The Culture-Phonology Interface

Commentary:
The Role of Grammar in Adaptation and Imitation

Edward Flemming
MIT
web.mit.edu/~flemming/www
Perceptual adaptation and imitation

- Several of the studies presented here explore perceptual adaptation (Staum Casasanto) or imitation (Babel; Graff, Zuraw & Nielsen (GZN)) processes.
- There is evidence that adaptation and imitation are mediated by phonological grammar.
- To serve this function, phonological grammar must allow for variation (multiple outputs for a given input form).
- Production of variants must be systematic and socially conditioned, not random.
Imitation

- Listening to a speaker can result in a subject modifying their speech to be more similar to that speaker (Goldinger 1998 etc).
 - Progressive effect during shadowing (e.g. Babel).
 - Read word list, listen, read word list again (e.g. GZN).
- To interpret experiments based on this effect we need a model of this form of imitation.
- Hypothesis: Imitation (in this sense) is constrained by the speaker’s grammar.
 - It is achieved by selecting among variants that are permitted by the speaker’s grammar.
 - Where the grammar doesn’t license appropriate variants, no imitation occurs.
A grammar-independent model of imitation

- Some previous accounts of imitation do not posit any role for grammar, e.g. Goldinger (1998).
- Episodic lexicon - each word is represented by many exemplars.
- Production target for a word is based on a weighted average of a subset of exemplars of that word (Pierrehumbert 2001)
- Imitation effect can be derived if there is a bias to select recent exemplars.
Imitation

• This model predicts that all properties should be imitated equally.
• If the bias to select recent exemplars is general, then imitation should always occur.
Selective Imitation

These predictions are incorrect:

• Not all properties are imitated equally:
 – Subjects imitate lengthened VOT but not shortened VOT (Nielsen 2007).
 – Subjects do not imitate /s/ realized as a sound between [s] and [ʃ] (Kraljic, Brennan & Samuels 2008).
 – Subjects imitate some vowels but not others (Babel)

• Degree of imitation depends on situation:
 – subject attitudes (Babel)
 – sex of subject/sex of speaker (GZN, Pardo 2006).
Selective Imitation

• Hypothesis: Imitation is achieved by selecting among variants that are permitted by the speaker’s grammar.
 – Phonological grammars encompass variation - a given form has a range of well-formed realizations.
 – Imitation involves the selection of realizations from within this well-formed range that best correspond to the speech being imitated.
Imitation involves selection of grammatical variants

- Extended VOT is permissible, e.g. in hyperarticulation.
 - Smiljanic & Bradlow (2008): English word-initial VOT:
 - normal 78 ms, clear speech 120 ms.
- Reduced VOT is not permissible (except where required by increased speech rate).
 - Reduced VOT violates constraints on the distinctiveness of voicing contrasts (Nielsen 2007).
Illustrative phonetic grammar

VOT is determined by the interaction of three weighted constraints (Cf. Flemming 2001):

- **MinDist(VOT):** VOT of voiceless stop should be 90 ms greater than VOT of voiced stop of the same place of articulation (95 ms for \([p^h]\), assuming \([b]\) has VOT of 5 ms)
 - cost of violation: \(w_{VOT}(95-VOT)^2\)

- **Vowel length:** Total vowel duration (\(VOT+Vdur\)) should be 200 ms.
 - cost of violation: \(w_{dur}(200-(VOT+Vdur))^2\)

- **Fully Voiced Vowel:** Voiced vowel duration should be 200 ms.
 - cost of violation: \(w_{Vdur}(200-Vdur)^2\)

- **VOT** is selected to minimize violation of these constraints (total cost)
 - \(w_{VOT}(80-VOT)^2 + w_{Vdur}(200-Vdur)^2 + w_{dur}(200-(VOT+Vdur))^2\)
Illustrative phonetic grammar

- VOT is selected to minimize violation of these constraints (total cost)
 - \(w_{\text{VOT}}(95-VOT)^2 + w_{\text{Vdur}}(200-Vdur)^2 + w_{\text{dur}}(200-(VOT+Vdur))^2 \)
- If \(w_{\text{VOT}} = 1, w_{\text{Vdur}} = 1, w_{\text{dur}} = 1 \), then VOT = 63 ms
- If \(w_{\text{VOT}} = 1.5, w_{\text{Vdur}} = 1, w_{\text{dur}} = 1 \), then VOT = 71 ms
- Grammar can specify a range of possible weight values,
 - e.g. \(1 < w_{\text{VOT}} < 1.5 \)
- Imitation can be achieved by selecting appropriate values within this range.
- Lengthened VOT is usually reserved for hyperarticulation, so baseline VOT is at the low end of the range.
- This leaves room for imitative lengthening, but not for shortening.
Imitation is constrained by grammar

- Analyzing imitation as grammar-based also provides the basis for an account of generalization in imitation.
- Subjects exposed to lengthened VOT in [pʰ] without any examples of [kʰ] lengthen VOT in both [pʰ] and [kʰ] (Nielsen 2007).
- Mindist(VOT) applies to all places of articulation, so selecting a weight for w_{VOT} affects VOT of all stops.
Imitation is constrained by grammar

• Subjects do not imitate /s/→[s/] (Kraljic et al 2008) - ambiguous [s/] is not part of the grammatical repertoire of most speakers.
 – NB mimicry can involve grammar modification.
• Grammar-based imitation may also play a role in explaining selective imitation of vowels in Babel’s NZE study.
Selective imitation by NZE speakers

- NZE subjects imitated Australian /ɛ, æ/, but not /ɪ, ɑ, ʌ, ɔ/
- As Babel observes, /ɛ, æ/ are involved in a sound change in progress - both continue to raise (Trudgill et al 1998, Maclagan & Hay 2004).
 - implies significant synchronic variation in the heights of these vowels, so speakers are likely to command a range of variants of these vowels.
 - Since AusE /ɛ, æ/ are lower than their NZE counterparts, NZE speakers can use conservative variants to better approximate the AusE model.
- /ɑ, ʌ, ɔ/ are not undergoing comparable sound changes (and are less different from their AusE counterparts?)
- /ɪ/ centralized to [ə] in the 20thC.
 - This sound change is complete in these subjects?
 - The discrepancy from AusE [ɪ] is so large that a small shift in that direction would not yield a significantly improved match.
Imitation by CA speakers

• Only /æ, ə/ were subject to significant convergence but other vowels are subject to significant variation (e.g. /u/).
• Selective imitation for social reasons (Babel).
• Methodological point: these imitation studies lack a proper control condition.
 – Non-imitative factors could lead to change in the course of a shadowing task, or between two readings of a list of words. E.g. repetition might lead to reduction (cf. GZN).
 – To eliminate this possibility, it would be desirable to have a control group who listen to speech which is like their own in relevant respects.
Perceptual adaptation as grammar modeling

• Staum Casasanto (SC) examines perceptual adaptation rather than imitation.

• Hypothesis: Perceptual adaptation is also grammar based - listeners infer a speaker’s phonetic/phonological grammar and use this model grammar to interpret speaker’s productions (cf. Nielsen & Wilson 2008).
Perceptual adaptation as grammar modeling

 - Subjects listen to speech in which (a) realization of /t/ has been shifted towards /d/ (VOT lengthened etc) or (b) realization of /d/ has been shifted towards /t/ (VOT shortened etc).
 - Subjects categorize stimuli from /t-d/ and /p-b/ continua.
 - Perceptual boundary between voiced and voiceless stops differs between (a) and (b) groups - subjects shift the boundary in accord with the pattern of realization that they heard.
 - Shift generalizes to /p-b/ contrast although only /t-d/ was heard.
- This boundary shift can be analyzed as a result of the listener modeling the speaker’s grammar for stop voicing and using the model to interpret speaker’s productions.
Perceptual adaptation based on visual information

- SC shows that subjects perceptually adapt to the expected grammar of a speaker based on visual information.
 - they infer likely rate of t/d deletion from non-linguistic cues, i.e. visual information about the race of the speaker.
 - they use this information to interpret ambiguous utterances, e.g. \([\text{mæs}] = \text{mass} \text{ or mast}\)?
- people know something about the phonetic/phonological grammars of different social groups
- Where they can make inferences about group membership of a speaker based on non-linguistic information, they can guess likely properties of the speaker’s grammar independent of any linguistic evidence.
Example

• E.g. Coetzee & Pater (2008) model frequencies of t/d deletion in different dialects using the following constraints:
 – *Ct: No clusters ending in a coronal stop
 – MaxC: An input consonant must have a correspondent in the output (‘don’t delete’)
 – MaxC/V: An input consonant preceding a vowel must have a correspondent in the output.
 – MaxC-Final: A phrase-final input consonant must have a correspondent in the output.

• Ranking these constraints derives different patterns of t/d deletion
 – deletion /_V, /_# → /_C
Perceptual adaptation as grammar modeling

- Coetzee & Pater (2008) show that rates of t/d deletion in different dialects can be analyzed as different rankings of these constraints in a Stochastic OT grammar (Boersma 1998).

<table>
<thead>
<tr>
<th>Dialect</th>
<th>Constraint ranking values</th>
<th>Rates of t/d deletion by context</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>*CT</td>
<td>MAXC/_V</td>
</tr>
<tr>
<td>AAVE (DC)(^1)</td>
<td>101.0</td>
<td>102.3</td>
</tr>
<tr>
<td>Philadelphia (^2)</td>
<td>107.2</td>
<td>108.2</td>
</tr>
</tbody>
</table>

\(^1\)Fasold (1972), \(^2\)Guy(1980)

- Evaluation noise = 2

- In these terms, listeners would have some knowledge of characteristic constraint rankings for different groups.

- Analyzing this form of perceptual adaptation in terms of a model of the speaker’s grammar provides a straightforward account of the fact that inferences about rate of t/d deletion apply equally to words and non-words.
 - Inference concerns constraint ranking values, not words.
The nature of phonological grammars

• The analyses of imitation and adaptation outlined here presume that:
 – phonological/phonetic grammars encompass variation - i.e. they can generate multiple outputs for a given input.
 • E.g. /p/ can be realized with a range of different VOT values, /mæst/ can be realized as [mæs] or [mæst], etc.
 – variation can be indexed to particular social groups (etc).
 – variants can be selected according to context - e.g. to imitate speech patterns.

• Several current models of phonology allow for variation, but most treat variation as random - they provide no mechanism for external conditioning.

• We have hypothesized that imitation involves the selection of constraint rankings/weightings from the range permitted by the grammar in order to better match another speaker’s output.
References

• Maclagan, Margaret, and Jen Hay (2004). The rise and rise of New Zealand English DRESS. Proceedings of the 10th International Conference on Speech Science and Technology, 183-188.

References

