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Chapter 3 — Ideal Fluid Flow

Ideal fluid: inviscid (v = 0) and incompressible (22 = 0) fluid.
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For ‘typical’ problems we are interested in: (L > 1m, U > 1m/s) Vyater = 107m?/s

v
— =R << 1;(<1079),
=R << 1(2107)
i.e. viscous effect << inertial effects, so an ideal fluid is a good approximation.

Governing Equations

e Continuity:

V-v=0
e Momentum (Navier Stokes = Euler equation):

ov . . 1 .
4 D-VU=—-Vp—gj
g TV V=gl

By neglecting the viscous stress term (¥V?27) in the Navier-Stokes equation, it reduces to the Euler
equation. N-S is a second order p.d.e. (2"¢ order in V?), but Euler eq. is a first order p.d.e.

Boundary Conditions for Euler equations (Ideal Flow):




o KBC:

v-i=u-n=U, <« “NoFlux" - free slip
———

Note: ”No slip” condition 7 - = U - does not apply since v = 0.

e DBC: p=... Given (pressure) (Cannot specify tangential 7;; since v = 0)

Cirulation — Kelvin’s Theorem

' :Circulation (around closed contour C)

r:/ . di
CW-J

tangential

velocity

where C' is an arbitrary contour. I' is instantaneous, Eulerian idea, a "snapshot”.

Kelvin’s Theorem (KT) :

For ideal fluid under conservative body forces,

dr

i 0 for any material contour C,



i.e., I remains constant. Proof: c¢f JNN pp 103 (Mathematical Proof). This is a statement of conservation
of angular momentum.

Kinematics of a small deformable body:

1. Uniform translation — Linear momentum

2. Rigid body rotation — Angular Momentum

3. Pure strain— no linear or angular momentum involved.(No change in volume)
4. Volume dilation

For ideal fluid under conservative body forces:

1. Can change
2. By K.T., cannot change.
3. Can change

4. not allowed (incompressible fluid).

Angular momentum is conserved: Ideal flow.

1. Angular Momentum x angular velocity w.

e.g.




Angular momentum:
L =77 =mur=mr*
Conservation of angular momentum:

miviT1 = MaVaTa,

but m; = mge = vir; = vars.

Note: conservation of angular momentum does not imply constant angular velocity.

2. A circular material volume V,.
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3. For arbitrary material volume V,,, C,,



Vorticity:
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Relationship of vorticity to circulation - Apply Stokes’ Theorem:
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What is vorticity?

For example, special case: 2D flow - w = 0; % =0; wy=w,=0and
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=0 = w, = 0 — no vorticity

2. Pure Strain: (no change in volume)
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4. Pure Rotation
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Pure rotation with angular velocity €2
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i.e. vorticity o 2(angular velocity).

Irrotational Flow:

w = 0 everywhere < I' =0 for any C

Suppose at t = t,, flow is irrotational, i.e. I' = 0 for all C'. Then for ideal fluid under conservative
body forces, Kelvin’s theorem states that I' = 0 for all C for all time ¢. i.e., once irrotational, always
irrotational (Special case of Kelvin’s theorem).



