up previous
Up: No Title Previous: No Title

3.11 Unsteady Motion - Added Mass

D'Alembert: ideal, irrotational, unbounded, steady.
Example 1: Force on a sphere accelerating ($U=U(t)$, unsteady) in an unbounded fluid at rest. (at infinity)
\begin{figure}
\begin{center}
\epsfig{file=lfig121.eps,height=1.7in,clip=}
\end{center}
\end{figure}

K.B.C on sphere: $\left. {\frac{\partial \phi }{\partial
r}} \right\vert _{r = a} = U(t)\cos \theta $
Solution: Simply a 3D dipole (no stream)

\begin{displaymath}\phi = - U(t)\frac{a^3}{2r^2}\cos \theta
\end{displaymath}

Check: $\left. {\frac{\partial \phi }{\partial
r}} \right\vert _{r = a} = U(t)\cos \theta $
Hydrodynamic force:

\begin{displaymath}F_x = - \rho \int\!\!\!\int\limits_B {\left( {\frac{\partial ...
...1}{2}\left\vert {\nabla \phi } \right\vert^2} \right)} n_x dS
\end{displaymath}

On r = a:
\begin{align}\left. {\frac{\partial \phi }{\partial r}} \right\vert _{r = a} & =...
...ft( {ad\theta }
\right)\left( {2\pi a\sin \theta } \right)} \notag
\end{align}

\begin{figure}
\begin{center}
\epsfig{file=lfig122.eps,height=1.4in,clip=}
\end{center}
\end{figure}

Finally,

\begin{displaymath}\begin{array}{l}
F_x = \left( { - \rho } \right)2\pi a^2\in...
... \mbox{ \ steady
(D'Alembert's Condition)} \\
\end{array}
\end{displaymath}


General 6 degrees of freedom motions

Added mass matrix (tensor)

\begin{displaymath}m_{ij}\ ; i, j = \underbrace {1, 2, 3}_{\dot {u},\dot {v},\do...
...dot
{\Omega }_x ,\dot {\Omega }_y ,\dot {\Omega }_z } \notag
\end{displaymath}  

$m_{ij}$: associated with force on body in $i$ direction due to unit acceleration in $j$ direction. For example, for a sphere:

\begin{displaymath}m_{11} = m_{22} = m_{33} = \raise.5ex\hbox{$\scriptstyle
1$ ...
...ho
\forall =(m_{A}) \mbox{ \ all other\ } m_{ij } = 0 \notag
\end{displaymath}  

Some added masses of simple 2D geometries A reasonable estimate for added mass od a 2D body is to use the displaced mass ( $\rho \forall )$ of an ``equivalent cylinder'' of the same lateral dimension or one that ``rounds off'' the body. For example, we consider a aquare:
1.
inscribed circle: $m_{A}=\rho \pi a^{2} = 3.14 \rho a^{2}$.
\begin{figure}
\begin{center}
\epsfig{file=lfig127.eps,height=1.25in,clip=}
\end{center}
\end{figure}
2.
circumscribed circle: $m_{A}=\rho \rho \pi \left( {\sqrt 2 a} \right)^2 = 6.28 \rho
a^{2}$.
\begin{figure}
\begin{center}
\epsfig{file=lfig128.eps,height=1.45in,clip=}
\end{center}
\end{figure}
Arithmetic mean of 1) + 2) $ \approx
4.71 \rho a^{2}$.

General 6 degrees of freedom forces and moments on a rigid body moving
in an unbounded fluid ( at rest at infinity)
\begin{figure}
\begin{center}
\epsfig{file=lfig129.eps,height=1.6in,clip=}
\end{center}
\end{figure}

\begin{align}\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\rightharpoonu...
... \right) \mbox{\ Rotation
(velocity)
with respect to O} \notag
\end{align}

Note: $OX_{1}X_{2}X_{3}$ fixed in the body.

Then (JNN §4.13) Einstein's $\Sigma $ notation applies.

\begin{displaymath}E_{jkl} = \mbox{\ ''alternating tensor''\ } = \left\{
\begin...
...i.e.,\ }
(1,3,2), (2,1,3), (3,2,1) \end{array}\right. \notag
\end{displaymath}  

Note:
1.
if $\Omega _{k } \equiv $ 0 , $F_j = - \dot {U}_i m_{ji} $(as expected by definition of $m_{ij})$. Also if $\dot {U}_i \equiv
0,$ then $ F_j = 0$ for any $U_{i}$, no force in steady translation.
2.
$B_l \sim U_i m_{l i} $ ``added momentum'' due to rotation of axes, 2) $\sim $ $\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\rightharpoonup$ }}\over
...
...ord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\rightharpoonup$ }}\over
{B}} $ where $\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\rightharpoonup$ }}\over
{B}} $ is linear momentum. (momentum from 1 coordinate into new $x_{j}$ direction)
3.
If $\Omega _k \equiv 0: M_j = \underbrace { - \dot {U}_i m_{j
+ 3,i} m_{ij} }_{\mb...
...mbox{\tiny {even with}} \dot{U}=0, M_{j}\ne 0
\mbox{\tiny {due to this term}}}$.
Moment on a body due to pure steady translation - ``Munk'' moment.
Example of Munk Moment - a 2D submarine in steady translation
\begin{figure}
\begin{center}
\epsfig{file=lfig1210.eps,height=1.7in,clip=}
\end{center}
\end{figure}

\begin{align}U_{1 } = & U \cos\theta \notag \\ U_{2} = & -U\sin\theta \notag
\end{align}

Consider steady motion: $\dot {U} = 0; \Omega _k = 0$. Then

\begin{displaymath}M_3 = - E_{3kl } U_k U_i m_{l i}
\end{displaymath}

For a 2D body, $m_{3i} = m_{i3} = 0$, also $U_{3} = 0,
i,k,l = 1, 2$. This implies that:
\begin{align}M_3 = & - \underbrace {E_{312} }_{ = 1}U_1 \left( {U_1 m_{21} + U_2...
...heta \left( {\underbrace {m_{22} -
m_{11} }_{ > 0}} \right) \notag
\end{align}

Therefore, $ M_3 > 0$ for $0 < \theta < \pi/2$ ("Bow up"). Therefore, a submarine under forward motion is unstable in pitch (yaw) (e.g., a small bow-up tends to grow with time), and control surfaces are needed:
\begin{figure}
\begin{center}
\epsfig{file=lfig1211.eps,height=1.2in,clip=}
\end{center}
\end{figure}

Usually $m_{22} >> m_{11}, m_{22} \approx \rho \forall
$. For small $\theta , \cos\theta \approx 1$. So, $U_{cr}^2 \le
gH$ or $F_{cr} \equiv \frac{U_{cr} }{\sqrt {gH} } \le
1$. Otherwise, control fins are required.
up previous
Up: No Title Previous: No Title