
Frege,

a non-strict, pure functional
programming language for the JVM

presented by

Ingo Wechsung

Named after G. Frege, who had a
concept of higher order functions

Wie nun Funktionen von Gegenständen
grundverschieden sind, so sind auch

Funktionen, deren Argumente Funktionen sind
und sein müssen, grundverschieden von

Funktionen, deren Argumente Gegenstände
sind und nichts anderes sein können. Diese

nenne ich Funktionen erster, jene Funktionen
zweiter Stufe.

G. Frege, “Funktion und Begriff”, 1891

Gottlob Frege
* 8. November 1848; † 26. July 1925

German mathematician, logician and
philosopher. He is considered to be one of the
founders of modern logic and made major
contributions to the foundations of
mathematics.
Frege lived and worked in Jena.
I recommend: Die Grundlagen der Arithmetik,
eine logisch mathematische Untersuchung
über den Begriff der Zahl.

http://archive.org/details/diegrundlagende00freggoog
http://archive.org/details/diegrundlagende00freggoog
http://archive.org/details/diegrundlagende00freggoog
http://archive.org/details/diegrundlagende00freggoog
http://archive.org/details/diegrundlagende00freggoog

In the spirit of Haskell ...

● Haskell compatible syntax (well, almost)
● strong static type system (Hindley-Milner +

higher rank types + type classes)
● non-strict/lazy evaluation guided by

strictness analysis
● pure functional ...

○ native interface for using Java methods and classes
○ input/output and mutable values are encapsulated

in inescapable monads
○ many data types, standard functions and modules

known from Haskell 2010

http://en.wikipedia.org/wiki/Hindley%E2%80%93Milner

... but still quite different

● primitive types are borrowed from Java, as
well as String

● almost no runtime system, "primitives" are just
standard Java methods or operators

● no general foreign function interface, instead
specialisation on JVM
○ can't use C-ish stdio like in Haskell
○ whenever possible, use Java SE API

● different concurrency model (green threads)
● different type class hierarchy. (We’ll soon be

fully “semigroupoidal”.)

http://ro-che.info/ccc/21.html

Compiler & Language facts

● Compiler written in … Frege, of course!
● Compiler generates Java source code

○ Maybe the only JVM language that does this?
● The language has so called documentation

comments. They make it down to the class
file and are used by the eclipse plugin and
the documentation tool.

WTF did you not just write a GHC
backend for the JVM?

● It's not easily possible, see GHC FAQ Why
isn't GHC available for .NET or on the JVM

● Historical reasons:
○ wrote some perl code that implemented type inference.
○ added a parser
○ added code generation (to perl)
○ decided it's too slow, took the opportunity to learn Java

and started over in Java
○ ambition: It must be possible to become self-hosting!
○ the result was horrible, but good enough to write Frege3
○ thought this could be useful for others and went public

● Had I just idled, nobody would blame me
today for not having done a GHC backend.

http://www.haskell.org/haskellwiki/GHC/FAQ#Why_isn.27t_GHC_available_for_.NET_or_on_the_JVM.3F
http://www.haskell.org/haskellwiki/GHC/FAQ#Why_isn.27t_GHC_available_for_.NET_or_on_the_JVM.3F
http://www.haskell.org/haskellwiki/GHC/FAQ#Why_isn.27t_GHC_available_for_.NET_or_on_the_JVM.3F

Target Audience, Motivation

● Java programmers: perceive writing Frege code as
just another and more fun way to write Java code. Not
very successful until now.

● Haskell programmers: use Frege as substitute for
the missing JVM-Haskell.
○ I claim without too much exaggeration that Frege is

not only on par with Haskell 2010. It even has some
extra goodies. (yet, missing libraries.)

○ That being said, compared to GHC, it is still a "poor
man's Haskell"

● Interestingly, some users/contributors are
Scala convertites.

JVM ecosystem

We enjoy a rich choice of functional languages
or languages with functional influence on the
JVM:
● Scala (strict, strongly typed, not pure)
● Clojure (strict, dynamic, not pure)
● Yeti and other ML dialects (strict, strongly typed, not

pure)
● CAL, an earlier attempt to make a Haskell-like

language, by Business Objects, now SAP (non strict,
strongly typed, not pure)

● Ruby, Python
● the “better Java”s: Groovy, Kotlin, Ceylon, ...

Laziness Pro & Contra
● Pro:

allow for infinite data structures, easier algorithms
save unneeded work (even in traditional languages)

● Contra:
it comes at a cost
unpredictability of memory usage

● in Frege:
No design choice; must have Haskell semantics!
As it is there anyway, used for solving the tail call
problem (see Example even/odd)
bang patterns indicate strictness, strictness analyzer
detects whole lot of strictness

Purity Pro & Contra (not!)

● Everything that can be said about the issue
has been said already.

● If you don’t like the strongly statically
typed, lazy, pure paradigm, then neither
Haskell nor Frege is for you.

● That being said, laziness presupposes purity
to a certain degree:
let haha = (print “ha”, print “ho”)

in (haha, print “hi”)

In a hypothetical lazy, non-pure language,
what should be the meaning?

Strong Static Type System Pro &
Contra

from Cartesian Closed Comics:
(picture removed to avoid trouble rgd. copyrights, etc., please look it up yourself)

http://ro-che.info/ccc/17.html
http://ro-che.info/ccc/17.html

What are higher ranked types?

● often confused with higher kinded types
● the problem with Hindley-Milner type

inference:
○ we can write higher order functions, but the

functions we get passed are monomorphic:
map :: forall a b.(a -> b) -> [a] -> [b]

○ When used, a possibly polymorphic function gets
instantiated at a specific type
show :: forall s.Show s => s -> String

map show [1,2,3] -- show :: Int -> String

We can’t write a function that takes a polymorphic list
transformation function like tail, sort, reverse,
etc. and applies it to differently typed lists.

http://en.wikipedia.org/wiki/Hindley%E2%80%93Milner

Undecidability of HR type inference

● HM has the nice property that it can infer
the most general (principal) type for any
expression.
○ The restriction being that function arguments are

assumed to be monomorphic.
○ We can’t drop that assumption without destroying

type inference altogether. Consider
both f xs ys = (f xs, f ys)

which would get a type like:
(forall a b.a -> b) -> c -> d -> (e, f) -- ???

This is just unusable!

Type Annotations to the rescue!

● higher rank functions must be annotated
○ at least one argument has a forall

● type inference will work for the rest of the
program

● not a big deal, as the tendency is to
annotate top level functions anyway for
documentation purpose

● same thing in GHC-Haskell with RankNTypes
● actually needed in the ST Monad (rank-2-

type)

No assignments, no side effects, no
flow of control ...

The functional programmer sounds rather like
a medieval monk, denying himself the

pleasures of life, in the hope that it will make
him virtuous.

John Hughes “Why FP Matters”, 1990

In short, Haskell is the world's finest
imperative programming language.

Simon Peyton-Jones “Tackling the Awkward Squad”, 2010

I am trying the impossible ...

Integration of
Java types

and methods
ST/IO Monad

Monads

The ST Type
How to deal with side effects

● Implementation of the idea described in the
paper Lazy Functional State Threads by
Simon Peyton-Jones.
○ A value of type ST s a is a state transformer, where

s symbolizes the mutable state and a is the result.
○ State transformers can be combined in the usual

(monadic) way, giving new state transformers.
○ Some of them can be run to get a final pure value.
○ As long as all mutable data have the phantom type

s in their type, the type system can ensure that
they cannot escape the impure realm:

run :: (forall ß.ST ß a) -> a

○ encapsulation of unobservable temporary effects

http://homepages.dcc.ufmg.br/~camarao/fp/articles/lazy-state.pdf

IO actions are ST actions

type IO = ST RealWorld

● A value of type IO a is an action that, when
executed, may perform some observable
change in the real world and computes a
result of type a.

● Unlike polymorphic ST actions, cannot be run
to get a pure value.

● Can be combined with other IO actions and ST
actions that are polymorphic in the state.

IO/ST actions as first class values

some = [print “hi”, launchRockets, print “ho”]

more = (print “foo”, print “bar”)

hifoo = do { head some; fst more }

main :: [String] -> IO ()

● no rockets launched here!
● only when hifoo is executed, get the actions executed
● for this, hifoo must be part of another action that gets

executed, which must be part of yet another action that gets
executed, which must be part of yet another action that gets executed, which must be part of yet another action
that gets executed, which must be part of yet another action that gets executed

● main, applied to the list of command arguments, is the
only exception: it gets executed by the runtime system.
○ and there is “the function whose name must not be mentioned”

The challenge in interfacing Java

● In Java, we have:
○ immutable data (rarely)
○ mutable data
○ data that are technically mutable, but are actually

used in a pure fashion by some set of methods.
○ pure methods on immutable data
○ impure methods on immutable data
○ pure methods on mutable data
○ impure methods on mutable data
○ any method may return null

● In the general case, we don’t know which is
which. We must trust the programmer. We
want to guide him through this mess.

How to use Java Types from Frege

● immutable data
data Bool = pure native boolean

data Exc = pure native java.lang.Exception

○ can be used like any other type, in fact, all
primitive types and String are defined this way.

● mutable data
data SB = native java.lang.StringBuilder

○ Compiler makes sure that in native functions only
Mutable s SB is used.

● data used with IO activities only
data Rdr = mutable native java.io.Reader
essentialy saves typing Mutable RealWorld Rdr all the time

Observations rgd. mutable values

● Can only come into existence through java
methods.

● Can only be mutated through java methods.
● Once the type of such methods is given

honestly, it will infect the rest of the program
with ST, IO and state phantom types (examples
follow later). This is meant as a help for the
disciplined medieval monk programmer.

● Still, it will be possible to run pure methods on
“frozen” values.

How to use Java methods

● General syntax:
[pure] native v j :: t

○ The idea is to define v by giving tiny code snippets
j that can be completed by the code generator
taking the type t into account.

○ if t is a function type, all arguments are assumed to
be strict.

○ if v is the same as j, one may omit j
● Supports the following Java constructs:

○ constant, field access, method invocation, class
instance creation, binary, unary and cast
expressions.

Constants, static field access

● recognized by not having function types
native pi “3.14195” :: Double

final public static double pi = 3.14159;

○ Does not really make sense, it’s merely an
unintended by-product. The quotes are needed
because the java part must be a word or a (fully
qualified) java identifier or a string.

pure native pi java.lang.Math.PI :: Double

final … double pi = java.lang.Math.PI;

○ fully qualified name, must be legal java expression.

Instance field access

data IntArr = native “int[]”

pure native länge “.length” :: IntArr -> Int

● rarely needed, as classes that expose instance fields
are frowned upon.

● recognized by java code that starts with a dot and is
followed by a simple name

● type must be of the form ref -> a where ref
denotes a reference type. Everything that is not one of
the primitive types is taken to be a reference type.

Method Invocation

● application of a native function will map to
a method invocation expression

● recognized by having function type and not
being one of the special forms like instance
field access. The “receiver” is the first arg.

pure native sin java.lang.Math.sin

:: Double -> Double

pure native at charAt :: String -> Int -> Char

native read :: Reader -> IO Int

native write :: Writer -> String -> IO ()

Instance creation expression

● Has the java code “new” and a function
type whose raw result is a reference type.

data Date = native java.util.Date where

 native new

:: () -> IO (Mutable RealWorld Date)

 | Long -> ST s (Mutable s Date)

 native getTime

 :: Mutable s Date -> ST s Long

data Integer = pure native java.math.BigInteger

 where pure native new :: String -> Integer

Magic Native Function Types

● () in argument position, must be only argument
besides receiver, if any. Signals empty argument list.

● () as result signals void methods. Makes only sense
when wrapped in IO or ST. If you need a pure function
that always returns (), consider const ()

● Maybe a as argument allows to pass null instead of
an actual value.

● Maybe a as result maps null results to Nothing and
wraps non null results in Just. This is the way to deal
with Java null values.

● [a] as result converts array or Iterable values to
lists, skipping null elements. Also turns null into [].

Rules for sound native function types

1. The only way native mutable type M can appear in the
return type of any function is Mutable s M

2. A pure function may not return Mutable s a
3. An impure function must have return type ST s a or IO

a.
4. The only way mutable type M can appear in the

argument type of an impure function is Mutable s M
5. The phantom types after ST and Mutable must all be

equal, either the same type variable, or RealWorld

This ensures that mutable values can only be created in
the ST/IO Monad, from whence they cannot normally
escape.
The rules need only be checked on native functions.

Tools

● fregec.jar contains command line compiler
and standard library. JDK 7 required.

● FregIDE - eclipse plugin, contains its own
copy of fregec.jar. Can be used with just a
JRE 7.

● REPL and online REPL
● Documentation tool, creates HTML from

Frege class files (included in fregec.jar).
● Quick check tool, checks quick check

properties of class files (included in fregec.
jar).

http://try.frege-lang.org

Links

● Project pages: github.com/Frege
○ The repositories for frege core, eclipse plugin, REPL

etc. are linked there.
○ Wiki with Differences Frege/Haskell among other

stuff
● Downloads: github.com/Frege/frege/releases

○ fregec.jar, FregIDE, Language reference.
● Discussions: on google groups
● Try Frege Online: try.frege-lang.org/
● Questions: on stackoverflow with tag “frege”
● Example code mentioned in slides, and more.

https://github.com/Frege
https://github.com/Frege/frege/wiki/Differences-between-Frege-and-Haskell
https://github.com/Frege/frege/releases
https://groups.google.com/forum/#!forum/frege-programming-language
http://try.frege-lang.org/
http://stackoverflow.com/questions/tagged/frege
https://github.com/Frege/frege/tree/master/examples
https://github.com/Frege/frege/tree/master/examples

