next up previous
Next: Added mass coefficient Up: No Title Previous: 3.12 - Slender body

Buoyancy Effects Due to Accelerating Flow

Example 2: Force on a stationary sphere in a fluid that is accelerated against it.
\begin{figure}
\begin{center}
\epsfig{file=lfig135.eps,height=1.in,clip=}
\end{center}
\end{figure}

\begin{align}\phi \left( {r,\theta ,t} \right) & = U\left( t \right)\left( {r +
...
...vert^2} \right\vert _{r =
a} & = \frac{9}{8}U^2\sin^2\theta \notag
\end{align}

Then,
\begin{align}F_x & = \left( { - \rho } \right)\left( {2\pi r^2} \right)\int\limi...
...row }\limits_{ = \rho \upsilon } + \frac{2}{3}\pi
a^3\rho } \notag
\end{align}

\begin{figure}
\begin{center}
\epsfig{file=lfig136.eps,height=1.75in,clip=}
\end{center}
\end{figure}

Part of F$_{x}$ is due to the pressure gradient which must be present to cause the fluid to accelerate:

\begin{displaymath}\begin{array}{l}
U\left( t \right):N.S.^\frac{\partial U}{\...
...mbox{ \ for uniform (1D) accelerated flow } \\
\end{array}
\end{displaymath}

Force on the body due to the pressure field

\begin{displaymath}\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\rightha...
...ac{\partial p}{\partial x}d\upsilon } = \rho \forall \dot {U}
\end{displaymath}


\begin{figure}
\begin{center}
\epsfig{file=lfig137.eps,height=1.in,clip=}
\end{center}
\end{figure}

``Buoyancy'' force due to pressure gradient = $\rho
\forall \dot {U}$

Analogue: Buoyancy force due to hydrostatic pressure gradient. g = gravitational acceleration $
\leftrightarrow \quad \dot {U}$= fluid acceleration.

\begin{displaymath}\begin{array}{l}
p_s = - \rho gy \\
\nabla p_s = - \rho ...
...rall \hat {j} \mbox{\ Archimedes principle} \\
\end{array}
\end{displaymath}

Summary: Total force on a fixed sphere in an accelerated flow

\begin{displaymath}F_x = \dot {U}\left(
\underset{\mbox{\tiny{Buoyancy}}}{\unde...
...style{3 \over 2}\rho \forall
= \dot {U}3m_{\left( 1 \right)}
\end{displaymath}

In general, for any body in an accelerated flow:

\begin{displaymath}F_x = F_{\mbox{\tiny {buoyany}} }+\dot {U}m_{\left( 1 \right)},
\end{displaymath}

where $m_{(1)}$ is the added mass in still water (from now on, m)

\begin{displaymath}F_{x}= - \dot {U}m \mbox{\ for body acceleration with } \dot {U}
\end{displaymath}



Keyword Search