LIFE	Proposed advantages relative to LWRs	Potential concerns
Mission	Extend resources, burn SNF.	Takes long time to burn SNF.
Safety	Subcritical thermal.	Fusion-driven failure modes, loss of fission
		blanket cooling.
Waste	Reduced requirement for actinide disposal.	Requires geological storage.
Proliferation	No enrichment, no multi-cycle	Many fission fuel spheres and significant
	reprocessing. Reduced long-term Pu	fuel handling. Covert diversion, breakout
	storage.	from safeguards.
Economics		Fusion system is 20% of total power.
Development Needs	Can use gain ~ 20 IFE systems.	Needs all other IFE development, incl. up
(not relative to LWRs)		to 5 MW/m ² neutron wall loading.
		Needs new fission fuel & coolant.

UT System	Proposed advantages relative to LWRs	Potential concerns
Mission	Burn TRU and possibly long-lived fission products in SNF.	Does not extend resources significantly.
Safety	Subcritical fast spectrum.	Fusion-driven failure modes, loss of fission blanket cooling.
Waste	Greatly reduced requirement for actinide disposal.	Requires geological storage.
Proliferation	Reduced reprocessing. Little long-term Pu storage.	Clandestine enrichment, reprocessing (theft), covert diversion, breakout from safeguards.
Economics		Fusion system is $< 0.5\%$ of total power, fast spectrum blanket is $\sim 5\%$.
Development Needs (not relative to LWRs)	Can use Gain = 1-2 fusion systems with $0.5 - 1 \text{ MW/m}^2$ neutron wall loading.	Needs substantial MFE R&D. Needs IMF fuel, fast spectrum blanket.

Fuel Breeding + LWRs	Proposed advantages relative to LWRs	Potential concerns
Mission	Extend resources.	Does not transmute legacy SNF.
Safety	No significant fission chain reaction.	
Waste	Th 232 cycle reduces TRU's.	Requires large geological storage.
Proliferation	No enrichment, high U232/U233 after long irradiation times allowing Pa231 to build up.	Covert diversion of U233, breakout from safeguards.
Economics		Fusion system is <10% of total power.
Development Needs (not relative to LWRs)	Can use gain = 5 fusion systems.	Needs substantial MFE and/or IFE R&D, with neutron wall loading ~ pure fusion. Needs integrated fission-suppressed blanket.

Fast Reactors	Proposed advantages relative to LWRs	Potential concerns
Mission	Burn SNF, extend resources.	
Safety	Sodium-cooled fast reactors' inherent	Chemical reactivity of sodium.
	safety characteristics project to low probability of severe accidents.	Hypothetical core dispersal accident.
Waste	Greatly reduced requirement for actinide disposal.	Requires geological storage.
Proliferation	No enrichment. Little long-term Pu	Multi-cycle reprocessing (theft), covert
	storage.	diversion, breakout from safeguards.
Economics		Fast reactors $\sim 1/3$ of total power both to
		burn SNF and extend resources.
Development Needs	Significant experience base.	Difficulties with FRs in the past. Structural
(not relative to LWRs)		materials lifetime. TRU fuel development
		required for waste burning.

Deep Burn Thermal Reactors	Proposed advantages relative to LWRs	Potential concerns
Mission	Burn SNF, provide high-temperature heat,	Partial transmutation of TRUs, limited
	extend resources.	extension of resources.
Safety	Ceramic fuel has large thermal margins;	Air or steam ingress (helium coolant),
	strongly negative temperature reactivity	containment may be too expensive.
	feedback; passive decay heat removal	
	(helium coolant).	
Waste	Reduced requirement for actinide disposal.	Requires large geological storage.
Proliferation	High discharge burn up minimizes	Reprocessing of LWR SNF. Pebble fuel
	reprocessing.	involves many spheres and significant fuel
		handling. Covert diversion, breakout from
		safeguards.
Economics	High temperature improves efficiency,	Helium-cooled reactors have low power
	enables alternate applications. Fluoride	density.
	cooled reactors have high power density.	
Development Needs	Modular helium reactors have substantial	Deep burn fuel fabrication requires
(not relative to LWRs)	maturity and current development activity.	substantial development. Fluoride cooled
		reactor designs (similar to LIFE concept)
		exist only at conceptual level.

Pure Fusion	Proposed advantages relative to LWRs	Potential concerns
Mission	Extend resources.	Does not transmute legacy SNF.
Safety	No criticality, low afterheat.	Low enough radiological inventory to
		assure no need for an evacuation plan?
Waste	No geological storage.	Significant low-level waste.
Proliferation	No credible risk of clandestine production facilities, nor covert diversion from declared facilities. No weapons-usable material at breakout from safeguards, plant can then be disabled without spread of radioactivity.	1 SQ can be produced in ~ 2 months after breakout from safeguards (<i>vs.</i> 100's of SQ available immediately at breakout from safeguards in fission systems).
Economics		Fusion is 100% of power.
Development Needs	Much work underway internationally.	Need to develop full MFE and/or IFE
(not relative to LWRs)		technologies.

Light Water Reactors Once Through	Advantages	Potential concerns
Mission	Economic base load electricity production.	SNF generation; sustainability of fuel
		supply.
Safety	Extensive experience base. Licensed	Loss of reactor coolant.
	facilities.	
Waste		Requires large geological storage.
Proliferation	No reprocessing.	Clandestine enrichment. Breakout from
		enrichment and SNF safeguards. Long-
		term Pu in repositories.
Economics	Provides current baseline.	Uncertain long term cost of fuel.
Development Needs	Well-understood commercial systems with	Manufacturing capacity, availability of
	high availability.	skilled workforce.