears under different names, such as parameter uncertainty, Knightian uncer-

tainty, the defining characteristic of that literature is the recognition of the fact that the

agents of the economy do not have a perfect knowledge of the probability law that governs

the realization of the states of the world. Various issues have been studied. Dow and Wer-

lang (1992) use the uncertainty averse preference model developed by Schmeidler (1989) to

study a single period portfolio choice problem. Maenhout (1999) examines a similar problem

in a continuous-time economy, but from the point of view of robust portfolio rules. Kandel

and Stambaugh (1996), Brennan (1998), Barberis (2000), and Xia (2001) show that parame-

ter uncertainty can affect significantly investors’ portfolio choice. Frost and Savarino (1986),

Gennotte (1986), Balduzzi and Liu (1999), Pastor (2000) and Uppal and Wang (2001) exam-

ine the implication of model uncertainty for portfolio choices when there are multiple risky

assets. Detemple (1986), Epstein and Wang (1994), Chen and Epstein (2001), Epstein and

Miao (2001), and Brennan and Xia (2001) study the implications for equilibrium asset prices

in the representative agent and heterogenous agent economies respectively. Routledge and

Zin (2002) examine the connection between model uncertainty and liquidity. There is also

a significant literature, for example Lewellen and Shanken (2001), on the effect of learning

about an unknown parameter on the equilibrium asset prices.
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The focus of our paper is on the cross-sectional properties of returns. We perform our

analysis in the context of a tractable single-period mean-variance framework. We show that

there is an uncertainty premium in equilibrium expected returns on financial assets and

study how the premium varies across the assets. In light of the large empirical literature on

the cross-sectional characteristics of asset returns, understanding the implications of model

uncertainty and uncertainty aversion even in such a simple setting would be of significant

value. While prior research on model uncertainty has been concerned with its implications

for the time-series of asset prices, by characterizing the cross-section of returns we are able

to address some of the observational equivalence issues raised in the literature. That is,

whether model uncertainty in financial markets can be distinguished from risk, and whether

uncertainty aversion at an individual level can be distinguished from risk aversion (Anderson,

Hansen and Sargent (1999)).

In the rest of this introduction, we will describe briefly our approach to formalizing

model uncertainty and its relation to the the literature. The most common way of modelling

imperfect knowledge of the model and parameters is in the Bayesian framework (Kandel

and Stambaugh (1996), Lewellen and Shanken (2001), Barberis (2000) and Pástor (2000)).

The key feature of this approach is that if a parameter of the model is unknown, a prior

distribution of the parameter is introduced. The second approach, adopted by Dow and

Werlang (1992), Epstein and Wang (1994, 1995), Chen and Epstein (2001), Epstein and

Miao (2001), and the third approach, adopted by Maenhout (1999), Uppal and Wang (2001),

follow the view of Knight (1921) that model uncertainty, or more precisely, the decision

makers’ view of model uncertainty, cannot be represented by a probability prior. Such view

is supported by evidence exhibited in the Ellsberg experiment (Ellsberg (1963)). In the

Ellsberg experiment, the decision maker is presented with two urns each containing 100

balls. In the first urn there are 50 red balls and 50 white balls. In the second, the proportion

of red balls is not known. The decision maker is asked to rank two sets of bets. In the first

set, the first bet is: win $100 if a randomly drawn ball from the first urn is red, otherwise

zero. The second bet is similar, but wins if the ball drawn is white. The second set of

bets is the same as the first set except that the ball is drawn from the second urn. In the

experiment, it is found that the decision maker is typically indifferent between the two bets

in any of the two sets, but prefers any bet from the first set to any bet from the second
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set. Such behavior is inconsistent with any expect utility preference, and more generally any

probabilistically sophisticated preference (Machina and Schmeidler (1992)).

The second and third approaches differ in how uncertainty and uncertainty aversion are

modelled. Maenhout (1999), Uppal and Wang (2001), use the preference first introduced

by Anderson, Hansen and Sargent (1999) in their study of the implications of preference for

robustness for macroeconomic and general asset pricing issues.1 This class of preferences

has been extended in Uppal and Wang (2001), and axiomatized in a static setting in Wang

(2001). For this class of preferences, uncertainty is described by a set of priors and the

investor’s aversion to it is introduced through a penalty function. Dow and Werlang (1992),

Epstein and Wang (1994, 1995), Chen and Epstein (2001) and Epstein and Miao (2001) use

the multi-prior expected utility developed by Gilboa and Schmeidler (1989).2 Here both

uncertainty and uncertainty aversion are introduced through a set of priors. This paper is

based on the multi-prior expected utility preferences with a careful design of the set of priors

to distinguish between the uncertainty and uncertainty aversion aspects of the set.

The rest of the paper is organized as follows. Section 2 describes the model. Section 4

presents the main result of this paper, the asset pricing implication of model uncertainty.

Section 5 discusses several issues related to model uncertainty. Finally, Section 6 concludes.

2 The Model

2.1 The Setting

We assume a one-period representative agent economy. Consumption takes place only at

the end of the period. The agent is endowed with an initial wealth W0. Without loss of

generality, we assume W0 = 1.

There are N risky assets and one risk-free asset in the economy, which is available in zero

net supply. As indicated in the introduction, the investors do not have perfect knowledge of

1See Hansen and Sargent (2001) for more on this type of preferences.
2Dow and Werlang is based more directly on the Choquet expected utility developed by Schmeidler

(1989). However, for the case they studied, Choquet expected utility coincides with multi-prior expected
utility.
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the distribution of the returns of the N risky assets. More specifically, they know that the

returns R = (R1, . . . , RN)� follow a joint normal distribution with density function

f(R) = (2π)−n/2|Ωr|−1/2 exp

{
−1

2
(R − µ)�Ωr

−1(R − µ)

}

where

µ = E[R], Ωr = E[(R − µ)(R − µ)�].

The risk of returns is summarized by the non-degenerate variance-covariance matrix Ωr. We

assume that investors have precise knowledge of Ωr. However, they do not know exactly

the mean return vector µ. This is motivated by the fact that it is much easier to obtain

accurate estimates of the variance and covariance of returns than their expected values, e.g.,

Merton (1992). The imperfect knowledge of the asset return distribution gives rise to model

uncertainty.

2.2 The Preferences

Each agent in the economy has a state-independent utility function u(W ).

However, due to lack of perfect knowledge of the probability law of asset returns, the

agent’s preference is not represented by the standard expected utility, but instead by a

multi-prior expected utility

U(W,P(P, φ))) = min
Q∈P(P,φ)

{
EQ[u(W )]

}
, (1)

where EQ denotes the expectation under the probability measure Q, P(P, φ) is a set of

probability measures that depends on the probability measure P , called the reference prior,

and the parameter φ ≥ 0, which is called the uncertainty aversion parameter. The set

P(P, φ) captures both the degree of model uncertainty and the agent’s degree of uncertainty

aversion. In particular, we assume that the larger the uncertainty aversion parameter φ,

the larger the set P(P, φ). The multi-prior expected utility preferences exhibits uncertainty

aversion. The general nature and the axiomatic foundation of these preferences has been

well studied in the literature (Gilboa and Schmeidler (1989)). What is specific to this paper
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is the structure of P(P, φ), in particular, the use of φ as the uncertainty aversion parameter.

Since the exact structure of P(P, φ) is important to our analysis and to the understanding

of our results, we now turn to the description of the exact dependence of P(P, φ) on P and

φ.

A Single Source of Information

We begin with the case of a single source of information about the distribution of stock

returns,

P(P, φ) = {Q : E[ξ ln ξ] ≤ φ2η},

where ξ is the density of Q with respect to P and η is a parameter to be described shortly.

The intuition behind this formulation of P(P, φ) can be explained as follows. Since

the investor lacks a perfect knowledge of the probability law of the returns, an econome-

trician is asked to estimate a model of the asset returns for the investor. After a slew of

econometric analysis, typically including specification analysis and parameter estimation, the

econometrician comes up with a model described by the probability measure P . However,

the econometrician is not completely confident that this is the true model, due to not having

enough data in the specification analysis and the parameter estimation, or due to simplifying

assumptions made for tractability. On the other hand, the econometric analysis does provide

more information than just the probability measure P . The true model can be narrowed

down to a set P of probability measures. At the end of the analysis, the investor is presented

with a probability measure P , called the reference prior, and a set P that summarize the

precision of the econometric analysis.

Since both the econometrician and the investor are not completely sure of the reference

prior P , each element in P is a possible alternative to the reference prior P . Let Q be an

element in P and let its density be denoted by ξ, so that

dQ = ξdP. (2)

Knowing that the reference measure P is subject to misspecification and that the possible

alternative is Q, the problem is how to evaluate the alternative. One way is to use the relative

entropy index, E[ξ ln ξ]. One interpretation of the index is that it is an approximation to
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the empirical log-likelihood ratio.3 To elaborate, suppose that the data set available to the

investor has T observations. Then the empirical log-likelihood ratio of the two models is

1

T

T∑
t=1

ln ξ(Xt).

Now suppose that Xt, t = 1, . . . , T , takes finitely many values, x1, . . . , xk in the data series.

Then

1

T

T∑
t=1

ln ξ(Xt) =
1

T

k∑
i=1

∑
Xt=xi

ln ξ(Xt) =

k∑
i=1

Ti

T
ln ξ(xi),

where Ti is the number of t such that Xt = xi. By the law of large numbers, under the alter-

native model Q, Ti/T converges to Q(x) = ξ(x)P (x) and hence 1
T

∑T
t=1 ln ξ(Xt) converges

to E[ξ ln ξ]. Thus, if Q is the true probability law, E[ξ ln ξ] is a good approximation to the

empirical log-likelihood when T is large. According to the traditional likelihood ratio theory,

if the above sum is large, then the two alternatives, Q and P , can be clearly distinguished.4

Therefore the set of possible alternative models according to the econometrician is given by

P(P ) = {Q : E[ξ ln ξ] ≤ η}

where η is the parameter the econometrician uses to describe how much uncertainty there

is about the reference probability P . For example, η could be chosen to define a rejection

region for a test of the reference model P with a 95% confidence level.

The investor’s uncertainty aversion is introduced through the parameter φ, so that the

set provided by the econometrician is scaled up or down by φ:

P(P, φ) = {Q : E[ξ ln ξ] ≤ φ2η}.

Larger values of φ allow for a larger set of alternative models. Thus, more uncertainty averse

agents are willing to entertain alternative models that are relatively far from the reference

3See Anderson, Hansen and Sargent (1999) and Hansen and Sargent (2000) for other interpretations of
the index.

4It is worth emphasizing that large 1
T

∑T
t=1 ξ(Xt) ln ξ(Xt) should not be interpreted as evidence for

rejecting the reference model P , as in the usual likelihood test: as explained above, the very fact that P is
the reference prior implies that the econometrician has already gone through the preliminary analysis and
picked P . The issue at this stage is only to find an index that summarize the information available.
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model P , as measured by their relative entropy. An investor more averse to uncertainty would

require a higher level of confidence, say 99%, than the one used by the econometrician, and

vice versa.

For analytical tractability, we assume that stock returns are jointly normally distributed

under the alternative models. Furthermore, we assume that the variance-covariance matrix

of the returns is the same under all measures in P, reflecting the fact that the investor knows

the variance-covariance matrix Ωr precisely. Let Q be a measure in P with the density given

by

(2π)−n/2|Ωr|−1/2 exp

{
−1

2
(R − µ̂)�Ωr

−1(R − µ̂)

}
,

which can be written as

(2π)−n/2|Ωr|−1/2 exp

{
−1

2
(R − µ)�Ωr

−1(R − µ)

}

× exp

{
−1

2
(µ − µ̂)�Ωr

−1(µ − µ̂) − (µ − µ̂)�Ωr
−1(R − µ)

}
.

Thus, the likelihood ratio of Q over P is given by

ξ(R) = exp

{
1

2
(µ − µ̂)�Ωr

−1(µ − µ̂) − (µ − µ̂)�Ωr
−1(R − µ̂)

}
. (3)

Given this particular structure of the set P(P, φ), the representative investor’s utility function

can be written as

min
v∈V(φ)

E [ξu(W )] , (4)

where ξ is given by (3), v = µ − µ̂ and the set V corresponds to P:

V(φ) = {v : E[ξ ln ξ] = 1/2v�Ωr
−1v ≤ φ2η}.

Multiple Sources of Information

In reality, the investor’s knowledge about the distribution of asset returns often comes from

different sources and it is often about a subset of the assets, as opposed to the joint distri-

bution of all assets as in the previous subsection. To accommodate this, let Jk, k = 1, . . . ,
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K, be subsets of {1, . . . , N}, each set Jk having Nk elements. Sets Jk are not necessarily

disjoint. But we will assume that ∪kJk = {1, . . . , N}, so that the investor has at least some

information about each asset. Each k is an index of a source of information about assets

in the set Jk. Let Jk = {j1, . . . , jNk
}, so that the information is about the distribution

of RJk
= (RJ1, . . . , RJNk

). We assume that the reference probability distributions implied

by the various sources of information for the corresponding subsets of assets coincide with

the marginal distributions of the reference model P . Consider the density function of the

distribution of RJk
,

(2π)−1|ΩrJk
|−1/2 exp

{
−1

2
(RJk

− µ̂Jk
)�Ωr

−1
Jk

(RJk
− µ̂Jk

)

}
,

where µ̂Jk
= (µ̂J1, . . . , µ̂JNk

), and ΩrJk
is the variance-covariance matrix of RJk

, which is a

sub-matrix of Ωr. This density function can be written as

exp

{
−1

2
(µJk

− µ̂Jk
)�Ωr

−1
Jk

(µJk
− µ̂Jk

) − (µJk
− µ̂Jk

)�Ωr
−1
Jk

(RJk
− µJk

)

}

×(2π)−1|ΩrJk
|−1/2 exp

{
−1

2
(RJk

− µJk
)�Ωr

−1
Jk

(RJk
− µJk

)

}
.

Thus, the likelihood ratio of the marginal distribution QJk
over PJk

is

ξJk
= exp

{
1

2
(µJk

− µ̂Jk
)�Ωr

−1
Jk

(µJk
− µ̂Jk

) − (µJk
− µ̂Jk

)�Ωr
−1
Jk

(RJk
− µ̂Jk

)

}
.

To relate to the probability measure Q, suppose its density function is

(2π)−n/2|Ωr|−1/2 exp

{
−1

2
(R − µ̂)�Ωr

−1(R − µ̂)

}
.

Then

(2π)−1|ΩrJk
|−1/2 exp

{
−1

2
(RJk

− µ̂Jk
)�Ωr

−1
Jk

(RJk
− µ̂Jk

)

}

=

∫
(2π)−n/2|Ωr|−1/2 exp

{
−1

2
(R − µ̂)�Ωr

−1(R − µ̂)

}
dRJk−,
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where Jk− = {1, . . . , N} − Jk. Thus, ξJk
is the likelihood ratio of the marginal distribution

of Q over that of P .

For notational convenience, let Ω̂−1
rJk

denote the N ×N -matrix whose element in the jmth

row and jnth column, for jm and jn in Jk, is equal to the element in the mth row and nth

column of the matrix Ωr
−1
Jk

; otherwise it is zero. Then

(µJk
− µ̂Jk

)�Ωr
−1
Jk

(µJk
− µ̂Jk

) = (µ − µ̂)�Ω̂−1
rJk

(µ − µ̂) = v�Ω̂−1
rJk

v

In the case where there are multiple sources of information, the representative investor’s

utility function is given by

min
v∈V(φ)

E [ξu(W )] , (5)

where ξ is given by (3), and similar to the single source information case,

V(φ) = {v : E[ξJk
ln ξJk

] =
1

2
v�Ω̂−1

rJk
v ≤ φ2ηk, k = 1, . . . , K}. (6)

2.3 A Measure of Uncertainty

To understand how the investor trades off uncertainty and expected return, it is useful to

introduce a metric for uncertainty of various random variables. Let x be a random variable

whose distribution is normal and whose variance is the same under P and all measures

Q ∈ P. An example of such a random variable would be the return on a portfolio of N risky

assets. Define

∆u(x) = sup
ξ:Q∈P

E[ξx]. (7)

to be the uncertainty of a random variable x.

Applying the definition of uncertainty to the case of portfolio returns, x = θR, in the

general case where the investor has multiple sources of information, for the portfolio θ,

∆u(θ) = sup
v

θ�v (8)
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subject to

E[ξJk
ln ξJk

] =
1

2
v�Ω̂−1

rJk
v ≤ ηk, k = 1, . . . , K. (9)

The value function ∆u(θ) is independent of φ. Thus, our definition of uncertainty reflects

the properties of the set P of candidate probability measures, not the preferences of the

decision maker. Moreover, only the “shape” of the set P is important in determining the

relative uncertainty of various portfolios. Scaling all constraints ηk by the same constant,

thus preserving the shape of the set P, has no effect on the measure of uncertainty.

We will denote a solution of (8) by vu(θ). Note that the solution may not be unique in

general, with multiple values of v corresponding to the same value of the objective function.

The following lemma shows that when all portfolio weights are non-zero, which is the case

for the market portfolio in equilibrium, the solution of (8) is indeed unique.5

Lemma 1 For θ such that all of its components are non-zero, the solution of (8) is unique.

There exists a set of nonnegative coefficients φk(θ) depending on θ such that

vu(θ) = Ωu(θ)θ, (10)

where

Ωu(θ) =

(
K∑

k=1

φk(θ)Ω̂
−1
rJk

)−1

.

A coefficient φk(θ) is equal to zero if the kth constraint is not binding, but at least one of

the coefficients is strictly positive.

2.4 Diversification of Uncertainty

In this section we summarize some of the properties of our measure of uncertainty, drawing

a parallel with the variance as a measure of risk (return variance is the appropriate measure

5One of the typical features of the multi-prior expected utility model is that the solution of the utility
maximization problem is often not unique. The analytical feature of our formulation of the set P(P, φ) is
that, due to Lemma 1, the minimizer for the equilibrium situation we are considering is always unique. The
crucial property of the set P(P, φ) that gives rise to this uniqueness is the strict convexity of the relative
entropy function, as can be seen in the proof of lemma 5.
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of risk in our model, since asset returns are jointly normally distributed).

The definition of portfolio uncertainty ∆u(θ) given in (8) implies that it is a convex and

symmetric function of the portfolio composition, ∆u(−θ) = ∆u(θ), just as the variance of

portfolio returns.

As with risk, one can draw a distinction between the total uncertainty of an asset (or a

portfolio) and its systematic uncertainty. The total uncertainty of asset i is defined as

∆u(ei) = max
v∈V(φ)

e�i v

where ei = (0 . . . 0 1︸︷︷︸
ith position

0 . . . 0)�. The systematic uncertainty of the asset i with re-

spect to a portfolio θ is defined as its marginal contribution to the total portfolio uncertainty,

in analogy with the definition of systematic risk:

∆sys
u (ei) = e�i

∂∆u(θ)

∂θ
.

More generally, systematic uncertainty of a portfolio θ̂ is given by

∆sys
u (θ̂) = θ̂�

∂∆u(θ)

∂θ
= θ̂�∆sys

u (ei).

The following lemma shows that ∆
sys
u (ei) is well defined, as long as all components of

the portfolio θ are non-zero and characterizes the sensitivity of the portfolio uncertainty to

its composition.

Lemma 2 Assuming that all components of the portfolio weights vector θ are non-zero, the

sensitivity of the uncertainty of a portfolio to a change in its composition is given by

∂ ln ∆u(θ)

∂θ
=

1

∆u(θ)
vu(θ) =

Ωu(θ)θ

θ�Ωu(θ)θ
. (11)

Thus, ∆
sys
u (ei) = e�i vu(θ). This implies that systematic uncertainty of the market portfolio

is equal to its total uncertainty. Also, since vu(θ) ∈ V(φ), it is immediate that the total
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uncertainty of an asset exceeds its systematic uncertainty, i.e.,

∆u(ei) = max
v∈V(φ)

e�i v ≥ e�i vu(θ).

In the above, we have considered the sensitivity of portfolio uncertainty to a change in

the composition of the portfolio when the portfolio weights are non-zero. This corresponds

to the case when the portfolio already has a loading of all the assets. The other interesting

case is when an asset is not in the portfolio to begin with, but is to be added to the portfolio.

As the following lemma shows, this case is not as simple as the other case and the reason is

that ∆u(θ) is in general no longer differentiable.

Lemma 3 Let θ be a portfolio with θj = 0. Let K = {k : j ∈ Jk}. If there exists a solution

v̄ of (8) such that for all k ∈ K,

1

2
v̄�Ω̂−1

rJk
v̄ =

1

2
v̄�

Jk
Ω−1

rJk
v̄Jk

< ηk, (12)

then ∆u(θ) is not differentiable in θj at θj = 0. Otherwise ∆u(θ) is differentiable in θj at

θj = 0 and ∂∆u(θ)/∂θj = v̄j, where v̄ is any solution of (8).

The intuition of this lemma is best seen in the following example. There are two assets

and two sources of information, one for each asset,

1

2
v2

j σ
2
j ≤ ηj , j = 1, 2.

Let θ = (θ1, θ2) be a portfolio where θ1 > 0 and θ2 = 0. In this case,

∆u(θ) =
√

2η1σ1θ1.

and the solutions of (8) are of the form, v∗ = (
√

2η1σ1, v2) where v2 is arbitrary as long

as it satisfies the constraint above. In other words, when θ2 = 0, the second source of

information about the second asset is irrelevant for the uncertainty of the portfolio. However,

the moment when θ2 becomes positive, the second source of information starts to contribute
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to the uncertainty of the portfolio and the rate at which it adds to the uncertainty of the

portfolio is given by
√

2η2σ2. This rate is −√
2η2σ2 when θ2 becomes negative so that the

uncertainty of the portfolio increases by
√

2η2σ2. As a result, ∂∆u(θ)/∂θ0 at θ2 = 0 does not

exists.

In general, when the information about a particular asset has not be fully reflected, which

is what (12) says, the rates at which an asset contributes to the uncertainty of the portfolio

when the asset is added in a long or short position differ, resulting non-differentiability.

Interestingly, this potential non-differentiability has equilibrium implication for the bid

and ask spread of an asset price. See Routledge and Zin (2002) and also the discussion in

Section 4.

3 Portfolio Choice

Using the utility function introduced above, the investor’s utility maximization problem is

sup
θ

inf
v∈V(φ)

E [ξu(W )] , (13)

subject to the wealth constraint

W = W0[θ
�(R − r1) + 1 + r].

Without loss of generality we set W0 = 1. The following lemma shows that the optimal

choice of v is given by the solution vu(θ) of (8).

Lemma 4 Problem (13) is equivalent to

max
θ

min
|y|≤φ∆u(θ)

{
E
[
ξ(θ,y)(Rθ)u(W )

]}
, (14)

where

ξ(θ,y)(Rθ) = exp

{
− y2

2θ�Ωrθ
− y(Rθ − θ�µ + y)

θ�Ωrθ

}
.
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is the density of the return on the portfolio θ, Rθ = θ�R. Furthermore, if (θ, v) is the solution

of (13), then

v = φ vu(θ). (15)

Moreover, the optimal portfolio policy θ satisfies

E [U ′(W − φ∆u(θ)) (Rθ − r1 − φvu(θ))] = 0.

The following figure illustrates the trade-off between expected return and uncertainty

implicit in the lemma above.

4 The Equilibrium

The definition of equilibrium for our economy is that of the standard rational expectations

equilibrium slightly extended to account for the fact that the objective probability law is not

known. Specifically, the econometricians provide an estimate of the probability law of the

(exogenous) dividend vector and a set of possible alternatives (at certain confidence level).

Through the equation

Rj =
Dj

pj
− 1, j = 1, . . . , N,

this translates, for a fixed price vector p = (p1, . . . , pN), to an estimated law for the returns

and a set of possible alternatives. Taking these as given,6 the investors determine their asset

demands. The equilibrium arises if the price vector p = (p1, . . . , pN) is such that the markets

for all assets clear.

4.1 Risk Premium and Uncertainty Premium

Define

ζ =
U ′(W − φ∆u(θ))

E[U ′(W − φ∆u(θ))]

6Earlier, for expositional convenience, we expressed everything in terms of returns.
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Then, according to Lemma 4,

E[ζR] = r1 + φvu(θ), (16)

and hence

E[ζRm] = r + φ∆u(θ), (17)

where the subscript m denotes the market portfolio. By applying Stein’s Lemma to (16) and

(17), we find that the expected return premia on the individual stocks and on the market

are given by

µ − r =
E[U ′′(W − φ∆u(θ))]

E[U ′(W − φ∆u(θ))]
cov(Rm, R) + φ vu(θ) (18)

µm − r =
E[U ′′(W − φ∆u(θ))]

E[U ′(W − φ∆u(θ))]
σ2
r(θ)︸ ︷︷ ︸
risk

+ φ ∆u(θ)︸ ︷︷ ︸
uncertainty

(19)

The first term in (19) may be viewed as the market risk premium, being proportional

to the variance of the market portfolio. The proportionality coefficient depends on the

preferences of the representative agent. For a special case of the CARA utility function,

U(W ) = − exp(−γW ), it equals the absolute risk aversion coefficient of the agent, γ. In

general, however, this term is affected by the agent’s uncertainty aversion as well, since it

depends on φ∆u(θ). With this reservation in mind, we will denote the entire first term by λr.

The second term, φ∆u(θ), has a natural interpretation of the market uncertainty premium,

given by the product of the uncertainty aversion parameter and the degree of uncertainty of

the market portfolio. We will denote it by λu.

Equations (16,17) imply a relation between expected excess returns on individual assets,

which we state as the following theorem.

Theorem 1 The equilibrium vector of expected excess returns is given by

µ − r1 = λrβr + λuβu, (20)

where λr and λu are the market risk and uncertainty premia and βr and βu are the risk and

15



uncertainty betas with respect to the market:

βr =
∂ ln σ2

r(θ)

∂θ
=

1

σ2
r(θ)

Ωrθ,

βu =
∂ ln ∆u(θ)

∂θ
=

1

∆u(θ)
Ωu(θ)θ.

βr defines the vector of market risk betas of stocks, i.e., their betas with respect to

the market portfolio. As stated in the theorem, an equivalent definition of the market risk

beta is as sensitivity of the total risk of the market portfolio to a change in its composition,

i.e., βr = ∂ ln σ2
r(θ)/∂θ. The definition of the market uncertainty betas βu is analogous.

According to Lemma 2, βu defines the sensitivity of the uncertainty of the market portfolio

to a change in its composition. Note that the uncertainty betas depend only on the relative

uncertainty of various portfolios and not on the uncertainty aversion of the representative

agent. Scaling the constraint set P by multiplying ηk’s by the same constant has no effect

on βu. We also find that, like risk, uncertainty is partially “diversifiable” in a sense that

for a particular asset only its contribution the total market uncertainty is compensated in

equilibrium by higher expected return.

In equilibrium, the investor is compensated for bearing both risk and uncertainty. Thus,

two assets with the same beta with respect to the market risk can have different equilibrium

expected returns. This not only sets our model apart conceptually from the standard CAPM,

but also points to the empirical relevance of our model. To elaborate, consider first the case

where there is a single source of information. In this case,7

Ωu =

√
2η

σθ
Ωr,

where θ is the equilibrium market portfolio, and hence

µ − r1 =
E[U ′′(W − φ∆u(θ))]

E[U ′(W − φ∆u(θ))]
Ωrθ + φ

√
2η

σθ
Ωrθ =

(
E[U ′′(W − φ∆u(θ))]

E[U ′(W − φ∆u(θ))]
+ φ

√
2η

σθ

)
σ2

θβ.

Since the utility-dependent coefficient

E[U ′′(W − φ∆u(θ))]

E[U ′(W − φ∆u(θ))]

7See Section 4.2.
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is not observable, the cross-sectional distribution of expected asset returns in a world with

a single source of information will be observationally indistinguishable from that in a world

where there is no model uncertainty.

Note that in the case of a single source of information, the reason that the uncertainty

premium is observationally indistinguishable from the risk premium is that the two are

proportional to each other in the cross-section. When there is more than one source of

information, this is no longer the case (Section 4.2 contains an example) and hence the

observational equivalence no longer holds. Therefore, by studying the cross-section of asset

returns, one can potentially test for the existence of uncertainty premia.

4.2 Independent Sources of Information

To help derive testable implications of theorem (1), we consider a special case where the

N risky assets can be divided into K groups, with investor having a separate source of

information about each group. Without loss of generality, assume that the first N1 assets

are in the first group, the next N2 in the second group, and so on.

Lemma 5 If the K sources of information are independent, then

φk(θ) =
1√
2ηk

σk, k = 1, . . . , K, (21)

where σk is the standard deviation of returns on the portfolio Pk of assets in group k combined

with their market portfolio weights.

As a result of this lemma, the model uncertainty matrix simplifies to a block diagonal

matrix,

Ωu =




√
2η1

σ1
ΩrJ1

· · · 0
...

. . .
...

0 · · ·
√

2ηK
σK

ΩrJK


 (22)

Intuitively, the block-diagonal form of Ωu could arise if the agent had separate models for

returns on each group of assets, e.g., different models for returns on fixed income securities,
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stocks, and commodities or a different model of returns on equity in the United States, Japan

and Europe. After all, it is common practice in academic research to specify, estimate, and

test the models of individual classes of assets independently of each other. This would imply

that if the uncertainty faced by the agent about the model of returns on the group of assets

k were to change, it would have no effect on the amount of uncertainty remaining about the

model of returns on any other group of assets. Then Theorem 1 implies that the market

uncertainty beta of an asset j from the asset group k is given by

βu,j =

√
2ηkσk∑K

n=1

√
2ηnσn

βr,Pk,j,

where σ2
k is the variance of returns on the portfolio Pk of assets in group k combined with

their market portfolio weights and βPk,j is the beta of returns on asset j with respect to such

portfolio. The market price of uncertainty is given by

λu = φ2
K∑

k=1

√
2ηkσk

As a result, we have the following.

Corollary 2 If the uncertainty matrix has a block-diagonal form (22), the cross-section of

expected returns on the assets in group k is characterized by

µj = r + λrβr,j + φ2
√

2ηkσkβr,Pk,j. (23)

Thus, the cross-sectional differences in returns within each group of assets can be described by

the assets’ loadings on two “factors” – the aggregate market portfolio and the value-weighted

portfolio of assets within the corresponding group.

The relation (23) could be tested empirically using the standard cross-sectional methodology.

Note that (23) implies that the second factor used in addition to the market is specific to

the group of assets under consideration. The presence of the second factor distinguishes

our model from the standard static CAPM. The pricing relation (23) is also distinct from

dynamic, multi-factor models, in which all assets earn risk premium as compensation for their
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covariation with the systematic risk factors. Under model uncertainty, the asset’s expected

return is affected by its correlation with the portfolio Pk only if such asset is subject to

the same source of model uncertainty as other assets in that portfolio. Moreover, factors in

the standard intertemporal pricing model earn excess return because they could be used to

hedge against changes in the investment opportunity set. This does not have to be the case

under model uncertainty. In our static model, the investment opportunity set cannot change

by assumption, yet portfolios Pk appear to serve as pricing factors within the corresponding

group of assets.

Using (23), one can also identify a number of restrictions across the asset groups. For

instance, a within-the-group cross-sectional regression of returns on the market betas and the

group-portfolio betas should recover the two coefficients: λr and φ2
√

2ηkσk. One can then

test whether the estimates of the market risk premium λr are identical across the groups.

Moreover, since
∑K

k=1 φ2
√

2ηkσk = λu, one could compare the resulting estimate of λr + λu

with the direct estimate of the expected return on the market portfolio.

5 The Effect of Changes in Uncertainty

Another way to highlight the effect of uncertainty on asset prices is by performing a com-

parative statics experiment of increasing the degree of uncertainty in the model. To simplify

the exposition, we will assume that the representative agent has a CARA utility function,

U(W ) = − exp(−γW ).

All securities in the model, as well as zero net supply derivative assets that do not

follow a normal distribution, can be priced using the risk-neutral probability density. The

risk-neutral density is given by

f(R)ξ(R)u′(W )∫
f(R)ξ(R)u′(W ) dR

,

where R is the vector of equilibrium returns on the primitive securities, W is the end-of-

period wealth, and ξ(R) is the probability density corresponding to the equilibrium value of
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vu(θ). Then the price of any security with payoff X(R) is given by

1

1 + r

∫
f(R)ξ(R)u′(W )X(R) dR∫

f(R)ξ(R)u′(W ) dR
.

Let ΩrD denote the variance-covariance matrix of dividends. Similarly, define ΩuD =(∑K
k=1 φkΩ̂

−1
rD,Jk

)−1

. Then the risk-neutral probability density can be expressed as

(2π)−n/2|ΩrD|−1/2 exp

{
−1

2
(D + vD − E[D])�Ωr

−1
D (D + vD − E[D])

}

× exp

{
−γ

(
D + vD − E[D] − 1

2
γ21�ΩrD1

)}
,

where

vD = exp

{
−γ(1 + r) − γ2

2
1�ΩrD1

}
ΩuD1

This expression for the risk-neutral density implies that an increase in uncertainty, i.e., an

increase in ΩuD, leads to a shift in the mean of the risk-neutral distribution. The effect is

particularly easy to visualize in a one risky asset case. An increase in uncertainty results in

a downward shift in the mean of the risk-neutral distribution, as illustrated in Figure 1.

It is instructive to compare this behavior with an increase in prior uncertainty in the stan-

dard Bayesian framework. The Bayesian approach assumes uncertainty neutrality, whereas

our approach assumes uncertainty aversion. This is best illustrated using Ellsberg experi-

ment and its following variant: in the second urn the number of red ball is between 10 and

90 so that the probability of drawing red is between 0.1 and 0.9. In this case, the Bayesian

approach would still assign 0.5 to drawing red and hence be indifferent between a bet on

the second urn and that on the first urn, just as in the original Ellsberg experiment. Thus

even though the amount of uncertainty is different in these two experiment, the Bayesian

approach makes no distinction. Note that in this experiment the mean of the posterior

distribution remains unchanged in the Bayesian approach.

Increased prior variance in the Bayesian framework results in an increase in the variance

of the risk-neutral distribution, while in our model an increase in uncertainty would shift the
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Figure 1: Risk-neutral distributions. The dotted line corresponds to the economy with a
higher degree of uncertainty.

mean of the risk-neutral distribution downward, as illustrated in Figure 2. Thus, an increase

is model uncertainty would have different implications for the prices of derivative securities

relative to an increase in prior variance in a Bayesian model. Prices of out-of-the-money

call options fall as model uncertainty increases. However, this may not be the case in the

Bayesian framework.

6 Conclusion

We have developed a single-period equilibrium model incorporating, not only risk, but also

uncertainty and uncertainty aversion. We have shown that there is an uncertainty pre-

mium in equilibrium expected returns on financial assets. In particular, the cross-sectional

distribution of expected returns can be formally described by a two-factor model, where

expected returns are derived as compensation for the asset’s contribution to the equilibrium

risk and uncertainty of the portfolio held by the agent. We were able to derive several em-

pirically testable implications of this result. While prior research on model uncertainty has

been concerned with its implications for the time-series of asset prices, by characterizing the

cross-section of returns we were able to address some of the observational equivalence issues

raised in the literature. In particular, we demonstrated that the effect of model uncertainty
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Figure 2: Risk-neutral distributions. The dotted line corresponds to the economy with
uncertainty aversion and a higher degree of uncertainty. The dashed line corresponds to the
Bayesian economy with increased prior uncertainty.

in our framework is distinct from risk aversion and cannot be captured by any specification

of the risk aversion parameter.
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Appendix

Proof of Lemma 1

Suppose to the contrary that v̄ and v are two distinct solutions. Let v(a) = av̄ + (1 − a)v.

The strict convexity of all the functions defining the choice set implies that for a ∈ (0, 1),

1

2
v(a)�Ω̂−1

rJk
v(a) ≤ ηk, k = 1, . . . , K.

Now let k, if exists, be such that

1

2
v(a)�Ω̂−1

rJk
v(a) = ηk

holds for a = 0, a = 1, and for some a ∈ (0, 1). Then it must be the case that v̄Jk
= vJk

.

Denote by A the set of such k. If

JA = ∪k∈AJk = {1, . . . , n},

then v̄ = v, a contradiction to assumption. So, JA �= {1, . . . , n}. Without loss of generality,

we assume that JA = {2, . . . , n}. Then for all v of the form v = (v1, v̄2, . . . , v̄n) with v1 ∈ R,

1

2
v�Ω̂−1

rJk
v = ηk, k ∈ A.

Note that v(a) is of the form (av̄1+(1−a)v1, v̄2, . . . , v̄n). Thus for v = (0.5v̄1+0.5v1, v̄2, . . . , v̄n),

1

2
v�Ω̂−1

rJk
v < ηk, k �∈ A.

Combining the two cases, k ∈ A and k �∈ A, together, by continuity, there is a ε > 0 such

that for all v = (v1, v̄2, . . . , v̄n) with v1 ∈ (0.5v̄1 + 0.5v2 − ε, 0.5v̄1 + 0.5v2 + ε),

1

2
v�Ω̂−1

rJk
v ≤ ηk, k = 1, . . . , K.

But, given the linearity of the objective function, this means v̄ and v cannot be the solution

of (8). This is a contradiction.

The second statement of the lemma is a straightforward application of the Lagrangian

duality approach.
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Proof of Lemma 2

Since the constraint set P is convex and compact, ∆u(θ) is a convex function. Optimality

conditions imply that φ−1vu(θ) is a subgradient of the value function ∆u(θ) at θ. The

solution vu of is unique, according to lemma 1. Thus, the function ∆u(θ) has a unique

subgradient, therefore it is in fact differentiable, and φ−1vu is equal to the gradient of ∆u(θ).

This establishes the statement of the lemma.

Proof of Lemma 3

Without loss of generality, let j = 1. If the condition of the first claim of the lemma is

satisfied, there exists a ε > 0 such that for any |x| < ε, vx = v̄ + (x, 0, . . . , 0) satisfies all

constraints of (8). Since θ1 = 0, vx is also a solution of (8). The claim follows.

For the second part, let v̄ be a solution of (8). If it is the unique solution of (8), then there

is nothing to prove. Suppose v̄ and v are two distinct solutions of (8). Let v(a) = av̄+(1−a)v.

We claim that there exists a k ∈ K such that

1

2
v(a)�Jk

Ω−1
rJk

v(a)Jk
= ηk

holds for a = 0, a = 1 and some a ∈ (0, 1). Suppose the contrary. By strict convexity,

1

2
v(a)�Jk

Ω−1
rJk

v(a)Jk
< ηk, k ∈ K

for a ∈ (0, 1). Also the convexity of all the functions defining the choice set implies that for

a ∈ (0, 1),

1

2
v(a)�Ω̂−1

rJk
v(a) =

1

2
v(a)�Jk

Ω−1
rJk

v(a)Jk
≤ ηk, k = 1, . . . , K.

Since the objective function of (8) is linear, v(a) is a solution of (8) for all a ∈ (0, 1). But

this is a contradiction to assumption of the second part of the lemma. Thus the claim is

shown. It then follows from the claim that v̄Jk
= vJk

and hence v̄j = vj. Since v̄ and v are

arbitrary, we have v̄j = vj for all solutions of (8). The differentiability follows.
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Proof of Lemma 4

Since the distribution of W depends only on the distribution of θ�R, for each fixed θ,

E[ξu(W )] depends only on y = θ�v, and it is given by

E[ξu(W )] = E[ξ(θ,y)u(W )],

where

ξ(θ,y) = exp

{
− y2

2θ�Ωrθ
− y(Rθ − θ�µ + y)

θ�Ωrθ

}
.

Thus the original utility function can be written as

max
θ

min
|y|≤φ∆u(θ)

(
E[ξ(θ,y)u(W )]

)
(A1)

which is (14). The characterization for v follows immediately.
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