
13.021 – Marine Hydrodynamics
Lecture 19

Copyright c© 2001 MIT - Department of Ocean Engineering, All rights reserved.

13.021 - Marine Hydrodynamics
Lecture 19

Water Waves

Exact (nonlinear) governing equations for surface gravity waves

assuming potential theory

 
y = η(x,z,t) or F(x,y,z,t) = 0 

x 

y 

z B(x,y,z,t) = 0 

Unknown variables:

⇀
v (x, y, z, t) = ∇φ (x, y, z, t)

η (x, z, t) or F (x, y, z, t)

p (x, y, z, t)
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Field equation:

Continuity:∇2φ = 0 y < η or F < 0

Given φ, can calculate p :
∂φ

∂t
+

1

2
|∇φ|2 +

p− pa

ρ
+ gy = 0; y < η or F < 0

Far way, no disturbance:∂φ/∂t,∇φ → 0 and p = pa︸︷︷︸
atmospheric

− ρgy︸︷︷︸
hydrostatic

Boundary Conditions:

1. On an impervious boundary B (x, y, z, t) = 0, we have KBC:

⇀
v · n̂ = ∇φ.n̂ =

∂φ

∂n
=

⇀

U
(

⇀
x, t

) · n̂ (
⇀
x, t

)
= Un on B = 0

Alternatively: a particle P on B remains on B, i.e. B is a material surface; e.g. if P is
on B at t = t0, i.e.

B(~xP , t0) = 0, then B(~xP (t), t0) = 0 for all t,

so that, following P, B = 0.

∴ DB

Dt
=

∂B

∂t
+ (∇φ · ∇) B = 0 on B = 0

For example, flat bottom at y = −h:

∂φ/∂y = 0 on y = −h or B : y + h = 0

2. On the free surface, y = η or F = y − η(x, z, t) = 0.

KBC: free surface is a material surface, no perpendicular relative velocity to free
surface, particle on free surface remains on free surface:

DF

Dt
= 0 =

D

Dt
(y − η) =

∂φ

∂y︸︷︷︸
vertical

velocity

−∂η

∂t
− ∂φ

∂x

∂η

∂x︸︷︷︸
slope

of f.s.

−∂φ

∂z

∂η

∂z︸︷︷︸
slope

of f.s.

on y = η︸︷︷︸
still

unknown
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DBC: p = pa on y = η or F = 0. Apply Bernoulli equation at y = η:

∂φ

∂t
+

1

2
|∇φ|2 + gη = 0 on y = η (assumingpa = 0)

Linearized (Airy) Wave Theory

Consider small amplitude waves: (small free surface slope)

 crest 

 wavelength 
Water depth h 

trough 

Wave height 
H 

SWL 

 λ 

Wave amplitude A = H/2 

Wave period T 
 

Assume amplitude small compared to wavelength, i.e., A
λ

<< 1. Consequently: φ

λ2/T
, η

λ
<< 1,

and we keep only linear terms in φ,η:

For example: ()|y=η = ()y=0︸ ︷︷ ︸
keep

+ η
∂

∂y
()|y=0

︸ ︷︷ ︸
discard

+ . . . Taylor series
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Finally:

1)∇2φ = 0,−h < y < 0 {y < 0}

2)∂φ
∂y

= 0, y = −h {∇φ → 0, y → −∞}

3a)FSKBC : ∂φ
∂y

= ∂η
∂t

,y = 0

3b)FSDBC : ∂φ
∂t

+ gη = 0, y = 0



 3)∂2φ

∂t2
+ g ∂φ

∂y
= 0;y = 0

 

02 =φ∇

0
y

g
t 2

2

=
∂
φ∂+

∂
φ∂

0
y

=
∂
φ∂

y = 0 

y = -h 

Linear (Airy) Waves in constant finite depth h {infinite depth}

∇2φ =0,−h < y < 0; {y < 0} (1)

∂φ

∂y
= 0, y = −h; {∇φ → 0, y → −∞} (2)

∂2φ

∂t2
+ g

∂φ

∂y
=0, y = 0; {same} (3)
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Given φ:

η (x, t) = −1

g

∂φ

∂t

∣∣∣∣
y=0

(4)

p− pa = −ρ
∂φ

∂t︸ ︷︷ ︸
dynamic

− ρgy︸︷︷︸
hydrostatic

(5)

Solution of 2D Periodic Plane Progressive Waves (using separation of variables)

Math . . . (solve (1), (2), (3))

Answer:

φ =
gA

ω
sin (kx− ωt)

cosh k (y + h)

cosh kh
;

{
gA

ω
sin (kx− ωt) eky

}

η =︸︷︷︸
using

(4)

A cos (kx− ωt) ; {same}

where A is the wave amplitude = H/2.

1. At t = 0 (say), η = A cos kx → periodic in x with wavelength: λ = 2π/k[L]

 
K = wavenumber = 2 /λ          [L-1] 

 

λ
kx

2. At x = 0 (say), η = A cos ωt → periodic in t with period: T = 2π/ω[T ]
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ω = frequency = 2 /T        [T-1], e.g. rad/sec 

 

T

t

3. η = A cos
[
k

(
x− ω

k
t
)]

;
ω
k

= [V ]

Following a point with velocity ω
k
, i.e. xp =

(
ω
k

)
t+ const. the phase of η does not change:

ω
k

= λ
T
≡ Vp phase velocity.

Dispersion Relationship

So far, any ω, k combination is allowed. Must satisfy FSBC, substitute φ into equation (3):

−ω2 cosh kh + gk sinh kh = 0,

which gives

ω2 = gk tanh kh;
{
ω2 = gk

}
︸ ︷︷ ︸
Dispersion Relationship

(6)

Given k (and h) → ω.
Given ω (and h), . . .
From (6):

C ≡ ω2h

g
= (kh) tanh (kh)

C

kh
= tanh kh → k (only1)
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1 

kh =f(c) 
kh  

tanh kh  

kh

C

Dispersion Relationship (6) uniquely relates ω and k, given h.

ω = ω(k; h) or k = k(ω; h)

In general, k ↑ as ω ↑ or λ ↑ as T ↑.

λ

T
= Vp =

ω

k
=

√
g

k
tanh kh;

{
Vp =

√
g

k

}

Vp ↑ as T ↑ or λ ↑. For fixed k (or λ), Vp ↑ as h ↑ ( from shallow water)

Vp = Vp(k) or Vp(ω) → frequency dispersion

Solution of the Dispersion Relationship

ω2 = gk tanh kh

Property of tanh kh:

tanh kh =
sinh kh

cosh kh
=

1− e−2kh

1 + e−2kh
∼=





kh for kh << 1, i.e. h << λ (long waves or shallow water)
1 for kh >∼ 3 (e.g. tanh 3 = 0.995) kh > π → h > λ

2

( short waves or deep water)

1. Deep water or short waves, kh >> 1(h >∼ λ/2)
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ω2 = gk, λ =
g

2π
T 2(λ(in ft.) ≈ 5.12T 2 (in sec.))

Vp =
ω

k
=

g

ω
=

√
g

2π
λ; λ =

2π

g
V 2

p ← frequency dispersion

2. Shallow water or long waves, kh << 1, (h/λ <∼ 1/20in practice)

ω2 ∼= gk · kh → ω =
√

gh k; λ =
√

gh T

Vp =
ω

k
=

λ

T
=

√
gh ← no frequency dispersion

3. Intermediate depth or wavelength. Need to solve

ω2 = gk tanh kh

given ω, h for k (given k, h for ω - easy!)

(a) Use tables or graphs (e.g. JNN fig. 6.3)

ω2 = gk tanh kh = gk∞, then
k∞
k

=
λ

λ∞
=

Vp

Vp∞
= tanh kh

(b) Use numerical approximation (hand calculator)

i. calculate C = ω2h/g.

ii.

If C > 2, kh ≈ C(1 + 2e−2C − 12e−4C + . . .) (deeper)

If C < 2, kh ≈ √
C(1 + 0.169C + 0.031C2 + . . .) (shallower)

}
about 4 decimals
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Characteristics of a Plane Linear Progressive Wave

A
Vp

h

x

y

 

MWL 

λ η(x,t) = y 

k =
2π

λ
, ω =

2π

T
, H = 2A

Define U ≡ ωA.

Linear Solution:

φ =
Ag

ω

cosh k (y + h)

cosh kh
sin (kx− ωt) ; η = A cos (kx− ωt)

with

ω2 = gk tanh kh

Velocity Field: On y = 0:

u = ∂φ
∂x

= Agk
ω

cosh k(y+h)
cosh kh

cos (kx− ωt)

= Aω︸︷︷︸
U

cosh k(y+h)
sinh kh

cos (kx− ωt)

v = ∂φ
∂y

= Agk
ω

sinh k(y+h)
cosh kh

sin (kx− ωt)

= Aω︸︷︷︸
U

sinh k(y+h)
sinh kh

sin (kx− ωt)

u = Uo = Aω 1
tanh kh

cos (kx− ωt)

u
Uo

= cosh k(y+h)
cosh kh

{ ∼ eky deep water
∼ 1 shallow water

v = vo = Aω sin (kx− ωt) = ∂η
∂t

v
vo

= sinh k(y+h)
sinh kh

{ ∼ eky deep water
∼ 1 + y

h
shallow water
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Finite Depth Deep Water

u/Uo

 u= 0

y

1

-1

1/cosh kh

y/h

10

1/cosh kh

u/Uo

y

1

_ +

 
 
 
 
 
 
 
 
  

Shallow water / Long waves: kh << 1 

( )

( )tkxsin
h
y

1Av

h
g

tkxcos
kh
A

u

ω−





 +ω=

η=ω−
ω

=
 

( )kh~khsinh,1~khcosh

2
yat%4

v
v

u
u

oo

λ
−=≈=Rule of thumb  

η 

h
y

1
v
v

o

+=

-1 

Vp= gh  

Vp= gh  

u = 0 u /uo = 1 

u/uo 

v = 0 

v/vo 

V/V0 

U/U0 
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Pressure Field: dynamic pressure pd = −ρ∂φ
∂t

; p = pd − ρgy

Finite depth Deep water

pd = ρgA cosh k(y+h)
cosh kh

cos (kx− ωt)

= ρg cosh k(y+h)
cosh kh

η
pd

pdo
same picture as u

uo
; pd(−h)

pdo
= 1

cosh kh

shallow water: pd = ρgη (no decay)
p = ρg(η−y) ← “hydrostatic” approximation

pd = ρgekyη
p = ρg

[
ηeky − y

]
pd(−h)

pdo
= e−ky

 

(kh << 1) 
p pd 

ps pd 

p 

(kh >> 1) 

Vp 
ghVp =
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Particle Orbit/ Velocity (Lagrangian).

Let xp(t), yp(t) be the position of the particle P, then xp(t) = x̄ + x′(t); yp(t) = ȳ + y′(t) where
(x̄; ȳ) is the mean position of P.

 P(xp,yp) 

 (x’ ,y’ ) 
( )y,x

vp ≈ v (x̄, ȳ, t) (x̄, ȳ)

up =
dxp

dt
= u (x̄, ȳ, t) +

∂u

∂x
(x̄, ȳ, t) x′ +

∂u

∂y
(x̄, ȳ, t) y′ + . . .

︸ ︷︷ ︸
ignore - linear theory

xp = x̄ +

∫
dt u (x̄, ȳ, t) = x̄ +

∫
dt ωA

cosh k (ȳ + h)

sinh kh
cos (kx̄− ωt)

x′ = −A
cosh k (ȳ + h)

sinh kh
sin (kx̄− ωt)

y′ =
∫

dt v (x̄, ȳ, t) =

∫
dt ωA

sinh k (ȳ + h)

sinh kh
sin (kx̄− ωt)

= A
sinh k (ȳ + h)

sinh kh
cos (kx̄− ωt) on ȳ = 0, y′ = A cos (kx̄− ωt) = η

x′2

a2
+

y′2

b2
= 1 or

(xp − x̄)

a2
+

(yp − ȳ)

b2
= 1

where a = A cosh k(ȳ+h)
sinh kh

; b = A sinh k(ȳ+h)
sinh kh

, i.e. the particle orbits form closed ellipses with horizon-
tal and vertical axes a and b.
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V p

V p

A

P

RR

QQ S S

R

(a) deep water kh >> 1: a = b = Ae

circular orbits with radii Ae   decreasing

exponentially with depth 

ky

ky

decreases linearly

with depth

(b) shallow water kh << 1:

a =     =  const. ; b = A(1+    )
kh

A

h

y

(c) Intermediate depth

V p

A

A

Vp

A

crest

=

ky
Ae

trough

gh

 

A/kh 

λ 
13



14



Summary of Plane Progressive Wave Characteristics

f(y) Deep water/ short waves

kh > π (say)

Shallow water/ long waves

kh << 1

cosh k(y+h)
cosh kh

= f1 (y) ∼
e.g.pd

eky 1

cosh k(y+h)
sinh kh

= f2 (y) ∼
e.g.u, a

eky 1
kh

sinh k(y+h)
sinh kh

= f3 (y) ∼
e.g. v, b

eky 1 + y
h
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C (x) = cos (kx− ωt) S (x) = sin (kx− ωt)

η
A

= C (x)

u
Aω

= C (x) f2 (y) v
Aω

= S (x) f3 (y)

pd

ρgA
= C (x) f1 (y)

y′
A

= C (x) f3 (y) x′
A

= −S (x) f2 (y)

a
A

= f2 (y) b
A

= f3 (y)

 b 

a 
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