13.021 Marine Hydrodynamics, Fall 2003

Lecture 4

Copyright © 2003 MIT - Department of Ocean Engineering, All rights reserved.

13.021 - Marine Hydrodynamics
Lecture 4

Introduction

Governing Equations so far:

Knowns
Number of Equations Number of Unknowns
$ \rho$
Continuity(conservation of mass)
1 $ v_{i}$ 3
$ F_{i}$
Euler (conservation of momentum)
3 $ \tau_{ij}$ 6 3 of 9 eliminated by symmetry
  4   9

Therefore, some constitutive relationships are needed to relate $ v_{i}$ to $ \tau$$ _{ij}$.

1.7 Newtonian Fluid

  1. Consider a fluid at rest ($ v_{i}$ $ \equiv$ 0). Then according to Pascal's Law:

    $\displaystyle \tau_{ij} = -p_{s}\delta_{ij}$    (Pascal's Law)$\displaystyle \hspace{1.0in} \underset{ }{\tau} =\left[
 \begin{array}{ccc}
 -p_{s} & 0 & 0 \ 
 0 & -p_{s} & 0 \ 
 0 & 0 & -p_{s}
 \end{array}
 \right]$    

    where $ p_{s}$ is the hydrostatic pressure and $ \delta_{ij}$ is the Kroenecker delta function, equal to $ 1$ if $ i = j$ and 0 if $ i
\ne j$.

  2. Consider a fluid in motion. The fluid stress is defined as:

    $\displaystyle \tau _{ij} =-p\delta _{ij} +\hat{\tau}_{ij}$    

    where $ p$ is the thermodynamic pressure and $ \hat{\tau}_{ij}$ is the dynamic stress, which is related to the velocities empirically.
Experiments with a wide class of fluids, "Newtonian" fluids, obtain that:

$\displaystyle \hat{\tau}_{ij} \approx$    linear function of the $\displaystyle \underset{\overbrace{\frac{\partial }{\partial t} \left(
 \frac{\...
...rac{\partial u_{k} }{\partial x_{m}
 }}}{\mbox{\underline {velocity gradient}}}$    

i.e. $\displaystyle \hat{\tau}_{ij} \approx
 \underset{\underset{\underset{\underset{...
...\partial u_{k} }{\partial
 x_{m} } \hspace{5mm}\hspace{5mm}i, j, k, m = 1, 2, 3$    

Note that the shear stress is proportional to the rate of strain.

\begin{figure}
\begin{center}
\epsfig{file=lfig41.eps,height=1.8in,clip=}
\end{center}
\end{figure}
For isotropic fluids, this reduces to:

$\displaystyle \hat{\tau } = \mu\left(\frac{\partial u_{i}}{\partial
 x_{j}}+\fr...
...cdot\vec{v}}{\underbrace{\left(\frac{\partial
 u_{l}}{\partial x_{l}}\right)}},$    

where the fluid properties are:

For incompressible flow, $ \frac{\partial u_{l} }{\partial x_{l} }
=0$. Therefore, for an incompressible, isotropic, Newtonian fluid the viscous stress $ \hat{\tau}_{ij}$ is given as

$\displaystyle \hat{\tau }_{ij} = \mu\left(\frac{\partial u_{i}}{\partial
 x_{j}}+\frac{\partial u_{j}}{\partial x_{i}}\right)$    

1.8 Navier-Stokes equations

Equations
Number of Equations
Unknowns
Number of Unknowns
Euler
3
$ u_{i}$
3
continuity
1
$ p$
1
constitutive (Newtonian)
6 (symmetry)
$ \tau_{ij}$
6
10
 
10
$ \underset{\mbox{closure}}{\underbrace{\hspace{2.35in}}}$
Substitute the equation for the stress tensor

$\displaystyle \tau_{ij} = -p\delta _{ij} +\mu \left( \frac{\partial u_{i}
 }{\partial x_{j}}+\frac{\partial u_{j}}{\partial x_{i} } \right)$    

for a Newtonian fluid into Euler's equation:

$\displaystyle \rho \frac{Du_{i} }{Dt} =F_{i} +\frac{\partial \tau _{ij}
 }{\partial x_{j} }$    

where

$\displaystyle \frac{\partial \tau _{ij} }{\partial x_{j} } =-\frac{\partial
 p}...
...al u_{i} }{\partial x_{j} } +\frac{\partial u_{j}
 }{\partial x_{i} } \right)}}$    

and $ \frac{\partial u_{j}}{\partial x_{j}} = 0$ due to continuity. Finally,

$\displaystyle \frac{Du_{i} }{Dt} = \frac{\partial u_{i}
 }{\partial t} +u_{j} \...
...rac{\partial ^{2} u_{i}}{\partial x_{j}\partial x_{j} }
 +\frac{1}{\rho } F_{i}$ Tensor form    
$\displaystyle \frac{D\vec{v} }{Dt} = \frac{\partial \vec{v} }{\partial t}
 +\ve...
...{\rho } \nabla p +\nu
 \nabla^{2}\vec{v} +\frac{1}{\rho } \vec{F} \hspace{30pt}$ Vector form    

where $ \nu \equiv \frac{\mu }{\rho } $ denoted as the Kinematic viscosity [ $ L^{2} /T $ ].

1.9 Boundary Conditions

  1. Kinematic Boundary Conditions: Specifies kinematics (position, velocity, ...) On a solid boundary, velocity of the fluid = velocity of the body. i.e. velocity continuity.

    $\displaystyle \vec{v} = \vec{u}$    "no-slip" boundary condition    

    where $ \vec{v}$ is the fluid velocity at the body and $ \vec{u}$ is the body surface velocity

    figure

    \begin{figure}
\begin{center}
\epsfig{file=lfig42.eps,height=1.25in,clip=}
\end{center}
\end{figure}

  2. Dynamic Boundary Conditions: Specifies dynamics ( pressure, sheer stress, ... )

    Stress continuity:

    $\displaystyle p$ $\displaystyle = p'+p_{\mbox{interface}}$    
    $\displaystyle \tau _{ij}$ $\displaystyle = \tau _{ij}'+\tau _{ij \mbox{ interface}}$    

    The most common example of interfacial stress is surface tension.

    figure

    \begin{figure}
\begin{center}
\epsfig{file=lfig43.eps,height=1.25in,clip=}
\end{center}
\end{figure}

Surface Tension

1.10 Body Forces - Gravity



Karl P Burr 2003-08-27