1.138J/2.062J, WAVE PROPAGATION

Fall, 2000 MIT
Notes by C. C. Mei

Homework no. 2

Due September 28, 2000
In all exercises, please describe the physical meaning of your mathematical results. Use graphics if it can help the explanation. Use of Matlab and/or Maple is uncouraged.

1. Read §1. Chapter one, Notes.

Consider an infinitely long string taut with tension $T,-\infty<x<\infty$ free from any lateral support. A mass M is attached to the string at the origin. Show first that Newton's law for the mass requires that

$$
\begin{equation*}
M \frac{\partial^{2}}{\partial t^{2}} V(0, t)=-T \frac{\partial}{\partial x} V_{-}(0-, t)+T \frac{\partial}{\partial x} V_{+}(0+, t), \quad t>0 . \tag{H.2.1}
\end{equation*}
$$

where V_{-}represents the displacement on the left side $(x<0)$ and V_{+}on the right $(x>0)$. An incident pulse with duration T and length $L=c T$ arrives from $x \sim-\infty$. The incident wave is prescribed by

$$
V_{i}(x, t)= \begin{cases}\sin (\pi(t-x / c) / T), & t<0,-L<x<0 \tag{H.2.2}\\ 0, & t<0 ;-\infty<x<-L, x>0\end{cases}
$$

Note that the front of the pulse arrives at the origin just at $t=0$, i.e., $V_{i}(0,0)=0$. Find the reflected and the transmitted waves and the motion of the mass.
2. A semi-infinite cylindrical rod of uniform cross section S is made of two materials. The elastic constant is E_{1} in $0<x<L$ and E_{2} in $x>L$. Before $t=0$ the rod is free of any loading. After $t=0$ a pulse-like force is applied at the left end $x=0$. Specifically, the total applied force is

$$
F(0, t)= \begin{cases}F_{o} \sin (\pi t / T), & 0<t<T \tag{H.2.3}\\ 0, & t<0, t>T\end{cases}
$$

Find the displacment $u(x, t)$ everywhere after $t>0$. Assume that $L>c T$.
3. Derive the linearized equation for wave propagation in an artery where there is a steady and uniform flow of velocty U. You can start from eqs (5.1), (5.5) and (5.6), Chapter 1, let $u=U+u^{\prime}$ with $u^{\prime} \ll U$ and assume that $U=O\left(c_{o}\right)$. Heuristically you can drop products like $O\left(\left(a^{\prime}\right)^{2}, a^{\prime} u^{\prime},\left(u^{\prime}\right)^{2}\right)$, but you must retain terms like $O\left(U u^{\prime}, U a^{\prime}\right)$. Use scaling arguments to find the condition for linearization.
4. Consider forced waves governed by

$$
\begin{equation*}
\frac{\partial^{2} u}{\partial t^{2}}-c^{2} \frac{\partial^{2} u}{\partial x^{2}}=h(x, t) \tag{H.2.4}
\end{equation*}
$$

where the forcing is limited in range and duration so that h is constant h_{o} in a triangular region in the $x-t$ plane and zero elsewhere. The triangle has the base $-L<x<L$ along $t=0$ and the apex at $t=L / c$. Find the wave for all $t>0$ and $|x|<\infty$.

