
GrapherGUI Tutorial
Bo Shi

Ocean Engineering, Vortical flow lab

bshi@mit.edu

GrapherGUI is a Java library that allows you to quickly develop graphing utilities. You provide
the mathematical functions and the parameters, and the user interface is handled by the library.
With only a few lines of code, a Java application or Applet like the one shown below can be
created. This document is designed to be a quick tutorial and introductory document to the
GrapherGUI package. For more detailed documentation, refer to the source documentation
(../index.html).

1. A Simple Example

1.1. Step by Step

The following steps describes the process of creating a graphing tool using GrapherGUI. In the directory
where the GrapherGUI library is located, create a fileclassname.java whereclassname is an
arbitrary name for your application.

1. Create aSliderMatrix object.

2. Create up to ten classes which extend theFunction class.

3. Create aGUI object.

4. Add theGUI object to the Applet

1.2. A Complete Program

Web.java creates an Applet. To create a standalone program that does not require a browser to run, minor
changes are required. Consultthis section. The source code to Web.java can be found here
(Web.java.html). Following is a description of the important lines of code.

To use the classes provided in the GrapherGUI library, include the package.

1

GrapherGUI Tutorial

import GrapherGUI.*;

The class that we have here is calledWeb. The naming of the class is arbitary. Because we wish to
compile this program as an Applet, our main class mustextend Applet . When a class extends from
Applet, theinit() method is required. This is where all the work will be done. Withininit() , we
need to create instances of the objects described in the previous section.

public class Web extends Applet {
public void init() {

// ... insert code here ...
}

}

If you wish to use parameters in your functions, declare aSliderMatrix object. You can add as many
parameters as you need and any given function does not have to use all (or any) of the existing
parameters. Internally,SliderMatrix keeps a list ofParameterPanel objects. The following is an
image of what aParameterPanel looks like:

The constructor forSliderMatrix takes an integer which will be the maximum number of parameters
that can be added. In order to make a parameter available to your functions, you need to use theadd()

method in theSliderMatrix class.add() takes six parameters:

1. Minumum parameter value

2. Maximum parameter value

3. Starting value

4. Number of separators on the slider bar

5. Filename of the image file associated with the parameter (this can be null)

6. String name associated with parameter (this will be displayed if the image file is null or cannot be
found)

Remember that you may only use JPEF, GIF, and PNG (on newer Java VMs). The path to the images is
relative to the directory where your main JAR or .class file is located.

SliderMatrix sm = new SliderMatrix(3);

sm.add(-10.0, 10.0, 0.0, 4, "param_h.jpg", "h");
sm.add(5.0, 15.0, 5.0, 4, "param_g.jpg", "g");

... declaring functions here

2

GrapherGUI Tutorial

MyFunc1 f1 = new MyFunc1();
MyFunc2 f2 = new MyFunc2();

This block of code creates the actual user interface. TheGUI constructor takes 5 arguments:

1. TheSliderMatrix to use for the program

2. Minumum x value on the graph

3. Maximum x value on the graph

4. Minumum y value on the graph

5. Maximum y value on the graph

GUI gui = new GUI(sm, -2.0, 2.0, -3.0, 10.0);

In order to display the functions you have created, use theaddFunction() method. This takes one
argument of typeFunction . Remember to initialize your function first before setting it.

gui.addFunction(f1);
gui.addFunction(f2);

If you would like to use an icon to label the axes on the graph, use thesetAxesIcons() method. This
method takes the filenames of the two icons you have. The first argument takes the image file for the
independent axes and the second is for the dependent axes.

gui.setAxesIcons("axis_x.jpg", "axis_y.jpg");

TheGUI class extends from JPanel, so it can be treated as such. To add the GUI to the Applet window,
use theadd() method in theApplet class.

add(gui);

3

GrapherGUI Tutorial

2. Important Classes

2.1. Overview

To sum up the previous section, the constructors for two of the three classes you need to be familiar with
are listed below:

public SliderMatrix(int capacity);

public GUI(SliderMatrix sm,
double minx,
double maxx,
double miny,
double maxy);

The third, theFunction class is an abstract class.

2.2. GUI and Graph

There are a number of methods available to customize your GUI. In order to gain access to theGraph

object, use thegetGraphObject() method inGUI. The following twoGraph methods are of particular
interest.

/** Set the frequency in which tick marks and labels show up
* on the x-axis..

*
* @param d value between tick marks

*/
public void setTickIncrementX(double d);

/** Set the frequency in which tick marks and labels show up
* on the y-axis..

*
* @param d value between tick marks.

*/
public void setTickIncrementY(double d);

Consult the JavaDoc documentation for more public methods available in theGraph object.

You may also use the second constructor

public GUI(SliderMatrix sm, double minx, double maxx, double miny, double maxy,
boolean showxzoom,
boolean showyzoom,
boolean showdensity,
boolean showparams,
boolean showlimits);

4

GrapherGUI Tutorial

to set which GUI components are displayed. The only difference between this constructor and the first
constructor is the five boolean parameters which determine which GUI componets are displayed.

2.3. Function

This is the only class we have not discussed up until now. The code for the functions to be graphed will
be the bulk of what aGrapherGUI user must write. It is extremely important to understand this class
completely. Here is the full source code for this class:

package GrapherGUI;
import java.awt.*;

public abstract class Function {
public abstract double f(double in, SliderMatrix p);

public Color color() {
return (new Color(0, 0, 255, 153));

}

public abstract String name();
}

Note thatFunction is an abstract class. This means that it cannot be instantiated. Instead, in order to
create a function to be graphed, we must create our own class that inherits fromFunction . The process
of graphing involves theGraph object providing a set of parameters (yourSliderMatrix object) and
the value of the independent variable to yourFunction object.Graph does this a number of times (the
density) to get a set of coordinates to draw. In order for this to work, you must have two methods in your
class. Here is an example fromWeb.java :

class MyFunc2 extends Function {
public double f(double in, SliderMatrix p) {

double g, h;

try {
g = p.val("g");
h = p.val("h");

} catch (Error e) {
return 0.0;

}
return in * in * in * h / g;

}

public Color color() {
return Color.green;

}

5

GrapherGUI Tutorial

public String name() {
return "x^3 * h / g";

}

}

Note thatpublic double f(double, SliderMatrix) calculates the dependent variable value.
Note also thatpublic String name() returns the string name. This string is used when the program
displays the key. Also,public Color color() overrides the default color of blue.

So how do we access the parameters? Examine the following lines:

try {
g = p.val("g");
h = p.val("h");

} catch (Error e) {
return 0.0;

}
return in * in * in * h / g;

The methodval() in SliderMatrix class returns the current value. It takes an identifier string as input.
So if you added a parameter with the name"omega" , you would callp.val("omega") to get its value.
The try try_codeblock catch handle_codeblock is required becauseval() throws an error if
it cannot find the parameter requested. Upon error, the program will executehandle_codeblock . In
our case, we just return 0.0. This is not recommended. In fact, an error of this type should usually be
fatal. Finally, we return the value. This class defined a very simple function: x^3 * (h / g)

We are not limited to just having three predefined methods in a class inheriting fromFunction . We can
have as many helper methods as needed, butf() andname() are required or the program will not
compile. For more on abstract classes, consult the Java OOP tutorial
(http://java.sun.com/docs/books/tutorial/java/javaOO/abstract.html).

3. Compiling Your Work

3.1. Files

The following is a listing of the source code directory. As you can see, the sources for the for the
GrapherGUI library are all located in one directory. You should place the compiled class files or a copy
of the GrapherGUI directory in the same directory as your custom java sources. Our two files are called
Web.java andStandalone.java . Notice also that by default, all custom image files should be placed
in the same directory.‘

bash-2.05b$ ls -al *

6

GrapherGUI Tutorial

-rw-r--r-- 1 bshi users 1906 Jul 10 18:37 Standalone.java
-rw-r--r-- 1 bshi users 1435 Jul 10 15:38 Web.java
-rw-r--r-- 1 bshi users 8726 Jul 4 11:32 axis_x.jpg
-rw-r--r-- 1 bshi users 8850 Jul 4 11:31 axis_y.jpg
-rw-r--r-- 1 bshi users 182 Jul 9 20:01 index.html
-rw-r--r-- 1 bshi users 8804 Jul 4 11:29 param_g.jpg
-rw-r--r-- 1 bshi users 8595 Jul 4 11:30 param_h.jpg

GrapherGUI:
total 53
drwxr-xr-x 2 bshi users 272 Jul 11 10:12 .
drwxr-xr-x 4 bshi users 344 Jul 11 10:12 ..
-rw-r--r-- 1 bshi users 1312 Jul 8 11:41 Function.java
-rw-r--r-- 1 bshi users 7938 Jul 9 19:56 GUI.java
-rw-r--r-- 1 bshi users 18670 Jul 9 18:52 Graph.java
-rw-r--r-- 1 bshi users 4590 Jul 9 18:40 ParameterPanel.java
-rw-r--r-- 1 bshi users 3774 Jul 8 12:42 SliderMatrix.java
-rw-r--r-- 1 bshi users 877 Jul 8 14:35 Util.java

3.2. Compiling

Using the above directory structure as an example, to compileWeb.java , cd into the same directory and
use the following command:

javac Web.java

After compiling the Applet, it would be most convenient if we did not have to lug around the whole
directory in order to utilize it. Using JAR (the Java archiver), we can package all the class files and data
files (just images in this case) into one file. This way, we can easily distribute copies of the program. So
after you have compiled the program usingjavac...

jar Web.jar *.class GrapherGUI/*.class *.jpg

This takes every single class file you have created and the image files you need for your program and
packs them into a file calledWeb.jar . Now the only thing left to do is to create an HTML file into which
we will embed the Applet.

Place the following lines anywhere in the body of an HTML page. A simple full example can be found
here (applet.html.html). (NOTE: you may have to tweak your HEIGHT and WIDTH to get everything to
show depending on how large you have set the visual area inGUI. 530x720 will work for most people if
you do not change the library code. Consult thesource documentationfor details.)

<applet

7

GrapherGUI Tutorial

CODE="Web.class"
ARCHIVE="Web.jar"
HEIGHT="720"
WIDTH="530">

</applet>

All that needs to be done now is to place your HTML file and JAR file into a directory that is used by
your webserver.

3.3. Alternative Organizational Schemes

The example provided in section1.2 places three classes (the main applet class and twoFunction

classes into a single file. This is not the only way to organize your classes.

If the code for your methods are very long, you can place the code for each of your methods into a
separate file. If you do this, remember to make them public:

public class SpecialFunction extends Function {
// ... code for this class ...

}

If you have a number of functions you wish to reuse, you can organize them into your own personal
library of functions. This way, you have quick access to a collection of functions. To do this, create a
directory called what you want the package name to be. Place all your function source files in that
directory. If your package is calledfunctionlibrary , then you would add the following line to the
beginning of each file in the package directory

import functionlibrary.*;

to gain access to the functions included in the library. For more information, consult the Sun
documentation on creating packages
(http://java.sun.com/docs/books/tutorial/java/interpack/createpkgs.html)

3.4. Packaging

There are a number of ways you can archive everything. In order to run a GrapherGUI program or applet,
you will need all the GrapherGUI class files and the class files for Function and Applet/Application
classes that you have created.

8

GrapherGUI Tutorial

One option is to not use anything packaging system at all. This is not recommended unless you are just
testing becausejavac generates many class files which all need to be up to date in order for the program
to run. If you are copying the package and miss one file, the application will fail.

For more information, consult the Sun documentation on JAR
(http://java.sun.com/docs/books/tutorial/jar/basics/index.html).

4. Advanced Topics

4.1. Code Documentation

In addition to this tutorial, there is a folder of documentation on the source code for the library. Perhaps
you do not need certain buttons or GUI components currently available or perhaps you wish to add a
button. Consult the JavaDoc documentation (../index.html) on GrapherGUI for an introduction on the
source.

4.2. Creating a Standalone Application

Because all the work is done within the GUI class, there is quite a lot of freedom in terms of where you
place the graphing utility. We have already gone through anexampleof how to create an applet
containing a grapher. This section describes how to create a standalone application using GrapherGUI.
The full source code can be found here (Standalone.java.html).

When creating an application, you must declare the following in your main class. The first thing to do is
to create yourFunction objects,SliderMatrix object, andGUI object. After that, just cut and paste
the rest because the rest of the code will remain consistent across any program. If you are curious what
the code does, consult Sun’s documentation on JFrame
(http://java.sun.com/j2se/1.4.2/docs/api/javax/swing/JFrame.html).

static public void main(String[] args) {

// ... SliderMatrix, Function, and GUI setup here ...

JPanel p = new JPanel();

p.add(gui);

JFrame f = new JFrame("Grapher");

f.addWindowListener(new WindowAdapter() {
public void windowClosing(WindowEvent we) {

System.exit(0);
}

});

9

GrapherGUI Tutorial

f.setSize(510, 720);
f.setLocation(300, 200);
f.getContentPane().add(p);
f.setVisible(true);
f.show();

}

To run an application from the command line, use the following command "java Standalone" If your
class name is Standalone. Like the first example, you can name your class whatever you want. This
procedure is useful for testing as it is not necessary to make an HTML file or to load a browser every
time you wish to test your program.

BecauseGUI inherits from the JPanel (http://java.sun.com/j2se/1.4.2/docs/api/javax/swing/JPanel.html).
class, you could even embed whatever grapher you create inside a larger Java program as an internal
utility. That is outside the scope of this document but this is in practice not difficult.

4.3. Fortran/C/C++

Java is regarded as being too slow for mathematically intensive tasks. One way of optimizing the speed
of your application is to use C or Fortran for mathematical routines. This is possible through the use of
the Java Native Interface (JNI (http://java.sun.com/docs/books/tutorial/native1.1/)).

We will run through an example. The three new files to study are

• NativeFunction.java (NativeFunction.java.html)

• NativeFunction.h (NativeFunction.h.html)

• NativeFunction.c (NativeFunction.c.html)

4.3.1. The Java Portion

We want a Function that uses natively compiled code. An example of such an interface between Java and
C is given inNativeFunction.java . This class is very similar to the function classes we defined in
earlier examples, most importantly in that it extends theFunction class.

The methodf() andname() are defined but unlike our other functions, we do not do any calculations.
f() grabs the values of two parameters and passes them to a new method callednative_f .

public native String name();
public native double native_f(double in, double p1, double p2);

10

GrapherGUI Tutorial

static {
System.loadLibrary("NativeFunction");

}

Thenative keyword indicates that the function will be implemented natively. At the end of this code
snippet, we load a library called "NativeFunction". This means that the program will try to look for the
native functions defined in this class (name() andnative_f) in a shared library called
libNativeFunction.so (Note: on Linux/Unix systems)

4.3.2. The C portion

Now that we have an interface between Java and C, we need to write the native code. How do we know
what to functions to define? After compilingNativeFunction.java , use thejavah tool to create a C
header file for your native code. Runjavah :

$ javah NativeFunction

Note thatjavah takes a class name and not a filename for an argument. We get the following to
prototyped functions:

/*
* Class: NativeFunction
* Method: name
* Signature: ()Ljava/lang/String;
*/

JNIEXPORT jstring JNICALL Java_NativeFunction_name
(JNIEnv *, jobject);

/*
* Class: NativeFunction
* Method: native_f
* Signature: (DDD)D
*/

JNIEXPORT jdouble JNICALL Java_NativeFunction_native_1f
(JNIEnv *, jobject, jdouble, jdouble, jdouble);

The first defines the function which will be used forNativeFunction.name() and the second for
NativeFunction.native_f() .

4.3.3. The Code

At first the huge obfuscated variable names and types might seem daunting, but don’t worry -- we won’t
really need to use many of them.

11

GrapherGUI Tutorial

Each JNI function has at least two arguments. The following arguments are the arguments defined in
NativeFunction.java. Ournative_f() function is very simple - we want to plot x^2 * (g - h). Note that
the native implementation of this (Java_NativeFunction_native_1f) function returns ajdouble

and takes three otherjdouble arguments in addition to the two that are always there. Remember back to
our Java source; the first is the independent variable, the others are parametes passed in by our Java
program.

You can do a direct cast fromjdouble to double :

return (jdouble) ((double) in * (double) in * ((double) g - (double) h));

This simplifies matters a bit. Finally, once you have your dependent variable, just cast it back into a
jdouble and return it. Ourname() function (JNIEXPORT jstring JNICALL

Java_NativeFunction_name) is very straightforward. All we need to do is return a Java string by
using theNewStringUTF() method that is part of ourenv variable:

return (*env)->NewStringUTF(env, "My Function Name");

This function should never get more complicated than one line. In fact, you probably don’t need to
implement a native version of this function, but we do so here to show that it is possible to manipulate
more than primitive variable types within your native code.

To compile a shared library using GCC under Linux/Unix, issue the following commands:

$ gcc -c NativeFunction.c -o NativeFunction.o
$ gcc -shared -o libNativeFunction.so NativeFunction.o

Make sure that the compiler knows where to findjni.h and the Java development libraries. You can use
the -I and -L arguments for GCC to set this. Now placelibNativeFunction.so in a directory where
the linker can find it. Alternatively, you can set the $LD_LIBRARY_PATH to point to the directory the
shared library is located and run whatever Java application uses it.

For more complex functions, you should probably create a separate function(s)/file(s) and call them.

12

	1. A Simple Example
	1.1. Step by Step
	1.2. A Complete Program

	2. Important Classes
	2.1. Overview
	2.2. GUI and Graph
	2.3. Function

	3. Compiling Your Work
	3.1. Files
	3.2. Compiling
	3.3. Alternative Organizational Schemes
	3.4. Packaging

	4. Advanced Topics
	4.1. Code Documentation
	4.2. Creating a Standalone Application
	4.3. Fortran/C/C++
	4.3.1. The Java Portion
	4.3.2. The C portion
	4.3.3. The Code

