Cartesian $(x,y,z)$ coordinate system.


\begin{displaymath}\vec{v} =
\left(\overset{\hat{i}}{u},\overset{\hat{j}}{v},\ov...
...i}{\partial y}, \frac{\partial \phi}{\partial
z}\right) \notag
\end{displaymath}  

Cylindrical $(r,\theta,z)$ coordinate system.


\begin{displaymath}\vec{v} = \left( {\mathop {v_r }\limits^{\hat {e}_r } ,\matho...
...}{\partial \theta
},\frac{\partial \phi }{\partial z}} \right)
\end{displaymath}

Spherical $(r,\theta,\phi)$ coordinate system.


\begin{displaymath}\vec{v} = \nabla \phi = \left( {\mathop {v_r }\limits^{\hat {...
...sin \theta )}\frac{\partial \phi }{\partial
\varphi }} \right)
\end{displaymath}



Timothy S Choe
2003-03-15