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Chapter 3 – Ideal Fluid Flow

Ideal fluid: inviscid (ν = 0) and incompressible (Dρ
Dt

= 0) fluid.

Re =
inertia

viscous
=

UL

ν

For ‘typical’ problems we are interested in: (L ≥ 1m, U ≥ 1m/s) νwater = 10−6m2/s

ν

UL
= R−1

e << 1; (≤ 10−6),

i.e. viscous effect << inertial effects, so an ideal fluid is a good approximation.
Governing Equations

• Continuity:

∇ · ⇀
v = 0

• Momentum (Navier Stokes ⇒ Euler equation):

∂
⇀
v

∂t
+

⇀
v · ∇⇀

v = −1

ρ
∇p− gĵ

By neglecting the viscous stress term (ν∇2~v) in the Navier-Stokes equation, it reduces to the Euler
equation. N-S is a second order p.d.e. (2nd order in ∇2), but Euler eq. is a first order p.d.e.

Boundary Conditions for Euler equations (Ideal Flow):
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• KBC:

⇀
v · n̂ =

⇀
u · n̂ = Un︸ ︷︷ ︸

given

← “No Flux” - free slip

Note: ”No slip” condition ~v · t̂ = ~U · t̂ does not apply since ν = 0.

• DBC: p = . . . Given (pressure) (Cannot specify tangential τij since ν = 0)

Cirulation – Kelvin’s Theorem

Γ :Circulation (around closed contour C)

 C 
xd
�

 
v
�

 

Γ =

∫

C

⇀
v · d⇀

x︸ ︷︷ ︸
tangential

velocity

where C is an arbitrary contour. Γ is instantaneous, Eulerian idea, a ”snapshot”.

Kelvin’s Theorem (KT) :

For ideal fluid under conservative body forces,

dΓ

dt
= 0 for any material contour C,
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i.e., Γ remains constant. Proof: cf JNN pp 103 (Mathematical Proof). This is a statement of conservation
of angular momentum.

Kinematics of a small deformable body:

1. Uniform translation → Linear momentum

2. Rigid body rotation → Angular Momentum

3. Pure strain→ no linear or angular momentum involved.(No change in volume)

4. Volume dilation

For ideal fluid under conservative body forces:

1. Can change

2. By K.T., cannot change.

3. Can change

4. not allowed (incompressible fluid).

Angular momentum is conserved: Ideal flow.

1. Angular Momentum × angular velocity
⇀
ω.

e.g.

 
v1 v2 
m1

m2r2 

r1 

θ 
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Angular momentum:

~L = ~r × ~v = mvr = mr2θ̇

Conservation of angular momentum:

m1v1r1 = m2v2r2,

but m1 = m2 ⇒ v1r1 = v2r2.

Note: conservation of angular momentum does not imply constant angular velocity.

2. A circular material volume Vm.

 
v 

r 

2π∫

0

dθr1v1 =

2π∫

0

dθr2v2

3. For arbitrary material volume Vm, Cm

Γ1 =

∫

C1

⇀
v1 · d⇀

x =

∫

C2

⇀
v2 · d⇀

x = Γ2
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Vorticity:

⇀
ω = ∇× ⇀

v =

(
∂w

∂y
− ∂x

∂z

)
î +

(
∂x

∂z
− · · ·

)
ĵ + · · ·

Relationship of vorticity to circulation - Apply Stokes’ Theorem:

Γ =

∮

C

⇀
v · d⇀

x =

∫∫

S

(∇× ⇀
v
) · n̂dS where

∫∫
©
C

⇀
v · d⇀

x =

∫∫
©
S

⇀
ω · n̂dS = Flux of vorticity out of S

What is vorticity?

For example, special case: 2D flow - w = 0; ∂
∂z

= 0; ωy = ωx = 0 and

ωz =
∂v

∂x
− ∂u

∂y

1. Translation: u = constant, v = constant

u=U, v=V u=U, v=V

u=U, v=V

∂v

∂x
= 0,

∂u

∂y
= 0 ⇒ ωz = 0 → no vorticity

2. Pure Strain: (no change in volume)
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∂u

∂x
= −∂v

∂y
; u = -v;

∂u

∂y
= 0;

∂v

∂x
= 0 ⇒ ωz = 0

3. Angular deformation

u=U1, v=V1u=0, v=0

u=U2,  v=V2

~ω = 0 only if
∂u

∂y
=

∂v

∂x
→ δx = δy(for ∆x = ∆y)

4. Pure Rotation
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u=0, v=0

u=-U, v=0

u=0, v=V

Pure rotation with angular velocity Ω

∂v

∂x
= Ω;

∂u

∂y
= −Ω; ωz = 2Ω

i.e. vorticity ∝ 2(angular velocity).

Irrotational Flow:

⇀
ω ≡ 0 everywhere ⇔ Γ ≡ 0 for any C

Suppose at t = to, flow is irrotational, i.e. Γ ≡ 0 for all C. Then for ideal fluid under conservative
body forces, Kelvin’s theorem states that Γ ≡ 0 for all C for all time t. i.e., once irrotational, always
irrotational (Special case of Kelvin’s theorem).
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