### The Reversed Field Pinch for Fusion-Fission Hybrid Application

J.S. Sarff, G. Fiksel, MST Group UW-Madison

A.A. Ivanov and V.I Davydenko Budker Institute of Nuclear Physics

> Fusion-Fission Research Workshop Sept 30 – Oct 2, 2009 – Gaithersburg, MD

# The Reversed Field Pinch (RFP) configuration could provide a relatively simple neutron source.

- Advantages for fusion
  - Small applied field, with normal magnets
  - High beta (esp. engineering beta)
  - Possibility for Ohmic heating to burning plasma conditions
  - Possibly free choice of aspect ratio
  - Advantages confirmed in TITAN system study (1990)
- Advantages for FFH similar to pure fusion
- NBI-driven neutron source
  - ~10<sup>18</sup> neutron/sec for plasma parameters close to present-day RFP experiments
  - FFH waste burner (lower output power)
  - Fusion development in toroidal geometry

Applied toroidal field BT is more than 10X smaller in an RFP than for a tokamak





# Tokamak-like confinement achieved in the RFP with current profile control (transiently).



- J(r)-control reduces tearing instability and magnetic turbulent transport.
- Residual transport may be electrostatic in character.





### Transformational change in performance at high current observed in RFX experiment (Italy).



- Spontaneous reduction in tearing mode magnetic turbulence.
- Plasma is still self-organized, using standard toroidal induction.



### Fast ion confinement very good.



- Fast ion particle confinement > 20X thermal particle and energy confinement in standard RFP plasmas with large magnetic stochasticity.
- Longer pulse 1 MW NBI experiments in 2010.





# Efficient, steady-state current sustainment possible using Oscillating Field Current Drive (*inductive* method).



- Demonstrated in nonlinear resistive MHD computation.
- Requires low plasma resistance (high Lundquist number) to avoid large AC modulation in the equilibrium magnetic field.
- 10% OFCD demonstrated in MST (agrees with expectations).



### NBI-driven neutron source based on parameters close to present-day RFP experiments.



- Only an example to expose features and possibility.
- Assume 140 keV injection energy, and classical slowing down.

| Plasma current, $I_p = 2 \text{ MA}$                          | Neutral beam power, $P_{inj} = 18 \text{ MW}$                               |
|---------------------------------------------------------------|-----------------------------------------------------------------------------|
| Major/minor radii, $R = 1.5 \text{ m}$ , $a = 0.5 \text{ m}$  | Fusion power, $P_f = 7.3 \text{ MW}$                                        |
| Electron temperature, $T_e = 1.5 \text{ keV}$                 | Ohmic power, $P_{\Omega} = 8 \text{ MW} (Z_{\Omega} = 2.4)$                 |
| Bulk ion temperature, $T_i = 1.0 \text{ keV}$                 | Neutron production, 2.6 ×10 <sup>18</sup> n/s                               |
| Density, $n = 4 \times 10^{19} \text{ m}^{-3} (n/n_G = 0.16)$ | Fusion gain, $Q = 0.3$                                                      |
| Thermal energy confinement, $\tau_E = 5.5$ ms                 | Neutron load, $P_n = 0.2 \text{ MW/m}^2$                                    |
| Magnetic field on axis, $B(0) = 1.9 \text{ T}$                | Avg. heat load, $P_w = 0.9 \text{ MW/m}^2$                                  |
| Poloidal field at magnet, $ < B_p(a) = 0.8 \text{ T}$         | Fast ion beta, $\beta_{fi} = 2\mu_0 \langle p_{fi} \rangle / B(a)^2 = 30\%$ |
| Toroidal field at magnet, $< B_T(a) = 0.2 \text{ T}$          | Thermal beta, $\beta_{th} = 2\mu_0 n(T_e + T_i)/B(a)^2 = 8\%$               |
| Lundquist number, $S = \tau_R / \tau_A = 6 \times 10^7$       | Fast ion gyroradius, $\rho_{fi}/a \le 0.13$                                 |



### Next steps.



- Conclusive demonstration of confinement scaling and OFCD will require a 2-4 MA next-step facility.
- An upgradeable facility approach could be used to establish integrated boundary control and demonstrate performance on which to base a neutron source or burning plasma experiment.
- Challenges with materials, etc. similar to other magnetic configurations. Plasmaboundary interface control may need RFP-specific solutions.



### Summary.



- The same potential benefits of the RFP for pure fusion could make an attractive FFH fusion neutron source.
- Development of the RFP lags the tokamak, but a  $P_{fusion} \sim 10$  MW NBI-driven neutron source is a modest extension of established RFP performance.
- If a FFH program goes forward, worth exploring physics-engineering tradeoffs associated with various concepts.

