13.021 - Marine Hydrodynamics, Fall 2003

Lecture 9

Copyright © 2003 MIT - Department of Ocean Engineering, All rights reserved.

13.021 - Marine Hydrodynamics
Lecture 9

Vorticity Equation

Return to viscous incompressible flow.

N-S equation:

$\displaystyle \frac{\partial
\vec{v} }{\partial t} + \left(\vec{v} \cdot \nabl...
...{v} = - \nabla \left( {\frac{p}{\rho } + gy} \right) + \nu \nabla
^2\vec{v}
$

Then,

$\displaystyle \nabla \times \left(\mbox{N-S equation}\right)\buildrel \over \lo...
...a \times \left(\vec{v} \cdot \nabla\right)\vec{v} = \nu \nabla^2\vec{\omega }
$

since $ \nabla \times \nabla \phi = 0$ for any $ \phi $ (conservative forces)

Now consider the vector identities:

$\displaystyle (\vec{v} \cdot \nabla)\vec{v}$ $\displaystyle = \frac{1}{2}\nabla \left( \vec{v} \cdot \vec{v} \right) - \vec{v} \times \left( {\nabla \times \vec{v} } \right)$    
  $\displaystyle = \nabla \left( {\frac{v^2}{2}} \right) -\vec{v} \times \vec{\omega }$    where $\displaystyle v^2 \equiv \left\vert\vec{v} \right\vert^2 = \vec{v} \cdot \vec{v}$    
$\displaystyle \nabla \times \left({ \vec{v}} \cdot \nabla \right) \vec{v}$ $\displaystyle = \nabla \times \nabla \left( {\frac{v^2}{2}} \right) - \nabla \t...
...vec{\omega } \right) = \nabla \times \left(\vec{\omega } \times \vec{v} \right)$    
  $\displaystyle = \left( \vec {v} \cdot \nabla \right)\vec{\omega}
 - \left( { \v...
...d{array}}{\underbrace{
 \vec {v} \left( {\nabla \cdot \vec{\omega
 }} \right)}}$    

Therefore,

$\displaystyle \frac{\partial \vec{\omega } }{\partial t}$ $\displaystyle + \left(\vec{v} \cdot \nabla \right) \vec{\omega } = \left(\vec{\omega } \cdot \nabla \right) \vec{v} +\nu\nabla^{2} \vec{\omega }$    
or      
$\displaystyle \frac{D \vec{\omega } }{Dt}$ $\displaystyle = \left(\vec{\omega } \cdot \nabla \right) \vec{v} + \underbrace{\nu \nabla
 ^2 \vec{\omega} }_{\mbox{diffusion}}$    

Example: Pile on a River

\begin{figure}
\begin{center}
\epsfig{file=lfig93.eps,height=1.5in,clip=}
\end{center}
\end{figure}

What really happens as the length of the vortex tube L increases?

IFCF (Ideal fluid under the influence of conservative forces) is no longer a valid assumption.

Why?

Ideal flow assumption implies that the inertia forces are much larger than the viscous effects (Reynolds number).

$\displaystyle R_e \sim \frac{UL}{\nu }$    Length increases $\displaystyle \Rightarrow$    diameter becomes really small $\displaystyle \Rightarrow \quad R_{e}$    is not that big after all.$\displaystyle $

Therefore IFCF is no longer valid.

3.3 Potential Flow - ideal (inviscid and incompressible) and irrotational flow

If $ \vec{\omega } \equiv 0$ at some time $ t$, then $ \vec{\omega } \equiv 0$ always for ideal flow under conservative body forces by Kelvin's theorem. Given a vector field $ \vec{v} $ for which $ \vec{\omega } = \nabla \times \vec{v} \equiv 0$, then there exists a potential function (scalar) - the velocity potential - denoted as $ \phi $, for which

$\displaystyle \vec{v} = \nabla \phi
$

Note that $ \vec{\omega } = \nabla \times \vec{v} = \nabla \times \nabla \phi \equiv 0 $ for any $ \phi $, so irrotational flow guaranteed automatically. At a point $ \vec{x}$ and time $ t$, the velocity vector $ \vec{v}(\vec{x},t)$ in cartesian coordinates in terms of the potential function $ \phi(\vec{x},t)$ is given by

$\displaystyle \vec{v} \left(\vec{x} ,t \right) = \nabla \phi \left(\vec{x} ,t \...
...x},\frac{\partial \phi }{\partial y},\frac{\partial \phi}{\partial z} \right)
$

\begin{figure}
\begin{center}
\epsfig{file=lfig94.eps,height=2in,clip=}
\end{center}
\end{figure}

The velocity vector $ \vec{v} $ is the gradient of the potential function $ \phi $, so it always points towards higher values of the potential function.

Governing Equations:

Continuity:

$\displaystyle \nabla \cdot
 \vec{v} = 0 = \nabla \cdot \nabla \phi \Rightarrow \nabla ^2\phi = 0$    

Number of unknowns $ \to \quad \phi $

Number of equations $ \to \quad \nabla ^2\phi = 0$

Therefore the problem is closed. $ \phi $ and $ p$ (pressure) are decoupled. $ \phi $ can be solved independently first, and after it is obtained, the pressure $ p$ is evaluated.

$\displaystyle p = f\left(
 \vec{v} \right) = f\left( \nabla \phi \right) \quad \to$    Solve for $\displaystyle \phi ,$    then find pressure.    

3.4 Bernoulli equation for potential flow (steady or unsteady)

Euler eq:

$\displaystyle \frac{\partial \vec{v} }{\partial t} + \nabla \left( \frac{v^2}{2...
...) - \vec{v} \times \vec{\omega } = - \nabla \left( \frac{p}{\rho } + gy \right)$    

Substitute $ \vec{v} = \nabla \phi $ into the Euler's equation above, which gives:

$\displaystyle \nabla \left( {\frac{\partial \phi }{\partial t}} \right) + \nabl...
...\phi } \right\vert^2} \right) = -
 \nabla \left( {\frac{p}{\rho } + gy} \right)$    

or

$\displaystyle \nabla \left\{ {\frac{\partial \phi }{\partial t} + \frac{1}{2}\left\vert
 {\nabla \phi } \right\vert^2 + \frac{p}{\rho } + gy} \right\} = 0,$    

which implies that

$\displaystyle \frac{\partial \phi }{\partial t} + \frac{1}{2}\left\vert {\nabla \phi }
 \right\vert^2 + \frac{p}{\rho } + gy = f(t)$    

everywhere in the fluid for unsteady, potential flow. The equation above can be written as

$\displaystyle p = - \rho \left[ {\frac{\partial \phi }{\partial t} + \frac{1}{2}\left\vert
 {\nabla \phi } \right\vert^2 + gy} \right] + F(t)$    

which is the Bernoulli equation for unsteady or steady potential flow.

Summary: Bernoulli equation for ideal flow.

3.5 - Boundary Conditions

3.6 - Stream function

Summary: Potential formulation vs. Stream-function formulation for ideal flows

table

  potential stream-function
definition $ \vec{v} = \nabla \phi $ $ \vec{v} = \nabla \times \vec {\psi } $
continuity $ \nabla \cdot\vec{v} = 0$ $ \nabla ^2\phi = 0$ automatically satisfied
irrotationality $ \nabla \times
\vec{v} = 0$ automatically satisfied $ \nabla \times \left( {\nabla \times \vec {\psi } } \right) = \nabla \left( {\nabla \cdot \vec {\psi } } \right) - \nabla ^2 \vec {\psi } = 0$
in 2D $ w = 0,\frac{\partial }{\partial z} = 0$ $ \nabla ^2\phi = 0$

$ \psi \equiv \psi _z : \nabla ^2 y\vec {\psi } = 0$
Cartesian (x, y) \begin{displaymath}\begin{array}{l}
u = \mbox{ }\frac{\partial \phi }{\partial...
...tial y} = - \frac{\partial \psi }{\partial x} \\
\end{array}\end{displaymath}

Cauchy-Riemann equations for ($ \phi $, $ \psi )$ =

(real, imaginary) part of an analytic complex function of z = x +iy

Polar (r,$ \theta )$ \begin{displaymath}\begin{array}{l}
v_r = \mbox{ }\frac{\partial \phi }{\parti...
...theta } = - \frac{\partial \psi }{\partial r} \\
\end{array}\end{displaymath}  


For irrotational flow use $ \phi $
For incompressible flow use $ \psi $
For both flows use $ \phi $ or $ \psi $

Given $ \phi $ or $ \psi $ for 2D flow, use Cauchy-Riemann equations to find the other:

For example: $ \phi $ = xy $ \psi $ = ?

$\displaystyle \left. {\begin{array}{l}
\frac{\partial \phi }{\partial \mbox{x}...
...2 + f_2
(y) \\
\end{array}} \right\} \psi = \frac{1}{2}(y^2 - x^2) + const
$



Karl P Burr 2003-09-02