Solution 2

Problem 1 Let $X \sim \mathcal{N}(0,1)$ and $Y \sim \mathcal{N}(0,2)$ be independent random variables.

- (a) What is a relationship between positive real numbers, a and b, such that $\mathbb{P}\left\{X^2 \leq a\right\} = \mathbb{P}\left\{Y^2 \leq b\right\}$?
- (b) Use MATLAB to obtain a and b such that $\mathbb{P}\left\{X^2 \leq a\right\} = \mathbb{P}\left\{Y^2 \leq b\right\} = 0.95$. Explain briefly how you obtain a and b. [*Hint*: This problem can be solved by a single MATLAB command. Use a function that inverses an appropriate distribution.]

Solution

(a) Define $Z \triangleq Y/\sqrt{2}$. Thus Z is a $\mathcal{N}(0,1)$ normal random variable, same as X. Then from the given relationship involving a and b,

$$\begin{split} \mathbb{P}\left\{X^2 \leq a\right\} &= \mathbb{P}\left\{Y^2 \leq b\right\} \\ &= \mathbb{P}\left\{2Z^2 \leq b\right\} \\ &= \mathbb{P}\left\{Z^2 \leq b/2\right\} \\ &= \mathbb{P}\left\{X^2 \leq b/2\right\} \end{split}$$

Therefore,

$$F_{X^2}(a) = F_{X^2}(b/2).$$

Note that X^2 is a chi-squared random variable with 1 degree of freedom, and F_{X^2} is its cdf. Since the cdf of a chi-square random variable (with any degree of freedom) is *strictly* increasing on $(0, \infty)$, the cdf is one-to-one. That is, a = b/2.

(b) A MATLAB command to obtain a is as follows:

```
% Return 'a' such that "Pr{ V <= a } = 0.95",
% where V is a chi-square r.v. with 1 degree of freedom.
a = chi2inv( 0.95, 1 );</pre>
```

The execution yields a = 3.8415, and thus b = 2a = 7.6830.



Problem 2 Let $X_1, X_2, ..., X_n$ be independent and identically distributed (i.i.d.) $\mathcal{N}(\mu, \mu)$ random variables for some $\mu > 0$.

- (a) Find an unbiased estimator of the mean μ .
- (b) Find an unbiased estimator of the variance μ that is independent of the estimator in (a).
- (c) Find an unbiased estimator of μ^2 . [*Hint*: Use results from (a) and (b).]

Solution

(a) In class we showed that

$$\overline{X}_n \triangleq \frac{X_1 + X_2 + \dots + X_n}{n}$$

is an unbiased estimator of the mean, for any i.i.d. random variables X_i 's.

(b) In class we showed that

$$S_n^2 \triangleq \frac{\sum_{i=1}^n (X_i - \overline{X}_n)^2}{n-1}$$

is an unbiased estimator of the variance, for any i.i.d. random variables X_i 's. When X_i 's have a normal distribution, we proved (in lecture 2) that \overline{X}_n and S_n^2 are independent.

(c) Recall that when random variables X and Y are independent, the expected value of their product is given by $\mathbb{E}\{XY\} = \mathbb{E}\{X\}\mathbb{E}\{Y\}$.

Let $T_n \triangleq \overline{X}_n S_n^2$ denote the product of estimators in (a) and (b). Therefore, $\mathbb{E} \{T_n\} = \mathbb{E} \{\overline{X}_n\} \mathbb{E} \{S_n^2\} = \mu^2$. That is, T_n is an unbiased estimator of μ^2 .

Note There are several unbiased estimator for μ^2 . From Problem Set 1 (Problem 1), we know that the sample mean is a normal random variable, $\overline{X}_n \sim N(\mu, \frac{\mu}{n})$. Thus, the second moment of $(\overline{X}_n)^2$ is

$$\mathbb{E}\left\{(\overline{X}_n)^2\right\} \triangleq \operatorname{Var}\left\{\overline{X}_n\right\} + \mathbb{E}^2\left\{\overline{X}_n\right\}$$
$$= \frac{\mu}{n} + \mu^2.$$

Therefore, by inspection, both estimators,

$$(\overline{X}_n)^2 - \frac{\overline{X}_n}{n}$$
 and $(\overline{X}_n)^2 - \frac{S_n^2}{n}$,

are unbiased estimators of μ^2 .

Problem 3 Let $X_1, X_2, ..., X_n$ be i.i.d. Poisson random variables with parameter λ :

$$\mathbb{P}\{X_1 = k\} = \frac{\lambda^k e^{-\lambda}}{k!}, \quad k = 0, 1, 2, \dots$$

- (a) Show that $T_n = (\overline{X}_n)^2 \overline{X}_n$ is a biased estimator of λ^2 , find its bias $b_n(\lambda)$, and hence find an unbiased estimator of λ^2 . Does $\lim_{n\to\infty} b_n(\lambda) = 0$ for all λ .
- (b) Verify that the above estimator is biased using the averaging technique in MATLAB(ref: Problem 1, Problem Set 1). Take an appropriate number of realizations of T_n and compute the bias value. Does this agree with your result in part a?

Solution

(a) Recall that the first and second moments of a Poisson random variable X_1 with parameter λ are given by

$$\mathbb{E}\left\{X_{1}\right\} = \lambda$$

$$\mathbb{E}\left\{X_{1}^{2}\right\} = \operatorname{Var}\left\{X_{1}\right\} + \mathbb{E}^{2}\left\{X_{1}\right\} = \lambda + \lambda^{2}.$$

Therefore,

$$\mathbb{E}\left\{T_n\right\} = \mathbb{E}\left\{\left(\frac{X_1 + X_2 + \dots + X_n}{n}\right)^2\right\} - \mathbb{E}\left\{\overline{X}_n\right\}$$

$$= \frac{1}{n^2}\mathbb{E}\left\{\left(\sum_{i=1}^n X_i^2\right) + \left(\sum_{1 \le i \ne j \le n} X_i X_j\right)\right\} - \mathbb{E}\left\{X_1\right\}$$

$$= \frac{1}{n^2}\left(n\mathbb{E}\left\{X_1^2\right\} + (n^2 - n)\mathbb{E}\left\{X_1\right\}\mathbb{E}\left\{X_2\right\}\right) - \lambda$$

$$= \lambda^2 - \left(\frac{n-1}{n}\right)\lambda.$$

Since $\mathbb{E} \{T_n\} \neq \lambda^2$ for some $\lambda > 0$, a statistic T_n is a biased estimator of λ^2 . Its bias $b_n(\lambda)$ is given by

$$b_n(\lambda) \triangleq \mathbb{E}\left\{T_n\right\} - \lambda^2 = -\left(\frac{n-1}{n}\right)\lambda.$$

By inspection, the statistic

$$W_n \triangleq T_n + \left(\frac{n-1}{n}\right)\overline{X}_n = (\overline{X}_n)^2 - \frac{\overline{X}_n}{n}$$

is an unbiased estimator of λ since

$$\mathbb{E}\left\{W_n\right\} = \mathbb{E}\left\{T_n\right\} + \left(\frac{n-1}{n}\right)\lambda = \lambda^2,$$

for any $\lambda > 0$.

Note that the limit is non-zero for some λ : $\lim_{n\to\infty} b_n(\lambda) = \lim_{n\to\infty} -(\frac{n-1}{n})\lambda$ = $-\lambda$. That is, T_n is not asymptotically unbiased.

(b) The MATLAB code is given below that generates L realizations of T_n to numerically estimate $\mathbb{E}\left\{T_n\right\}$. For the generation of X_i , any value of λ can be selected, code below chooses $\frac{1}{2}$. The ML estimate is a function of sample size n, which can be changed to any desired value. For n=1000 and taking 10000 realizations for estimating expected value of the estimator, the bias is found to be -0.49948610200000. That is quite close to the expected result from part (a).

%-----

% Sample size for Xi:

n = 1e3;

% Number of realizations of Tn: that is the averaging length N,

```
% as used in Problem 1 of PS 1
L = 1e4;

% Pick an example 'lambda' for the Poisson distribution
lambda = 0.5;

for index = 1:L,
    X = random('poiss',lambda,[n,1]);
    Xbar = sum(X)/n;

    Tn(index) = (Xbar)^2 - Xbar;
end

% check the length of Tn, it should be L;
size(Tn)

% Find E{Tn}, by approximation using averaging. Use this to
% compute the bias value of the estimator [at selected 'n']
bias = sum(Tn)/L - lambda^2
```

Problem 4 Let X be a binomial B(n,p) random variable with an unknown parameter $0 \le p \le 1$:

$$\mathbb{P}\left\{X = k\right\} = \binom{n}{k} p^k (1-p)^{n-k}, \quad k = 0, 1, 2, \dots, n.$$

Find a maximum likelihood estimator of p and compute the estimator variance.

Solution The likelihood function and log-likelihood function are given by

$$L(p) = \binom{n}{X} p^X (1-p)^{n-X}$$
$$\ln L(p) = \ln \binom{n}{X} + X \ln p + (n-X) \ln(1-p),$$

respectively. To derive a MLE for an unknown parameter $0 \le p \le 1$, we consider

partial derivatives of the log-likelihood function:

$$\begin{split} \frac{\partial}{\partial p} \ln L(p) &= \frac{X}{p} - \frac{n-X}{1-p} \\ \frac{\partial^2}{\partial p^2} \ln L(p) &= -\frac{X}{p^2} - \frac{n-X}{(1-p)^2}. \end{split}$$

Setting the first partial derivative to zero and solving for p^* , we have $p^* = X/n$. Notice that the second partial derivative is always negative for any $p \in (0,1)$. Therefore, p^* maximizes the likelihood function. A MLE is then

$$\widehat{p} \triangleq \frac{X}{n}.$$

The variance of this estimator is given by

$$\operatorname{Var} \left\{ \widehat{p} \right\} = \frac{\operatorname{Var} \left\{ X \right\}}{n^2}$$
$$= \frac{np(1-p)}{n^2}$$
$$= \frac{p(1-p)}{n}.$$

The first equality follows from a property of the variance:

$$Var \{\alpha Y\} = \alpha^2 Var \{Y\},\,$$

for any real number α and any random variable Y. The second equality follows from the expression for the variance of a Binomial B(n, p) random variable.