13.021 - Marine Hydrodynamics, Fall 2003

Lecture 6

Copyright © 2003 MIT - Department of Ocean Engineering, All rights reserved.

13.021 - Marine Hydrodynamics

Lecture 6

2.2 Similarity Parameters (from governing equations)

Non-dimensionalize and normalize basic equations by scaling:

Identify characteristic scales for the problem


velocity U $ \vec{v} = U\vec{v} \ast $
length L $ \vec{x} = L\vec{x} \ast $
time T $ t = Tt\ast $
pressure p$ _{o}$- p$ _{v}$ $ p = (p_o - p_v )p\ast $

All ()* quantities are dimensionless and normalized (i.e. O(1)), e.g. $ \frac{\partial \vec{v} * }{\partial x * } = O(1)$. Apply to governing equations: (also internal constitution, boundary conditions)

Since all ()* terms are O(1), the coefficients $ \widetilde{(\hspace{36pt})} $ measure the relative importance of each term (as compared to the convective inertia term):

Alternatively, using physical arguments: forces acting on a fluid particle

  1. inertial forces $ \sim $ mass $ \times $ acceleration $ \sim
\left( {\rho L^3} \right)\left( {\frac{U^2}{L}} \right) = \rho
U^2L^2$

  2. viscous forces $ \sim \underset{\mbox{\tiny {shear stress}}}{\underbrace {\mu \frac{\partial
u...
...area} \sim \quad \left( {\mu
\frac{U}{L}} \right)\left( {L^2} \right) = \mu UL$

  3. gravitational forces $ \sim $ mass $ \times $ gravity $ \sim \quad (\rho L^3)g$

  4. pressure forces $ \sim \quad (p_o - p_v )L^2$

For similar streamlines, particles must be acted on by forces whose resultant is in the same direction at geosimilar points. Therefore, forces must be in the same ratios:

$\displaystyle \frac{inertia}{viscous} \sim \frac{\rho U^2L^2}{\mu UL} = \frac{UL}{\upsilon
} = R_e
$

$\displaystyle \left( {\frac{inertia}{gravity}} \right)^{\raise0.5ex\hbox{$\scri...
...ern-0.15em\lower0.25ex\hbox{$\scriptstyle 2$}} =
\frac{U}{\sqrt {gL} } = F_r
$

$\displaystyle \left( {\frac{\textstyle{1 \over 2}inertia}{pressure}} \right)^{ ...
...r 2}\rho U^2L^2} = \frac{p_o - p_v
}{\textstyle{1 \over 2}\rho U^2} = \sigma
$

Importance of Various Parameters

For example, hydrofoil traveling close to the fluid surface.

\begin{figure}
\begin{center}
\epsfig{file=lfig61.eps,height=2.0in,clip=}
\end{center}
\end{figure}

Parameters:

$\displaystyle S = \frac{L}{UT}, \sigma = \frac{P_o - P_v }{\frac{1}{2}\rho
 U^{...
...U^2L}{\frac{ \sum }{\rho }}, F_r =
 \frac{U}{\sqrt {gL} }, R_e = \frac{UL}{\nu}$    

Force coefficient on the foil:

$\displaystyle C_{F} = \frac{F}{\frac{1}{2}\rho U^2L^2} =
 C_F\left(S,\sigma^{-1},W_e ^{ - 1},F_r ,R_e^{ - 1} \right)$    

  1. $ S = L / UT$ , change $ S$ with $ \sigma $, $ W_{e}$, $ F_{r}$, $ R_{e}$ fixed.

    \begin{figure}
\begin{center}
\epsfig{file=lfig62.eps,height=3.5in,clip=}
\end{center}
\end{figure}

    For $ S « 1$, assume steady-state: $ \frac{\partial
}{\partial t} = 0$
    For $ S» 1$, unsteady effect is dominant. For example:

    $\displaystyle \left\{\begin{array}{c} L \approx 10 \mbox{m} \ U \approx 10
 \mbox{m/s}
 \end{array}\right. \Rightarrow T \approx 1$    seconds gives % latex2html id marker 1016
$\displaystyle S \approx
 1, \therefore$    assume steady state since $\displaystyle S « 1$    

    So, for steady-state problem:

    $\displaystyle C_{F} = C_F \left(\sigma ^{ - 1},W_e ^{ - 1},F_r ,R_e^{ - 1}
 \right)$    

  2. $ \sigma = \frac{P_o - P_v }{\frac{1 }{ 2}\rho U^2}$ (fixed $ R_{e}, F_{r}$ and $ W_{e}$).


      P$ _{v}$: vapor pressure
      $ P_{o} \quad \le P_{v}:$ State of fluid changes from liquid to gas $ \leftarrow $ CAVITATION
      Mechanism: $ P_{o } < P_{v} \quad \to $ Fluids cannot withstand tensions, the state of fluids changes.

      Consequence: (1) Unsteady $ \to $ Vibration of the structures, which may lead to fatigue

    (2) Unstable $ \to $ Sudden cavity collapses $ \to $ huge force acting on the structure surface $ \to $ surface erosion.


    \begin{figure}
\begin{center}
\epsfig{file=lfig63.eps,height=3in,clip=}
\end{center}
\end{figure}

    For $ \sigma « 1$, there is cavitation, and for $ \sigma
» 1$, there is no cavitation. For example:

    $\displaystyle \left\{\begin{array}{c} p_{0} \approx 10^{5} \mbox{N/$m^{2}$} \ ...
...mbox{m} \ 
 U \approx 10 \mbox{m/s} \end{array}\right. \Rightarrow \sigma = 2.$    To have cavitation we need large $\displaystyle U$    or $\displaystyle p_{o}
 \sim p_{v}$    

    Note: $ p_{v}$ is the pressure at which the water boils.

    For steady non-cavitation flow ( $ \sigma
» 1$)

    $\displaystyle C_{F} = C_F \left( W_e ^{ - 1},F_r ,R_e^{ - 1} \right)
$

  3. $ W = \frac{U^2L}{\frac{\Sigma}{\rho}}$ (fixed $ R_{e}$ and $ F_{r}$). For example, if $ U = 1m \mathord{\left/ {\vphantom {m s}} \right.
\kern-\nulldelimiterspace} s...
...= 0.07N \mathord{\left/
{\vphantom {N m}} \right. \kern-\nulldelimiterspace} m$(water-air 20$ ^{o}$C), $ \rho $=10$ ^{3}$kg/m$ ^{3}$ and $ L = 100 $ m, we end up with $ W_{e} \approx 10^{8}$. If we want $ W_{e} \approx 1$, we need $ L \approx 10^{-4}$ m. Then, for $ L » 10^{-4}$ m, $ W_{e}
\rightarrow \infty$ and $ W_{e}^{-1} \rightarrow 0$, so neglect surface tension effect.

    For steady, non-cavitation, non-surface tension effect,

    $\displaystyle C_F = C_F \left( F_r ,R_e^{ - 1} \right)
$

  4. $ F_r = \frac{U}{ \sqrt {gL} }$, which measures the effect of gravity.

    For problems without dynamic boundary conditions (i.e. if free surface is absent) or if the free-surface is far away or not displaced, gravity effects are irrelevant and $ F_{r}$ is not important $ \to \quad F^\ast = C_F \left( {R_e^{ - 1} } \right)$

    e.g.

    \begin{figure}
\begin{center}
\epsfig{file=lfig64.eps,height=3.5in,clip=}
\end{center}
\end{figure}

    In general $ C_{F} = C_F \left( {F_r ,R_e^{ - 1} }
\right) = C_1 \left( {F_r } \right) + = C_2 \left( {R_e^{ - 1} }
\right) \quad \leftarrow $ Froude's Hypothesis

    Dynamic similarity requires:

    $\displaystyle (R_{e})_{1 } = (R_{e})_{2},$    
    $\displaystyle (F_{r})_{1 } = (F_{r})_{2 }.$    

    For two geometrically similar systems $ \to U_{1 } = U_{2 }$, $ L_{1} = L_{2 }$ for the same $ \nu $ and $ g$.

  5. $ R_{e }= UL/\nu$.

    For steady, no $ \sigma $, no $ W_{e}$, no gravity effects, $ C_{F} = C_F \left( {R_e^{ - 1} } \right)$

    \begin{figure}
\begin{center}
\epsfig{file=lfig65.eps,height=3in,clip=}
\end{center}
\end{figure}

    $\displaystyle R_{e} « 1,$ Stokes flow (creeping flow)    
    $\displaystyle R_{e} < (R_{e})_{cr},$ Laminar flow    
    $\displaystyle R_{e} > (R_{e})_{cr},$ Turbulent flow    
    $\displaystyle R_{e} \rightarrow \infty,$ Ideal flow    

    For example:

    $\displaystyle \left\{\begin{array}{c} U = 10 m/s \ L = 10 m \ \nu = 10^{-6}
 m^{2}/sec \end{array}\right. \Rightarrow R_{e} = 10^{8}$    or $\displaystyle R_{e}^{-1} = 10^{-8}$    

    For steady, no $ \sigma $, no $ W_{e}$, no gravity effect and ideal fluid:

    $ C_{F} = C_F \left( {0,0,0,0,0} \right) =$   constant$ = 0$

    $ \rightarrow $D'Alembert's Paradox: No drag force on moving body.



Karl P Burr 2003-08-30