13.021 Marine Hydrodynamics, Fall 2003

Lecture 5

Copyright © 2003 MIT - Department of Ocean Engineering, All rights reserved.

13.021 - Marine Hydrodynamics
Lecture 5

Chapter 2 - Similitude

Similitude: Similarity of behavior of different systems.

Real world $ \leftrightarrow$ ``model''
(prototype) (physical experiment, mathematical, computer, ...)

  Similarity Parameters (SP's)
Geometric Similitude length ratios
Kinematic Similitude Displacement ratios, velocity ratios
Dynamic (Internal Constitution) Force ratios, stress ratios, pressure ratios
$ \vdots$
 
Internal Constitution Similitude
$ \rho, \nu$
Boundary Condition Similitude  
$ \vdots$
 
$ \underset{\mbox{to be the same for the
model and the real world}}{ \underset{...
...litude,
similarity parameters (SP's)
required}}{\underbrace{\hspace{3.0in}}}}$

2.1 - Dimensional Analysis (DA) to Obtain Similarity Parameters (SP's)

Buckingham's $ \pi$ theory:

Reduce number of variables $ \rightarrow$ derive dimensionally homogeneous relationships.

  1. Specify (all) the (say N) relevant variables (dependent or independent): $ x_{1}, x_{2}, \ldots x_{N}$
    e.g. time, force, fluid density, distance...
    We want to relate the $ x_{i}$'s to each other $ \mathcal{I}$( $ x_{1}, x_{2}, \ldots x_{N}$) = 0

  2. Identify (all) the (say P) relevant basic physical units (``dimensions'')
    e.g. M,L,T (P = 3) [temperature, charge, ...].

  3. Let $ \pi = x_{1}^{\alpha_{1}}x_{2}^{\alpha_{2}}\ldots
x_{N}^{\alpha_{N}}$ be a dimensionless quantity formed from the $ x_{i}$'s. Suppose

    $\displaystyle x_{1} = C_{i}M^{m_{i}}L^{l_{i}}T^{t_{i}}, i=1,2,\ldots,N$    

    where the $ C_{i}$ are dimensionless constants. For example, if $ x_{1} = KE = \frac{1}{2}MV^{2}= \frac{1}{2}M^{1}L^{2}T^{-2}$ (kinetic energy), we have that $ C_{1} = \frac{1}{2}, m_{1} = 1,
l_{1}=2, t_{1} = -2$. Then

    $\displaystyle \pi = (C_{1}^{\alpha_{1}}C_{2}^{\alpha_{2}}\ldots
 C_{N}^{\alpha_...
...ts+\alpha_{N}l_{N}}
 T^{\alpha_{1}t_{1}+\alpha_{2}t_{2}+\ldots+\alpha_{N}t_{N}}$    

    For $ \pi$ to be dimensionless, we require

    $\displaystyle P\left\{ \left. \underset{\Sigma \mbox{\
 notation}}{\underbrace{...
...} \right\} \right. \mbox{  a} P \times N \mbox{ system of
 Linear Equations}$ (1)

    Since (1) is homogeneous, it always has a trivial solution,

    $\displaystyle \alpha_{i} \equiv 0, i = 1, 2, \ldots , N$    (i.e.$\displaystyle \pi$    is constant)    

    There are 2 possibilities:

    1. (1) has no nontrivial solution (only solution is $ \pi$ = constant, i.e. independent of $ x_{i}$'s), which implies that the N variable $ x_{i}, i = 1, 2, \dots , N$ are Dimensionally Independent (DI), i.e. they are "unrelated" and "irrelevant" to the problem.

    2. (1) has $ J (J > 0)$ nontrivial solutions, $ \pi_{1}$, $ \pi_{2,} \ldots ,
\pi_{J}$. In general, $ J < N$, in fact, $ J = N - K$ where $ K$ is the rank or "dimension" of the system of equations (1).

Model Law:

Instead of relating the N $ x_{i}$'s by $ \mathcal{I}$( $ x_{1}, x_{2}, \dots x_{N}$) = 0, relate the $ J$ $ \pi$'s by

$\displaystyle F(\pi_{1}, \pi_{2},\dots \pi_{J}) = 0,$    where $\displaystyle J = N - K
 < N$    

For similitude, we require

$\displaystyle (\pi_{\mbox{model}})_{j} = (\pi_{\mbox{prototype}})_{j} \mbox{\
 where  } j = 1, 2, \ldots , J.$    

If 2 problems have all the same $ \pi_{j}$'s, they have similitude (in the $ \pi_{j}$ senses), so $ \pi$'s serve as similarity parameters.

Note:

In general, we want the set (not unique) of independent $ \pi_{j}$'s, for e.g., $ \pi$$ _{1}$, $ \pi$$ _{2}$, $ \pi$$ _{3}$ or $ \pi$$ _{1}$, $ \pi$$ _{1}$ $ \times$ $ \pi$$ _{2}$, $ \pi$$ _{3}$, but not $ \pi$$ _{1}$, $ \pi$$ _{2}$, $ \pi$$ _{1}$ $ \times$ $ \pi$$ _{2}$.

Example:

Application of Buckingham $ \ensuremath{\pi}$ Theory.

Figure 1: Force on a smooth circular cylinder in steady incompressible fluid (no gravity)
\begin{figure}
\begin{center}
\epsfig{file=lfig51.eps,height=1.25in,clip=}
\end{center}
\end{figure}

$\displaystyle x_{i}: F, U, D, \rho, \nu$ $\displaystyle  \rightarrow N = 5$    
$\displaystyle x_{i} = c_{i} M^{m_{i} } L^{l _{i} } T^{t_{i} }$ $\displaystyle  \rightarrow P = 3$    

N = 5
$ F$
$ U$
$ D$
$ \rho$
$ \nu$
 
P = 3
$ m_{i}$ 1 0 0 1 0
$ l_{i}$ 1 1 1 -3 2
$ t_{i}$ -2 -1 0 0 -1

$\displaystyle \pi =F^{\alpha _{1} } U^{\alpha _{2} } D^{\alpha _{3} } \rho
 ^{\alpha_{4} } \nu ^{\alpha _{5} }$    

For $ \pi$ to be non-dimensional, the set of equations

$\displaystyle \alpha _{i} m_{i} =$ 0    
$\displaystyle \alpha _{i} l_{i} =$ 0    
$\displaystyle \alpha _{i} t_{i} =$ 0    

has to be satisfied. The system of equations above after we substitute the values for the $ m_{i}$'s, $ l_{i}$'s and $ t_{i}$'s assume the form:

$\displaystyle \left(
 \begin{array}{ccccc}
 1 & 0 & 0 & 1 & 0 \ 
 1 & 1 & 1 & ...
...{array} \right) =\left(
 \begin{array}{c}
 0 \ 
 0 \ 
 0
 \end{array} \right)$    

The rank of this system is $ K = 3$, so we have $ j = 2$ nontrivial solutions. Two families of solutions for $ \alpha_{i}$ for each fixed pair of ($ \alpha$$ _{4}$, $ \alpha$$ _{5}$), exists a unique solution for ($ \alpha$$ _{1}$, $ \alpha$$ _{2}$, $ \alpha$$ _{3}$). We consider the pairs ($ \alpha$$ _{4}$ = 1, $ \alpha$$ _{5}$ = 0) and ($ \alpha$$ _{4}$ = 0, $ \alpha$$ _{5}$ = 1), all other cases are linear combinations of these two.

  1. Pair $ \alpha$$ _{4}$ = 1 and $ \alpha$$ _{5}$ = 0.

    $\displaystyle \left(
 \begin{array}{ccc}
 1 & 0 & 0 \ 
 0 & 1 & 0 \ 
 0 & 0 &...
...array}\right) =\left(
 \begin{array}{c}
 -1 \ 
 4 \ 
 2
 \end{array}
 \right)$    

    which has solution

    $\displaystyle \left(
 \begin{array}{c}
 \alpha _{1} \ 
 \alpha _{2} \ 
 \alph...
...ray}
 \right) =\left(
 \begin{array}{c}
 -1 \ 
 2 \ 
 2
 \end{array}
 \right)$    

    % latex2html id marker 1241
$\displaystyle \therefore \pi _{1} =F^{\alpha _{1} ...
...
 _{3} } \rho ^{\alpha _{4} } \nu ^{\alpha _{5} } =\frac{\rho U^{2}
 D^{2} }{F}$    

    Conventionally, $ \pi_{1} \rightarrow 2\pi_{1}^{-1} $ and % latex2html id marker 1245
$ \therefore \pi _{1} =\frac{F}{\frac{1}{2} \rho U^{2} D^{2} }
\equiv C_{d}, $ which is the Drag coefficient.

  2. Pair $ \alpha$$ _{4}$ = 0 and $ \alpha$$ _{5}$ = 1.

    $\displaystyle \left(
 \begin{array}{ccc}
 1 & 0 & 0 \ 
 0 & 1 & 0 \ 
 0 & 0 &...
...ay}
 \right) =\left(
 \begin{array}{c}
 0 \ 
 -2 \ 
 -1
 \end{array}
 \right)$    

    which has solution

    $\displaystyle \left(
 \begin{array}{c}
 \alpha _{1} \ 
 \alpha _{2} \ 
 \alph...
...ay}
 \right) =\left(
 \begin{array}{c}
 0 \ 
 -1 \ 
 -1
 \end{array}
 \right)$    

    % latex2html id marker 1259
$\displaystyle \therefore \pi _{2} =F^{\alpha _{1} ...
...ha
 _{3} } \rho ^{\alpha _{4} } \upsilon ^{\alpha _{5} }
 =\frac{\upsilon }{UD}$    

    Conventionally, % latex2html id marker 1261
$ \pi_{2} \rightarrow \pi_{2}^{-1}, \therefore \pi
_{2} =\frac{UD}{\upsilon } \equiv R_{e}, $ which is the Reynolds number.

Therefore,

$ F(\pi_{1}, \pi_{2}) = 0$ or $ \pi_{1} = f(\pi_{2})$
$ F(C_{d}, R_{e}) = 0$ or $ C_{d} = f( R_{e})$
$ F( \frac{F}{\frac{1}{2} \rho U^{2} D^{2} },
\frac{UD}{\nu } ) = 0$ or $ \frac{F}{\frac{1}{2}
\rho U^{2} D^{2} } =f( \frac{UD}{\nu }
)$



Karl P Burr 2003-08-27