Artificial Intelligence Machine Learning in Marine Hydrodynamics

by

Paul D. Sclavounos

Laboratory for Ship and Platform Flows
Department of Mechanical Engineering
Massachusetts Institute of Technology

Mechanical Engineering Retreat, January 31st, 2018
Machine Learning Disciplines

• Statistics (Frequentist & Bayesian)

• Information Theory (Shannon Entropy – Kullbak-Liebler Divergence)

• Convex Optimization Theory (Lagrangian & Fenchel Dual)

• Computation (Gradient Descent, Markov-Chain Monte Carlo)

• Functional Analysis (SVM-Positive Definite Kernels)

• Physics (Field Methods, Variational Bayesian Formulations)
Formulation of ML Algorithms

Design Matrix: \([\tilde{X}_1^{T}, \ldots, D, Y]_{n=1, \ldots, N} ; N(\text{Samples}) \times (D + 1)(\text{Input Features} + \text{Output})\);

\[p(Y, \tilde{X}) = p(Y|\tilde{X})p(\tilde{X}) \]

Bayes Rule:
\[p(\tilde{X}|Y) = \frac{p(Y|\tilde{X})p(\tilde{X})}{p(Y)} = \frac{p(Y|\tilde{X})p(\tilde{X})}{\int d\tilde{X} p(Y|\tilde{X})p(\tilde{X})} \]

\(p(Y|\tilde{X}) \): Supervised Learning; Density of Output Conditional on Observed Input
\(p(\tilde{X}) \): Unsupervised Learning of \(\tilde{X} \); Density Estimation / Prior
\(p(\tilde{X}|Y) \): Density of Input Conditional on Observed Output / Feature Selection

\[\hat{Y} = F(\tilde{X}) = \sum_{i=1}^{M} \beta_i h_i(\tilde{X}; \alpha_i) \]

\(h \): Linear, Spline, Sigmoid, Gaussian, Decision Tree

\[\min_{\alpha, \beta, \lambda, M} \left[\sum_{n=1}^{N_{\text{Train}}} \text{Loss}[Y_n, \hat{Y}_n] + \lambda \| h \|_p \right], \text{ } p-\text{Norm Penalized Loss} \]
Machine Learning Algorithms

- Linear & Polynomial Regression (Ridge L2, Lasso L1, Splines)
- Artificial Neural Networks – Deep Learning
- Support Vector Machines – L2 Norm Kernel “Trick”
- Decision Trees – Boosting (AdaBoost, XGBoost, DeepBoost)
- Random Forests (Bootstrapping, Random Subsampling)
Model-Predictive Control of Floating Wind Turbines and Wave Energy Converters

SVM Forecasts of Seastate Elevations: RMS Error 5-10% Hs

Sponsor: DOE, ONR
Viscous Loads on a Liquefied Natural Gas Carrier

Sponsor: ONR
Free-Decay Test – Liquid LNG
Gaussian SVM Kernel Model for Viscous Load

Training data set--Liquid cargo, With keels

Test data set--Liquid cargo, With keels