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Abstract :
This paper models the impact of statistical arbitrageurs on stock prices and

trading volume when the drift of the dividend process is unknown to the hedge
fund. The learning process of statistical arbitrageurs leads to an optimal trading
strategy that can be upwardsloping in prices. The presence of privatly informed
investors makes the equilibrium price dependent the history of trading volume
and prices, and the optimal trading strategy of statistical arbitrageurs can be a
positive feedback strategy for certain parameters and histories.
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1 Introduction

1.1 Motivation

Statistical arbitrageurs employ a variety of investment strategies to take ad-
vantage of mispriced assets. The common feature of these strategies is that
temporary deviations of prices from their fundamental value are exploited. The
principal difficulty is to distinguish permanent movements in prices due to funda-
mental changes from temporary fluctuations in prices due to supply and demand
disturbances. In this paper, the inference problem of statistical arbitrageurs is
modeled explicitly in the context of the stock market.
The arbitrageurs trade against two classes of investors: noise traders and fun-

damental traders. The noise traders are causing deviations of prices from their
fundamental value that the statistical arbitrageurs exploit. The fundamental
traders obtain private information about the drift rate of the dividend. This
set-up is realistic for small stocks, where information gathering is costly, and
information asymmetries are likely to be large. The set-up can also be used to
analyze the conditions under which statistical arbitrageurs will find it profitable
to acquire fundamental information, as opposed to
Statistical arbitrageurs are assumed to be rational, risk neutral and have

a long-term investment horizon. They condition their trading strategies on all
publicly available information, which is the history of dividends, trading volume
and prices. In order to assess the fundamental value of an asset, the arbitrageur
needs to estimate a model, i.e. needs to learn from past observations of publicly
observable data. This model guides the hedge fund in distinguidshing price
changes of an asset due to fundamentals or demand and supply disturbances.
Arbitrageurs are faced with nonstandard (i.e. not normally distributed) un-

certainty about the underlying economic environment. The informed investors
learn the true drift of the dividend that can take two values. In order to take
advantage of the mispricing induced by the noise traders, the statistical arbi-
trageurs must assess to what extent the current price reflects the demands form
the noise traders or the informed investors.
The presence of uncertainty about the drift rate of dividends makes the

inference problem of the arbitrageurs nonlinear. As prices move, arbitrageurs
update their belief both about the next realization of dividends, and the true
drift rate. Holding the belief about the growth rate fixed yields a linear pricing
schedule. However, in certain ranges of prices, the hedge fund will strongly
revise beliefs about the growth rate of dividends. This leads to an amplification
of new information in a certain range of prices.
Arbitrageurs face a trade-off between an inference and an arbitrage effect1.

As prices go up, the arbitrageurs have an incentive to sell the asset, as it becomes
more expensive given a belief about the growth rate of dividends. However, a
higher price also makes it more likely that the true expected payoff is high,

1The term arbitrage is used in a loose sense, denoting risky arbitrage opportunities.
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which leads to a strong updating. This is the inference effect, which makes the
hedge fund’s trades upwardsloping in the price of the risky for a certain range
of parameters and prices. The information structure is similar to the model of
Wang (1993), where the drift of the dividend process is changing according to a
mean reverting process. In the model presented here, the drift is constant, but
can take only two values, which leads to a nonlinear pricing function.
Intuitively, the trading strategy of the arbitrageurs is upwardsloping for the

following reasons. As prices increase, statistical arbitrageurs infer that the fun-
damentals must be better than previously thaught and increase their asset hold-
ings. In other regions of the price, a drop in the price represents a buy opportu-
nity for statistical arbitrageurs. The arrival of new fundamental information has
different impacts on the fund’s trading strategy depending on the level of prices.
In the range of prices where the arbitrage effect dominates the inference effect,
the statistical arbitrageurs learns a lot about the relative likelihood of the high
or the low state, which makes the price move drastically. Small disturbances
due to noise or fundamental information makes prices move very strongly in
these ranges. When prices are very low or very high, not much is learned from
new information, and the price reacts very little to either noise or news.
The absence of a simple relationship between the arrival of information and

movements in prices has lead many to question the relevance of informational
sources for movements in asset prices. Instead, it is often argued that noise
traders or irrational speculators are causing movements without news and are
mitigating the impact of new information. In the framework presented here, the
stochastic structure leads to a nonlinear relationship between new information
and prices that has such pricing behavior as a consequence. Little fundamental
news moves prices dramatically at times, whereas big pieces of news have little
impact on prices at other times. Such nonlinearities are very important for
empirical work. Boudoukh et al. (2001) find that a nonlinear regression can
explain much of the variation on OJ future prices uncovered by Roll (1984).
In the remainder of the paper, both a static and a dynamic version of the

model is analyzed. The static version in section 2 is very simple to solve. The
static version gives, however, no insight as to the impact of the learning of
statistical arbitrageurs on the autocorrelations of prices and trading positions.
The dynamic model is developed. In section 3.

1.2 Outline:

Section 2: The static model
Sequential trade equilibrium and rational expectations equilibrium.

Section 3: Continuous Time 1
Appendix I: Proofs
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1.3 Related Literature

The share of assets under management of statistical arbitrageurs has increased
dramatically over the past ten years. At the same time, the academic com-
munity as well as institutional investors and policymakers have become more
and more aware of the limits to arbitrage. The near collapse of LTCM in 1998
has prompted extensive research into the impact of statistical arbitrageurs on
equilibrium asset prices. Many of these recent papers focus on the importance
of margin constraints and other imperfections in order to understand the limi-
tations to the arbitrage activities conducted by statistical arbitrageurs.
This paper takes a different approach. The focus is not the constrains that

are imposed on statistical arbitrageurs, but rather the importance of learning.
In the model, none of the traders are constraint.

D
Incomplete

E
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2 The Static Model

This section analyzes the simple static model. It is a useful benchmark for the
dynamic model that is developed in the next section. Many of the comparative
statics of the one period model are directly inherited by the dynamic model.
However, the static model also has limitations, in particular, nothing can be
infered about the autocorrelations of prices and trading strategies.
The static model is solved as sequential equilibrium, where the informed

agents submit their demand schedule first. After observing the net demand -
total demand less the supply of the informed - the uninformed statistical arbi-
trageurs conduct their inference and submit their demand. Finally, the price
clears the market. This sequential equilibrium is demonstrted to be equiva-
lent to a REE, where informed and uninformed submit their demand schedules
simultanuously.

2.1 The Informed Investor’s Demand

Among a total of N agents, there are N I informed investors and NA uninformed
statistical arbitrageurs. This section is concerned with the derivation of the
optimization and inference problem for the informed investors. Informed agents
know the true mean µ of the distribution of dividends D, which are normal
conditional on µ:

D|µ ∼ N ¡µ,σ2D¢
The only asset beside the stock is cash that is not interest bearing. The

informed investors maximize expected utility:

max
yI
E[U(wI)|µ]

st. wI = w0 + y
I(D − p)

where the utility for the informed agents is assumed to be exponential with
CARA α. The FOC for maximization is then:

E[U 0(wI)(D − p)|µ] = 0

This gives the demand of the informed investors:

yI =
µ− p
ασ2D

(1)

The total supply of the asset is assumed to be

S + u

u ∼ N
¡
0,σ2u

¢
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The net demand of the informed agents denoted ŷI (p, x) is linear in p and
a newly defined variable x:

ŷI = NIyI − S − u (2)

=
N I

ασ2D
(x− p)− S

≡ ŷI (p, x)

where the variable x is defined as:

x = µ− ασ2D
N I

u

The distribution of x conditional on µ is then:

x|µ ∼ N(µ,σ2x)

where σ2x ≡
³
ασ2D
NI

´2
σ2u.

2.2 The Arbitrageur’s Inference

The statistical arbitrageurs observe the net demand of the informed ŷI (p, x).
They submit a demand schedule that is a function of price and x. Recall from
the previous section that dividend D is distributed normally conditional on the
mean µ. The uninformed have the following prior beliefs about the distribution
of µ:

Pr (µ = 0) = 1− π0

Pr
¡
µ = D

¢
= π0

The uninformed believe that the dividend is distributed either with a high
µ = D or a low mean µ = 0. The distributional assumption that there are
only two states for µ is not critical for the arguments that are developed in
the remaining paper. In the static model, it is straightforward to extend the
results to cases when µ is either exponentially or uniformly distributed. The
assumption that there are only 2 states makes the dynamic model much more
tractable. All uninformed investors are identical. They are endowed with initial
wealth w0 and have the choice of investing their wealth in two assets: money
and a risky asset. There are no borrowing constraints. Uninformed investors
maximize the following program:

max
yA
E
£
wA|ŷI (p, x)¤

st. wA = w0 + y
A(D − p)
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Due to the risk neutrality of the uninformed statistical arbitrageurs the de-
mand schedule is the following:

yA(p, x)

 = +∞
∈ (−∞,+∞)
= −∞

if p < E[D|ŷI (p, x)]
if p = E[D|ŷI (p, x)]
if p > E[D|ŷI (p, x)]

¯̄̄̄
¯̄ (4)

Because of the linearity of ŷI (x, p), the uninformed statistical arbitrageurs
can infer x for any price p. To solve for their demand schedule, the statistical
arbitrageurs therefore only need to compute E [D|x]. By the law of iterated
expectations:

E[D|x] =
X

µ∈{0,D}
E[D|x, µ] Pr[µ|x] (5)

There are two elements to the expectation. The first is the expected dividend
conditional on x and a particular state µ. The second is the probability distri-
bution of µ conditional on x. Much of the economic intuition of the model will
be driven by this second factor. The inference problem of the statistical arbi-
trageurs can be interpreted as consisting of a standard, linear inference problem
holding fix the state of the world µ. The net demand of the infromed leads the
hedge fund to additionally update their belief about the true state, which is the
expressed by the change in the probability distribution of µ|x. As the unin-
formed investors observe a movements in x, they will update their assessment
as to what the relative likelihood of being in the high dividend state is. The
distribution of µ conditional on x can be computed using Bayes rule:

Pr[µ|x] = f [x|µ] Pr[µ]Peµ∈{0,D} f(x|eµ) Pr[eµ]
Replacing for the conditional densities of being in the high versus the low

state:

π(x) ≡ Pr[µ = D|p] (6)

=
π0φ (x)

1− π0 + π0φ (x)

φ (x) = exp
£
Dσ−2x (x−D/2)

¤
Note that the likelihood ratio φ (x) is simply the Radon-Nikodym derivative

that makes the distribution of x|µ = D equivalent to the distribution of x|µ = 0.
The statistical arbitrageurs use the net demand schedule to infer x and in turn
to update their best guess of the likelihood of the high dividend state. The
likelihood that higher mean dividend will occur is clearly an increasing function
of the price x and the prior distribution over the two states, π0. Figure 1 displays
the typical shape of the distribution of π(x).
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Figure 1: The shape of π(x)

The figure is drawn with equal weighted prior (π0 = .5) and a high-dividend
mean of D = 10. The solid line corresponds to a case of a low variance of x,
and the dotted line to a relatively higher variance of x. Higher variance of the x
makes the inference about the mean µ more difficult, so that the curve is flatter
around the unconditional mean (which is 5 in this example). What matters for
the slope of the curve is the variance of the signal and not the signal to noise
ratio. A lower variance of the dividend enhances the precision of the inference
about the true mean of the distribution.
Using the results derived thus far allows us to compute the expected value

of the dividend conditional on p:

E[D|x] = Dπ(x) (7)

The demand schedule for the risky asset by the uninformed investors is
therefore:

yA(p, x) =

 = +∞
∈ (−∞,+∞)
= −∞

if p < Dπ(x)
if p = Dπ(x)
if p > Dπ(x)

¯̄̄̄
¯̄ (8)
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2.3 General Equilibrium

Definition 1 A Sequential Trade Equilibrium (STE) is a price p and an allo-
cation y =

¡
yI , yA

¢
such that:

1. Informed investors maximize expected utility conditional on their observa-
tion of µ and submit a demand schedule yI (µ, p)

2. Statistical arbitrageurs maximize expected utility having observed the net
demand ŷI (x, p) and submit a demand schedule yA (x, p)

3. Markets clear

The general equilibrium occurs when the demand of the statistical arbi-
trageurs plus the net demand of the informed investors equal 0:

ŷI (x, p) +NAyA (x, p) = 0

This equation determines the net trades of the statistical arbitrageurs. From
the demand schedule of the statistical arbitrageurs, the equilibrium price can
be determined:

p = Dπ(x) (9)

The Figure 2 is a graphical representation of the equilibrium price as a
function of x.2 The price function reflects the quasi-linearity that the learning
of the statistical arbitrageurs imposes. For very low and very high levels of
x, the price is approximately a linear function of x. In an intermediate range,
the price is very sensitive to x. This steep part of the pricing function occurs
when x is around 10. This range of the pricing function corresponds to an area
where movements in the fundamental s or the noise u are amplified. A small
demand shock by the noise traders leads to strong updating by the statistical
arbitrageurs.

2All the figures are drawn for the following parameter values:

σD = 1,σu = 1
α = 1, D = 10, µ = 10
N = 10, δ = .1
S = 0, u = 0
π0 = .5
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Figure 2: Equilibrium price

In figure 3, the equilibrium asset holdings of the uninformed statistical ar-
bitrageurs are plotted against x. Whereas the demand schedule is a down-
wardsloping function of x when x is small, it turns upwardsloping once x is
approaching a value of 10. This is when the ”inference effect” starts to domi-
nate the ”arbitrage effect”: even though prices move up sharply around x = 10
- as can be seen in figure 2 - the asset holdings of the uninformed is increasing.
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Figure 3: Hedge Fund’s Asset Holdings

From the market clearing condition, the equilibrium asset holdings of the
statistical arbitrageurs can be derived:

yA (x, p) = S/NA − N
I/NA

ασ2D

¡
x−Dπ(x)¢ (10)

The uninformed have a downwardsloping asset holdings in terms of price,
except in the range where the inference effect dominates the price effect.
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Figure 1: Figure 4: Asset Holdings as Function of Price

Figure 4 shows very clearly the trade-off that the statistical arbitrageurs face.
For relatively low prices, an increase in the price makes the asset relatively cheap,
which is the arbitrage effect. statistical arbitrageurs take advantage of the fact
that in a low range of prices, it is very unlikely that the high state µ = D̄ is
true, and the optimal investment strategy is mainly determined by the relative
variances of noise traders and the dividend. The lower the variance of the noise
traders relative to the variance of the dividend, the more downwardsloping is
the demand as a function of price. However, in an intermediate range of prices,
the inference effect dominates the arbitrage effect. As prices increase for a level
of prices around 5, higher prices lead the statistical arbitrageurs to infer that
the high state µ is more likely, wich makes them increase their position in the
risky asset.
Finally, figure 5 demonstrates the role of different levels of D̄ for the response

of the price to a noise trader shock. In the example, the solid line corresponds
to D̄ = 10, and the dotted line corresponds to D̄ = 10.2. For a noise shock of
0, the difference in the high dividend state is amplified: a mean dividend that
is higher by .2 in the good state leads to a price that is 1 higher. This reflects
the fact that in this range, very strong learning is taking place. The slope of
the high expected payoff state (the dotted line) is steeper than the slope of the
lower expected payoff state. The price reacts the more strongly, the higher the
mean dividend. However, for very large shocks, the difference between the two
lines narrows, and approaches .2. This reflects the fact that large shocks are
mistaken as a very bad signal, and the π approaches 1 in both cases D̄ = 10
and D̄ = 10.2.
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Figure 5: Response of Price to Noise Shock

The following proposition summarizes the results obtained so far:

Proposition 2 The unique STE has price:

p = Dπ (x)

with π(x) as defined in 6 and x defined as in ?? The position in the risky
asset by the statistical arbitrageurs at the equilibrium are:

yA(p (x)) = S/NA − N
I/NA

ασ2D

¡
x−Dπ(x)¢

where the constants are the same as in 10

2.3.1 Comparison to REE

Definition 3 A REE is a price p and an allocation y =
¡
yI , yA

¢
such that:

1. informed investors maximize utility conditional on (µ, p) and submit de-
mand schedules yI(p, µ)

2. uninformed statistical arbitrageurs maximize utility conditional (p)and sub-
mit demand schedules yA(p)

3. markets clear

Proposition 4 The STE is a REE.
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2.3.2 Conditions for upwardsloping equilibrium asset holdings

Conditions for upwardsloping asset holdings of the uninformed can also be de-
rived more formally:

Proposition 5 dyA/dp > 0 in some range iff

D
2
> (1 + (1− π0) /π0)

2 α2σ4Dσ
2
u/(Nδ)2 (11)

The proof of the proposition is in appendix I. When the uninformed agents
observe prices, they use them for two reasons. On the one hand, the day traders
want to invest when assets are relatively cheap. This is the ”price effect”.
On the other hand, statistical arbitrageurs infer from higher prices that the
dividend state is more likely. This is the ”inference effect”. Which one
of the two effects dominates depends on the level of prices. When the price
is close to the unconditional average π0D, the inference is the strongest, and
given a low enough coefficient of risk aversion, the demand of the uninformed is
upwardsloping around that region.

13



3 The Continuous Time Infinite Horizon Model

The static model of the previous section delivered many results and intuitions
that carry over to the dynamic model. The stochastic structure of the infinite
horizon model presented here has the same structure as the static model. Divi-
dends are paid out continuously. The informational advantage that the informed
agents possess is the knowledge of the drift of the dividend process, that can be
either high or low.

3.1 The Set-up

The economy has finite horizon t ∈ [0,∞]. There is one risky asset with price
P , and a riskless bond with Price B with continuous return r. The risky asset
pays out dividends continuously. The dividend is accumulated according to the
following process:

dDt = µdt+ σDdZD (12)

D0 = 0

where Z is a Wiener Process. The informed investor learn µ at time 0, which
can take two possible values: 0 and D̄. The uninformed statistical arbitrageurs
do not know µ. They have the following priors over the distribution of µ :

Pr [µ = 0 at t = 0] = 1− π0 (13)

Pr
£
µ = D at t = 0

¤
= π0

There are NI informed investors, NA statistical arbitrageurs, and NU noise
traders in the economy. The information set of the informed investors is:

zIt = {Dτ , Pτ , µ, yτ : τ 6 t} (14)

where yτ is the vector of demands of the informed and uninformed agents.
The information set of the uninformed statistical arbitrageurs is:

zAt = {Dτ , Pτ , y
ns
τ : τ 6 t} (15)

where ynsτ is the net demand of the informed agents. The informed investors
have exponential utility with coefficient 1. The uninformed are risk neutral.
There are no borrowing constraints. The riskless bond has instantanuous return
r.
The simplest specification of noise traders is that they believe that the true

drift of the dividend process evolves according to an Ornstein-Uhlenbeck process
with random initial condition:

dut = −θutdt+ σudZu (16)

u0 ∼ N(0,σu) independent of Zu

where Zu is a Brownian Motion independent of ZD.
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3.2 The Statistical arbitrageurs Filtering and the Equilib-
rium Price Process

3.2.1 Derivation of the Pricing Function

Assume for now that the observation of the dividend is the only source of infor-
mation for the Statistical arbitrageurs. The uninformed also observe the demand
of the informed, but assume temporarily that no information is revealed from
the demand. The price is then given by the following no-arbitrage condition:

Pt = E

·Z ∞
t

³
e−r(s−t)Ds

´
ds|zAt

¸
(17)

By the law of total probabilities, the expectation can always be rewritten as:

πtE

·Z ∞
t

³
e−r(s−t)Ds

´
ds|zAt , µ = D̄

¸
+(1− πt)E

·Z ∞
t

³
e−r(s−t)Ds

´
ds|zAt , µ = 0

¸

where πt = Pr
¡
µ = D̄|zAt

¢
. Conditional on µ, the process of D is a standard

continuous time random walk with constant coefficients, so that the expectation
is readily computed:

E

·Z ∞
t

³
e−r(s−t)Ds

´
ds|zAt , µ

¸
=
Dt + µ/r

r

The price is therefore:

Pt =
Dt + πtD̄/r

r
(18)

The variables observable to the statistical arbitrageurs are the dividend,
price, and demands of the other market participants. It will turn out that in
equilibrium, the statistical arbitrageurs can back out level of noise plus the drift
from the demand of the other agents, that will be denoted by x:

xt ≡ αµ+ ut (19)

≡ µ̃+ ut (20)

where α is a constant that is to be determined.
The process that x follows is therefore O-U:

dxt = −θxt + σudZu

x0 = µ̃+ u0
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From Küchler and Sørensen (1997), the likelihood function of x0 conditional
on µ is:

fx
¡
xt|xt, µ

¢
= exp

·
θ

2σ2u

µ
− (xt − µ̃)2 + (x0 − µ̃)2 − θ

Z t

0

(xs − µ̃)2 ds+ t/σ2u
¶¸

where xt denotes the history of x from 0 to t. The likelihood function of the
dividends conditional on µ is simply

fD
¡
Dt|Dt, µ

¢
=

1p
2πσ2Dt

exp

·
− 1

2σ2Dt
(Dt − µ)

¸
(21)

The Radon-Nikodym derivatives of changing the measures of D from µ = D̄
to µ = 0 is:

ψt ≡
fD
¡
Dt|Dt, µ = D̄

¢
fD (Dt|Dt, µ = 0)

= exp

·
D̄

σ2D

¡
Dt − tD̄/2

¢¸
(22)

Similarly, the Radon-Nikodym derivatives of changeing the measures of D
from µ = D̄ to µ = 0 is:

φt ≡
fx
¡
xt|xt, µ = D̄

¢
fx
¡
x0|x0, µ = D̄

¢
fx (xt|xt, µ = 0) fx (x0|x0, µ = 0) (23)

= exp

·
θD̄

σ2u

µ
xt − x0 + θ

Z t

0

xsds− θD̄t/2

¶
+
D̄

σ2u

¡
x0 − D̄

¢¸
(24)

By Bayes rule, the independence of dividends and noise gives a simple for-
mular for πt:

πt =
φtψt

φtψt + 1/π0 − 1
(25)

Taking time derivatives by application of Ito’s Lemma gives:

dπt = πt (1− πt)

"
dψt
ψt

+
dφt
φt
− πt

Ã
dψ2t

®
ψ2t

+


dφ2t

®
φ2t

!#
(26)

where

dφ2t

®
and


dψ2t

®
denote the quadratic variations of φ and ψ respec-

tively. Differentiating ψ and φ gives the diffusion equation for πt

dπt = πt (1− πt) D̄σ
−2
D

³³
µ− πtD̄

³
1 + θ̃

´´
dt+ σDdZD + θ̃dZu

´
(27)
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where θ̃ = θσD/σu. This diffusion can alternatively be obtained by ex-
tending Theorem 9.2. of Liptser and Shiryaev (2000) to a set-up with multiple
brownian motions.

The price process is then:

dPt = ηP (πy) dt+ σP (πt) dZ (28)

where

ηP (πt) = r−1
³
µ+ r−1πt (1− πt) D̄

2σ−2D
³
µ− πD̄

³
1 + θ̃

´´´
σP (πt) =

h
r−1

¡
1 + r−1πt (1− πt) D̄

2σ−2D
¢
σD, r

−2πt (1− πt) D̄
2σ−2D θ̃

i
dZ = [dZD, dZu]

0

3.3 The Problem of the Informed and the Equilibrium
Allocation

The informed investors have to solve the following program to maximize their
expected utility:

maxE

·Z ∞
0

e−δt−αctdt
¸

s.t. dW I =
¡
rW + yI (D − rP )− c¢ dt+ yIdP

In order to optimize, the informed investors solve the Bellmann equation.
Denoting the value function by J , the optimization problem can be written as:

max
c,yI

u(cIt ) +E
£
dJ(W I

t ,Dt, µ, t)|zIt
¤
/dt

subject to dW I
t =

¡
rW − cI + yI (ηP +D − rP )

¢
dt+ yIσPdZ

Transversality Condition lim
t−→∞Ee

−rtJ
¡
W I
t ,Dt, µ, t

¢
= 0

(29)

The guess for the value function is:

J (W,D,µ, t) = exp (−rt− rW − z(π,D, µ)− ln r) (30)

Note that P only depends on D and t, which allows the value function to be
written in that form.
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Proposition 6 (Optimization) The Bellmann equation associated with the
DP problem is:

0 = rz − 1
2
σ−2P (ηP +D − rP )2 +

¡
(ηP +D − rP )σ−2P σPπ − ηπ

¢
z0π +

1

2
σ2πz

00
ππ

The optimal consumption and investment strategies are:

y =
ηP +D − rP

rσ2P
− σPπ
rσ2P

zπ

c = rW + z (31)

The proof of this proposition is in the appendix and involves standard tech-
niques.

3.3.1 Random Walk noise

The investors know µ and observe D. Furthermore, they observe P , and they
can compute π, which only depends on D, and not on u in the case θ = 0. In
this case, the change of measure from µ = D̄ to µ = 0 simply becomes:

φt = exp

·
D̄

σ2u

¡
x0 − D̄

¢¸
(32)

Only the realization of x0 is informative due to the random walk nature of
the noise.In the case of rendom walk noise, the optimization problem of the
previous section simplifies considerably.

Proposition 7 With random walk noise, θ = 0, the optimal investment and
consumption are:

yI =
µ− πD̄

σ2D
− r−1 σπ

σP
z̃0π (π)

cI = rW + z̃ +
1

2
σ−2D

¡
µ− πD̄

¢2
where z̃ solves the followint ODE:

0 = rz̃ +
1

2
σ2π z̃ππ +

1

2
r−1σ2πσ

−2
D D̄

Proposition 8 Without noise traders, the demand is fully revealing µ, and
therefore, the only possible equilibrium is

P = r−1D + r−2µ
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The result that the demand is fully revealing when no noise traders are
present should not come as a surprise. As D is observable, and only µ is private
information, the demand of the informed agents must reveal µ. The next section
introduces noise traders.

In the case θ = 0, noise traders demand follows the following process:

du = σudZu

u0 ∼ N
¡
0,σ2u

¢
The aggregate demand of the noise traders and the informed traders is then

µN I/σ2D + u−
¡
N I +NN

¢µπD̄
σ2D

+ r−1
σπ
σP
z̃0π (π)

¶

The demand therefore reveals

xt = ut + µN
I/σ2D (33)

However, as µ is not changing over time, the statistical arbitrageurs cannot
learn anything from µ + u, except at time 0. The presence of noise traders is
therefore like a shift in initial beliefs of the statistical arbitrageurs, π0, but does
not affect the pricing function in any other way.

Proposition 9 When noise traders are present and θ = 0, the equilibrium price
is:

Pt = r
−1 ¡Dt + r−1D̄πt¢

3.3.2 Analysis of the prices and volume with random walk noise

[To be completed ...]

3.3.3 Myopic informed investors

When the informed investors are myopic, their demand does not have a hedging
component. The amount invested in the risky asset is therefore simply the local
price of risk divided by the coefficient of risk aversion:

yI (π,D) =
ηP +Dt − rPt

rσPP
(34)
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The total demand of noise traders plus informed traders can now be written
as:

N Iµ+Nuu+
¡
N I +Nu

¢ ³
ςtθ̃πD̄ − D̄πt

´
r
h
σD, ςtθ̃

i
σ0P

where ςt ≡ r−1πt (1− πt) D̄
2σ−2D¡

1 + r−1πt (1− πt) D̄2σ−2D
¢

As conjectured for the determination of the pricing function, it is therefore
a function of x, so that the conjectured price function is indeed an equilibrium.
{discuss multiplicity}.

3.3.4 Analysis history of volume and price behavior

[To be completed ...]
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4 Appendix: Proofs

Proofs for section 2

The following lemma 10 is needed to derive the REE equilibrium.

Lemma 10 Let z, x, y be random variables and h(·) and g(·) functions. g() is
continuously differentiable and weakly increasing. Then

E[h(z)|g(x), µ] = E[h(z)|x, µ] (35)

Proof. Lemma 10: Consider 3 random variables x, y, z and the monotone,
differentiable functions g() and h(). Then:

E[h(z)|g(x), y] = E[h(z)|x, y] (36)

Let’s first consider the distribution f(z|x, y). Per definition of the conditional
expectation, we can write:

f(z|x, y) = f(z, x|y)
f(x|y) (37)

Next, given the distribution fu,v|y(u, v|y) with u = z and v = g(x), what is
the distribution fz,x|y(z, x|y)? This is a change of measure, and the following
formula applies:

fz,x|y(z, x|y) =

¯̄̄̄
du
dz

du
dx

dv
dz

dv
dx

¯̄̄̄
fu,v|y(z, g(x)|y) (38)

= |g0(x)| fu,v|y(z, g(x)|y)
Similarly, consider the marginal density fx|y(x|y). Given the distribution

fv|y(v|y) with v = g(x), what is the distribution fx|y(z, x|y)?
fx|y(x|y) = |g0(x)| fv|y(z, g(x)|y)

Therefore, we can rewrite:

f(z|x, y) =
f(z, x|y)
f(x|y)

=
|g0(x)| fu,v|y(z, g(x)|y)
|g0(x)| fv|y(z, g(x)|y)

=
fu,v|y(z, g(x)|y)
fv|y(z, g(x)|y)

= f(z|g(x), y) (40)
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Then the statement about the expectation follows immediately:

E[h(z)|g(x), y] (41)

=

Z
h(z)f(z|g(x), y)dz

=

Z
h(z)f(z|x, y)dz

= E[h(z)|x, y]

Proof. Proposition 4
Start by guessing that the equilibrium pricing function is a monoton function

of x :
p = p(x)

The arbitrageurs condition their demand on the observation of p. Applying
Lemma 10 shows that

E [D|p (x)] =
X
µ

E [D|p (x) , µ] Pr(µ)

=
X
µ

E [D|x, µ] Pr(µ)

= E [D|x]
The computation of E [D|x] is the same as in 7, so that the no-arbitrage condi-
tion pins down:

p = E [D|x] = Dπ(x)
The last thing to check is that the demand of the arbitrageurs plus the

demand of the noise traders reveals no more information than x. From the
optimization of the informed investors,

yI(p, µ) =
E[D|µ]− p

ασ2D

=
1

ασ2D|s

h
βIs+ (1− βI)µ− p

i
exactly as in ??. But then the total demand of the informed investors plus
noise traders reveals the same information as the net demand in the STE (see
2). Markets clear, as the asset holdings of the arbitrageurs is undetermined once
the price is pinned down at the expected value conditional on their information
set, which is x.

Proof. Proposition 5:
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In equilibrium, the position of the hedge fund depends only on x, so that
the price only effects the position of the hedge fund indirectly:

dyA

dp
=

∂yA

∂x

∂x

∂p
> 0 (42)

Using Proposition 2 yields

∂yA

∂x
= − Bασ2²σ

2
u

(1− δ)σ2DδN
2
+
F δ(σ2D + σ2²)σ

2
u

(1− δ)σ2Dασ
2
²σ
2
u

Dπ0x (x)

And, for the price:

∂p

∂x
= B + FDπ0x (x) (43)

So that the condition for an upwardsloping demand becomes:

dyA

dp
=
− Bασ2²σ

2
u

(1−δ)σ2DδN2 +
Fδ(σ2D+σ

2
²)σ

2
u

(1−δ)σ2Dασ2²σ2uDπ
0
x (x)

B + FDπ0x (x)
> 0 (44)

Dπ0x (x) >
σ2D

(σ2D + σ2²)

What is π0x? Recall first:

Dπx =
D

1 + 1−π0
π0

exp((lD/σ2x)(lD/2− x))

Dπ0x = D(lD/σ2x)
1³

1 + 1−π0
π0

exp((lD/σ2x)(lD/2− x))
´³
1 + 1−π0

π0
exp−((lD/σ2x)(lD/2− x))

´
=

lD
2
/σ2x

1 +
³
1−π0
π0

´2
+ 1−π0

π0
exp((lD/σ2x)(lD/2− x)) + 1−π0

π0
exp−((lD/σ2x)(lD/2− x))

Where is the slope maximal? The FOC is:

π00x = 0

π00x =
lD

2
/σ2x((lD/σ

2
x)
1−π0
π0

exp((lD/σ2x)(lD/2− x))− (lD/σ2x) 1−π0π0
exp−((lD/σ2x)(lD/2− x)))

1 +
³
1−π0
π0

´2
+ 1−π0

π0
exp((lD/σ2x)(lD/2− x)) + 1−π0

π0
exp−((lD/σ2x)(lD/2− x))

= 0

which is equivalent to:

exp((lD/σ2x)(lD/2− x)) = exp−((lD/σ2x)(lD/2− x)))
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lD/2 = x

Replacing into the condition:

Dπ0x|s−Cu=D/2 =
lD

2
/σ2x³

1 + 1−π0
π0

´2
Replacing back yields:

D
2³

1 + 1−π0
π0

´2 > σ4Dα
2σ2u/(Nδ)2
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Proofs for section 3

Proof. Proposition 6

Let’s start by rewriting the differential term in the Bellman equation by
applying Itô’s Lemma:

E
£
dJ(W I

t ,Dt,πt, µ, t)|zIt
¤

dt

=
1

dt
{u (ct) + Jt + JWE

£
dW I |zIt

¤
+ JπE

£
dπ|zIt

¤
+ JDE

£
dD|zIt

¤
+
1

2
JWWE

£
dW I2|zIt

¤
+
1

2
JππE

£
dπ2|zIt

¤
+
1

2
JDDE

£
dD2|zIt

¤
+JWπE

£
dW Idπ|zIt

¤
+ JWDE

£
dW IdD|zIt

¤}
dπt = πt (1− πt) D̄σ

−2
D

³³
µ− πtD̄

³
1 + θ̃

´´
dt+ σDdZD + θ̃dZu

´
dW I =

¡
rW + yI (D − rP )− c¢ dt+ yIdP

dPt = ηP (πy) dt+ σP (πt) dZ

ηP (πt) = r−1
³
µ+ r−1πt (1− πt) D̄

2σ−2D
³
µ− πD̄

³
1 + θ̃

´´´
σP (πt) =

h
r−1

¡
1 + r−1πt (1− πt) D̄

2σ−2D
¢
σD, r

−2πt (1− πt) D̄
2σ−2D θ̃

i
dZ = [dZu, dZD]

0

0 = u (c) + Jt + JW
¡
rW + yI

¡
ηP +D − rP¢− c¢+ Jπηπ + JDµ

+
1

2
JWW y

2σ2P +
1

2
Jππσ

2
π +

1

2
JDDσ

2
D

+JWπyσPπ + JWDyσPD

0 = u (c) + Jt + JW

³
rW + yI (D − rP )− c+ yr−1

³
µ+ r−1πt (1− πt) D̄

2σ−2D
³
µ− πD̄

³
1 + θ̃

´´´´
+Jππt (1− πt) D̄σ

−2
D

³³
µ− πtD̄

³
1 + θ̃

´´´
+ JDµ

+
1

2
JWW y

2
h¡
r−1 + r−2π (1− π) D̄2σ−2D

¢2
σ2D + r

−4π2 (1− π)
2
D̄4σ−4D θ̃

2
i

+
1

2
JππE

£
dπ2|zIt

¤
π2 (1− π)2 D̄2σ−4D

³
σ2D + θ̃

2
´
+
1

2
JDDσ

2
D

+JWπyπt (1− πt) D̄σ
−2
D

³
r−1

¡
1 + r−1πt (1− πt) D̄

2σ−2D
¢
σ2D + r

−2πt (1− πt) D̄
2σ−2D θ̃

2
´

+JWDyr
−1 ¡1 + r−1πt (1− πt) D̄

2σ−2D
¢
σ2D

Note that µ is discrete, so that it the Bellman equation does not have terms
in Jµ or Jµ·.
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Replacing the diffusion of π and D into the Bellman equation gives:

0 = u (c) + Jt + JW (rW + y (ηP +D − rP )− c) + Jπηπ + JDµ
+
1

2
JWW y

2σ2P +
1

2
Jππσ

2
π +

1

2
JDDσ

2
D

+JWπyσPπ + JWDyσPD + JπDσπD

The FOCs are:

yt = −ηP +D − rP
σ2P

JW
JWW

− σPπ
σ2P

JWπ

JWW
− σPD

σ2P

JWD

JWW
(45)

u0 (c) = JW (46)

Let’s guess the value function:

J = exp (−rt− rW − z − ln r) (47)

So that:

y =
ηP +D − rP

rσ2P
− σPπ
rσ2P

zπ − σPD
rσ2P

zD

c = rW + z (48)

Note that utility becomes with optimal consumption u (c) = e−rt−c = e−rt−rW−z =
rJ . Replacing this, optimal consumption and the value function gives:

0 = rz − ry (ηP +D − rP )− zπηπ − zDµ
+
1

2
r2y2σ2P +

1

2
zππσ

2
π +

1

2
zDDσ

2
D

+zπryσPπ + zDryσPD + zπDσπD

Replace y into the Bellman equation. Then:

0 = rz − zπηπ − zDµ
+
1

2
zππσ

2
π +

1

2
zDDσ

2
D + zπDσπD

−1
2
r2y2σ2P

In order to replace for y, do the following substitutions:

yrσ2P = m− σPπzπ − σPDzD

m = ηP +D − rP
−1
2
y2r2σ2P = −1

2
σ−2P (m− σPπzπ − σPDzD)

2

= −1
2
σ−2P m

2 − 1
2
σ2πz

2
π −

1

2
σ2Dz

2
D +mσ−2P σPπzπ +mσ−2P σPDzD − σπDzDzπ
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Then the Bellman equation reduces to:

0 = rz − 1
2
σ−2P m

2

+
¡
mσ−2P σPπ − ηπ

¢
zπ +

¡
mσ−2P σPD − µ

¢
zD

+
1

2
σ2πzππ +

1

2
σ2DzDD

+σπD (zπD − zDzπ)
The equation shows that one state variable is sufficient for optimization.

Choosing π as state reduces the equation to:

0 = rz − 1
2
σ−2P m

2 +
¡
mσ−2P σPπ − ηπ

¢
zπ +

1

2
σ2πzππ

Proof. Proposition 7
In the cas that θ = 0, the price process and the updating processes are

characterized by the following drifts and variances:

ηP = r−1µ+ r−2πt (1− πt) D̄
2σ−2D

¡
µ− πD̄

¢
m = ηP +D − rP = ηP − r−1πD̄ =

¡
r−1 + r−2πt (1− πt) D̄

2σ−2D
¢ ¡
µ− πD̄

¢
σP =

¡
r−1 + r−2πt (1− πt) D̄

2σ−2D
¢
σD

ηπ = πt (1− πt) D̄σ
−2
D

¡
µ− πtD̄

¢
σπ = πt (1− πt) D̄σ

−2
D σD

Under these processes, note the following:¡
mσ−2P σPπ − ηπ

¢
= 0

The Bellman equation is therefore:

0 = rz − 1
2
σ−2D

¡
µ− πD̄

¢2
+
1

2
σ2πzππ

Now use the following substitution:

rz̃ = rz − 1
2
σ−2D

¡
µ− πD̄

¢2
Then the Bellman equation becomes:

0 = rz̃ +
1

2
σ2π z̃ππ +

1

2
r−1σ2πσ

−2
D D̄

The solution is:

z (x) = ρ1b
− R x 1

2
ρ1+a
a (1− π)

1
2
−ρ1+a

a dxx
1
2
−ρ1+a

a (1− π)
1
2
ρ1+a
a +

R
x
1
2
−ρ1+a

a (1− π)
1
2
ρ1+a
a dxx

1
2
ρ1+a
a (1− π)

1
2
−ρ1

a

a (a− 4)
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where ρ1 is a root of
Ẑ2 − a2 + 4a = 0

and

a = .5D̄2σ−2D
b = .5r−2D̄3σ−4D

The optimal demand and consumption simplifies as well:

y =
µ− πD̄

σ2D
− r−1 σπ

σP
z̃0π (π)

c = rW + z (49)

28



5 Literature

Küchler, U. and Sørensen, M. (1997) ”Exponential Families of Stochastic Processes”,
Berlin: Springer Verlag

Liptser, R. S. and A. N. Shiryaev (2000) ”Statistics of Random Processes”,
Vol. I & II, 2nd Edition, Berlin: Springer Verlag

[To be completed ...]
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Figure 2: Simulation 1
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