next up previous
Next: Wave Energy - Energy Up: Free-surface waves: linear superposition, Previous: Free-surface waves: linear superposition,

Superposition of linear plane progressive waves

1.
oblique plane waves: figure
\begin{figure}
\begin{center}
\epsfig{file=lfig201.eps,height=2.in,clip=}
\end{center}
\end{figure}

Consider wave propagation at an angle $\theta $ to the x-axis
\begin{align}\eta = & A\cos ( {\overbrace {kx\cos \theta + kz\sin \theta
}^{\ma...
...os \theta , k_z = k\sin
\theta , k = \sqrt {k_x^2 + k_z^2 } \notag
\end{align}

2.
Standing Waves:
\begin{figure}
\begin{center}
\epsfig{file=lfig202.eps,height=0.5in,clip=}
\end{center}
\end{figure}


\begin{align}\eta = & A\cos \left( {kx - \omega t} \right) + A\cos \left( { -
k...
...osh k\left( {y + h}
\right)}{\cosh kh}\cos kx \sin \omega t \notag
\end{align}

\begin{figure}
\begin{center}
\epsfig{file=lfig203.eps,height=2.in,clip=}
\end{center}
\end{figure}


\begin{displaymath}\frac{\partial \eta }{\partial x}\sim \frac{\partial \phi }{\...
...kx = 0\mbox{ at }x = 0,\frac{n\pi }{k} =
\frac{n\lambda }{2}
\end{displaymath}

Therefore, $ \left. {\frac{\partial \phi }{\partial x}}
\right\vert _{x = 0} = 0$. To obtain an standing wave, it is necessary to have perfect reflection at the wall at $x = 0$. figure
\begin{figure}
\begin{center}
\epsfig{file=lfig204.eps,height=1.5in,clip=}
\end{center}
\end{figure}


\begin{displaymath}A_I = A_R , R = \frac{A_R }{A_I } = 1 = \mbox{\ reflection
coefficient}
\end{displaymath}

3.
Oblique Standing Waves.
\begin{align}\eta _I = & A\cos \left( {kx\cos \theta + kz\sin \theta - \omega t}...
...+ kz\sin
\left( {\pi - \theta } \right) - \omega t} \right) \notag
\end{align}


\begin{figure}
\begin{center}
\epsfig{file=lfig205.eps,height=1.5in,clip=}
\end{center}
\end{figure}

Note: same A, R = 1.

\begin{displaymath}\eta _T = \eta _I + \eta _R = 2A\underbrace {\cos \overbrace ...
...}^{k_z z - \omega t}}_{\mbox{\tiny {propagating wave in
z}}}
\end{displaymath}

and

\begin{displaymath}\lambda _x = \frac{2\pi }{k\cos \theta }\mbox{ }V_{P_z } = \f...
...\sin \theta }\mbox{ }\lambda _z = \frac{2\pi }{k\sin \theta }
\end{displaymath}

Check:

\begin{displaymath}\frac{\partial \phi }{\partial \mbox{x}}\sim \frac{\partial \...
...\sin \left( {kx\cos \theta }
\right) = 0 \mbox{\ on\ } x = 0
\end{displaymath}

4.
Partial Reflection. figure
\begin{figure}
\begin{center}
\epsfig{file=lfig206.eps,height=0.75in,clip=}
\end{center}
\end{figure}

\begin{align}\eta _I = & A_I \cos \left( {kx - \omega t} \right) = A_I Re\left\{...
...
{\mbox{R }e^{ - i\left( {kx + \omega t} \right)}} \right\} \notag
\end{align}

$R$: Complex reflection coefficient
\begin{align}\mbox{R } = & \mbox{ }\left\vert \mbox{R} \right\vert e^{ - i\delta...
...{R} \right\vert\cos \left( {2kx + \delta }
\right)} \right] \notag
\end{align}
figure
\begin{figure}
\begin{center}
\epsfig{file=lfig207.eps,height=1.8in,clip=}
\end{center}
\end{figure}

At node,

\begin{displaymath}\left\vert {\eta _T } \right\vert = \left\vert {\eta _T } \ri...
... = - 1 \mbox{ or } 2kx + \delta = \left(
{2n + 1} \right)\pi
\end{displaymath}

At antinode,

\begin{displaymath}\left\vert {\eta _T } \right\vert = \left\vert {\eta _T } \ri...
...t( {2kx + \delta } \right) = 1\mbox{ or }2kx + \delta = 2n\pi
\end{displaymath}


\begin{displaymath}2kL = 2\pi \mbox{ so } L = \frac{\lambda }{2}
\end{displaymath}


\begin{displaymath}\left\vert R \right\vert = \frac{\left\vert {\eta _T } \right...
...\vert _{\min }
} = \left\vert R \left( k \right)\right\vert
\end{displaymath}

5.
Wave Group 2 waves, same amplitude A and direction, but $\omega $ and $k$ very close to each other.
\begin{figure}
\begin{center}
\epsfig{file=lfig208.eps,height=1.9in,clip=}
\end{center}
\end{figure}

\begin{align}\eta _1 = & \Re\left( {Ae^{i\left( {k_1 x - \omega _1 t} \right)}}
...
...( {k_{1,2} } \right)\mbox{\
and\ }V_{P_1 } \approx V_{P_2 } \notag
\end{align}

\begin{displaymath}\eta _T = \eta _1 + \eta _2 = \Re\left\{ {Ae^{i\left( {k_1 x ...
...2
- k_1 \mbox{\ and\ } \delta \omega = \omega _2 - \omega _1
\end{displaymath}


\begin{figure}
\begin{center}
\epsfig{file=lfig209.eps,height=1.8in,clip=}
\end{center}
\end{figure}


\begin{displaymath}\left. {\begin{array}{l}
\left\vert {\eta _T } \right\vert ...
...t)t = 0 \mbox{\ then\ }V_g = \frac{\delta \omega
}{\delta k}
\end{displaymath}

In the limit,

\begin{displaymath}\delta k,\delta \omega \to 0, V_g = \left. {\frac{d\omega }{dk}}
\right\vert _{k_1 \approx k_2 \approx k},
\end{displaymath}

and since

\begin{displaymath}\omega ^2 = gk\tanh kh \Rightarrow V_g = \underbrace {\left(
...
...ce {\frac{1}{2}\left(
{1 + \frac{2kh}{\sinh 2kh}} \right)}_n
\end{displaymath}


\begin{displaymath}\left. {\begin{array}{l}
\mbox{(a) deep water }kh > > 1 \\ ...
...1}{2} < n < 1 \\
\end{array}} \right\} \mbox{ }V_g \le V_p
\end{displaymath}


\begin{figure}
\begin{center}
\epsfig{file=lfig2010.eps,height=1.5in,clip=}
\end{center}
\end{figure}


Keyword Search
next up previous
Next: Wave Energy - Energy Up: Free-surface waves: linear superposition, Previous: Free-surface waves: linear superposition,