13.021 - Marine Hydrodynamics, Fall 2003

Lecture 8

Copyright © 2003 MIT - Department of Ocean Engineering, All rights reserved.

13.021 - Marine Hydrodynamics
Lecture 8

Vortex Lines and Vortex Tubes.

A vortex line is a line everywhere tangent to $ \vec{\omega } $

A vortex tube (filament) is a bundle of vortex lines.

Example (figures) of natural vortex tubes are tornados (see figures: 1, 2, 3, 4, 5 and 6), watersprouts (similar as a tornado, but occurs over bodies of water. See figures 1, 2, 3, 4, 5 and 6) and dust devils (see figure 1 and figure 2 for a martian dust devil). Vortex tubes generated at the tip of aircraft wings (see figures 1, 2, 3, 4 and 5), at the tip of propellers (see figures 1 and 2) and at other parts of an aircraft wing and fuselage (see figures 1 and 2) are examples of man made vortex tubes and lines.

Some Properties:

Bernoulli Equation

$\displaystyle \hspace{-2.0in} p =
 f\left(\vec{v} \right) \hspace{0.5in}$ Viscous flow: Navier-Stokes' Equation    
  Ideal flow: Bernoulli Equation    

(BI): Bernoulli eq. for steady (Rotational in general) Ideal flow

$\displaystyle \frac{\partial }{\partial t} = 0
$

Steady, inviscid Euler equation: (momentum equation)

$\displaystyle \vec{v} \cdot \nabla \vec{v} = - \nabla \left( {\frac{p}{\rho } + gy} \right)$ (1)

From Vector Calculus:

$\displaystyle \nabla \left(\vec{u} \cdot \vec{v} \right)$ $\displaystyle = \left( \vec{u} \cdot \nabla \right)\vec{v} + \left( \vec{v} \cd...
...la \times \vec{u} \right) + \vec{v} \times \left( \nabla \times \vec{u} \right)$ (2)
$\displaystyle \nabla \left({\vec{u}} ^2 \right)$ $\displaystyle = 2\left[ \left(
 \vec{u} \cdot \nabla \right)\vec{u} + \vec{u} \times \left( \nabla \times \vec{u} \right) \right]$ (3)

Then we write

$\displaystyle \left(\vec{v}\cdot\vec{u}\right)\vec{v} = \frac{1}{2}\nabla\left(\vec{v}\cdot\vec{v}\right)-\vec{v}\times\left(\nabla\times\vec{v}\right).$ (4)

From equations (1) and (4), we have that

$\displaystyle \frac{1}{2}\nabla\left(\vec{v}\cdot\vec{v}\right)-\vec{v}\times\left(\nabla\times\vec{v}\right) = -\nabla\left(\frac{p}{\rho}+gy\right).$ (5)

Then, $ \vec{v}\cdot$(5) gives

$\displaystyle \vec{v}\cdot\frac{1}{2}\nabla\left(\vec{v}\cdot\vec{v}\right)-\un...
...s\vec{v}\right)\right)}}}} = -\vec{v}\cdot\nabla\left(\frac{p}{\rho}+gy\right),$ (6)

and which implies that

$\displaystyle \vec{v}\cdot\nabla\left(\frac{1}{2}\vec{v}\cdot\vec{v}+\frac{p}{\rho}+gy\right) = 0.$ (7)

The equation (7) above states that the gradient of the quantity

$\displaystyle F(x,y) = \frac{1}{2}\vec{v}\cdot\vec{v}+\frac{p}{\rho}+gy$ (8)

is ortogonal to the velocity vector $ \vec{v}$. In other words, the quantity $ F(x,y)$ does not vary in the direction of the velocity vector. Since the velocity vector is tangent to the streamlines, que quantity $ F(x,y)$ is constant along the streamlines so

$\displaystyle \frac{1}{2}\vec{v}\cdot\vec{v}+\frac{p}{\rho}+gy =$   constant    

along the streamline. Since the flow is steady, we can write

$\displaystyle \frac{D}{Dt}\left(\frac{1}{2}\vec{v}\cdot\vec{v}+\frac{p}{\rho}+g...
...v}\cdot\nabla\left(\frac{1}{2}\vec{v}\cdot\vec{v}+\frac{p}{\rho}+gy\right) = 0,$ (9)

which implies that the $ F(x,y)$ is constant along a material element of the flow. In general we write

$\displaystyle F(x,y) = F(\Psi),$ (10)

where $ \Psi$ is a tag for a particular streamline.

Assumptions: Ideal fluid, Steady (Rotational or not) flow.

Example: Contraction in a water or wind tunnel:

\begin{figure}
\begin{center}
\epsfig{file=lfig87.eps,height=2.0in,clip=}
\end{center}
\end{figure}

Contraction Ratio: $ \gamma = R_{1}/R_{2 } >> 1$ ( $ \gamma \quad = O(10)$ for wind ; $ \gamma = O(5)$ for water).

Let $ \bar {U}_1 $ and $ \bar {U}_2 $ be average velocity at section 1 and 2 respectively.

  1. Apply continuity $ \to \quad \bar {U}_1 \left( {\pi R_1^2 }
\right) = \bar {U}_2 \left( {\pi R_2...
...
{U}_2 }{\bar {U}_1 } = \left( {\frac{R_1 }{R_2 }} \right)^2 =
\gamma ^2 > > 1$

  2. \begin{figure}
\begin{center}
\epsfig{file=lfig88.eps,height=2.0in,clip=}
\end{center}
\end{figure}

    Since $ \frac{\partial u}{\partial r} \ne 0,
\vec{\omega } \ne 0 \to $ vortex ring.

    \begin{displaymath}\begin{array}{l} \omega/L = \mbox{ \ constant \ }
\rightarro...
...t( {\frac{\partial
u}{\partial r}} \right)_1 \\
\end{array}\end{displaymath}

    i.e.

    \begin{figure}
\begin{center}
\epsfig{file=lfig89.eps,height=1.5in,clip=}
\end{center}
\end{figure}

  3. Near the center:

    Let $U_1 = \bar {U}_1 \left( {1 + \varepsilon _1 } \right) \mbox{\
and \ } U_2 = \bar {U}_2 \left( {1 + \varepsilon _2 } \right),$

    where $ \varepsilon _{1}$ and $ \varepsilon _{2 }$ measure the relative velocity fluctuations. Apply the Bernoulli equation along a reference average streamline

    $\displaystyle P_1 + \textstyle{1 \over 2}\rho \bar {U}_1^2 = P_2 + \textstyle{1
 \over 2}\rho \bar {U}_2^2$ (11)

    Apply Bernoulli Equation to a particular streamline:

    $\displaystyle P_1 + \textstyle{1 \over 2}\rho \left[ {\bar {U}_1 \left( {1 +
 \...
...ver
 2}\rho \left[ {\bar {U}_2 \left( {1 + \varepsilon _2 } \right)}
 \right]^2$ (12)

    From (11) and (12) we obtain

    \begin{displaymath}
\begin{array}{l}
\varepsilon _1 \bar {U}_1^2 = \varepsilo...
...ar
{U}_2^2 }\sim \frac{1}{\gamma ^4} < < 1 \\
\end{array}
\end{displaymath}



Karl P Burr 2003-08-31