German Grammatical Gender Contributes to Communicative Efficiency

Richard Futrell and Michael Ramscar
January 2012
Noun class systems: who needs ‘em?

Corbett (2008)
What’s it good for?

• Maratsos (1979: 235): “excellent testimony to the occasional nonsensibleness of the species”?
• Baudouin de Courtenay: “a deformity ... responsible for ... nightmares, pathological behaviour, erotic and religious delusions and sadism” (Kilarski 2007)?
• Lakoff (1986): Expressing salient cultural categories?
 • Or a taxonomy of categories?
• Zubin & Köpcke (1986: 173): reference tracking on pronouns?
 • Or expressing coreference i.e. on adjectives and verbs?
Where we’re going

• Grammatical gender makes nouns more predictable in context.

• 1. How does it work?
• 2. What are the effects?
• 3. Is it adapted for this function?
Grammatical gender makes nouns more predictable in context.

1. How does it work?
2. What are the effects?
3. Is it adapted for this function?
• $P(e)$ is the probability of event e.
 • For instance, the probability that a word will be "mansion" is the frequency of "mansion" divided by the total frequency of all words.
• $P(e \mid c)$ is the probability of event e given context c.
 • For instance, the probability that a word will be "abode" given that it follows "humble".
 • $P(\text{"abode"}) \ll P(\text{"mansion"})$,
 • But $P(\text{"abode"} \mid \text{"humble"}) \gg P(\text{"mansion"} \mid \text{"humble"})$!
• We usually deal with the information of a probability, which is \(-2\log_2 P(e)\).
 • Low probability = high information content
 • High probability = low information content
 • I.e., a predictable event is not informative, but an unpredictable event is very informative.
• The weighted average informativity of all possible events in a context is entropy, which measures uncertainty or unpredictability.
Reminder: information theory
Wake up!

• Back to linguistics!
The trouble with nouns

• Yesterday I saw a ! puppy.
• ! marks the site of disfluencies, pauses, and increased reading times, all linked with uncertainty.
• Unpredictable words represent spikes in information flow, which is inefficient (Jaeger 2008).
• Processing difficulties due to uncertainty are especially acute for nouns.
• The cure for uncertainty is prediction.
Fixing the trouble with nouns

[Graph showing the English Information Rate with the sentence "I saw a puppy"]
Fixing the trouble with nouns
Fixing the trouble with nouns
Fixing the trouble with nouns
Noun class is an **extreme form** on a spectrum of possible probabilistic predictive relations.

Genders are **almost totally predictable** given nouns.

We can **describe** noun class as a predictive relation using **information theory** and the concept of **entropy**.

A language has a noun class system iff:

1. There is some element G that co-occurs with nouns N,
2. $H(N) > H(G) > 0$, and
3. $H(G | N) \approx 0$.

This implies that $H(N | G) < H(N)$, i.e. that gender predicts nouns.
Predicting Nouns

- Noun class markers provide information about following nouns.
- Therefore they lower the entropy of those nouns: (based on counts from the NEGRA corpus of newspapers):

![Conditional Entropy per Article per Case](image)

- Conditional Entropy in bits

<table>
<thead>
<tr>
<th>Case</th>
<th>Nominative</th>
<th>Accusative</th>
<th>Dative</th>
<th>Genitive</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALL</td>
<td>ALL</td>
<td>ALL</td>
<td>ALL</td>
<td>ALL</td>
</tr>
<tr>
<td>der</td>
<td>die</td>
<td>das</td>
<td>den</td>
<td>den</td>
</tr>
<tr>
<td>masculine/plural</td>
<td>femininne/plural</td>
<td>neuter</td>
<td>femininne/plural</td>
<td>neuter</td>
</tr>
</tbody>
</table>
How gender works

• Gender is a form of **predictive context**. It can lower uncertainty about following words, or about pronominal reference, etc.
• The **information-theoretic description** captures gender as the extreme of a spectrum and it **makes gender’s function obvious**.
Where we’re going

• Grammatical gender makes nouns more predictable in context.

• 1. How does it work?
• 2. What are the effects?
• 3. Is it adapted for this function?
Gender makes infrequent nouns easier to use

• Germans should be more comfortable with low-frequency words like Doberman (as opposed to dog) directly after articles.
 • English speakers will make use of other predictive context, such as adjectives.
• So we should find greater lexical richness directly after articles in German than in English.
Measures of lexical richness

- **Vocabulary size** in a given sample (type-to-token ratio).
- **Vocabulary growth rate**, the rate at which the vocabulary grows as the sample size increases.
 - **Baayen’s P**, the number of hapax legomena divided by sample size. Used as a measure of morphological productivity.
- I measured these for nouns in the **CALLHOME Corpora** of spontaneous spoken German and English.
Spoken English and German

Vocabulary growth of Nouns after Definite Articles

CALLHOME

- Vocabulary size
- Sample size

- Black: German
- Blue: English
Spoken english and german

- two-tailed tests:
 - $Z \quad p$
 - Vocabulary Size 4.6142 0e+00
 - Vocabulary Growth Rate 3.3540 8e-04

- German $H(N) = 11.7$,
- German $H(N|G) = 10.5$,
- English $H(N) = 10.1$.
Spoken English, German, and Spanish
Spoken english, german, and spanish

- two-tailed tests (Spanish vs. German)
 - Z p
 - Vocabulary Size 1.0964 0.2729
 - Vocabulary Growth Rate 0.2752 0.7832

- two-tailed tests (English vs. Spanish)
 - Z p
 - Vocabulary Size -3.4392 0.0006
 - Vocabulary Growth Rate -3.0353 0.0024
How English makes up

- English speakers can still use infrequent nouns, but they need to be made predictable by **prenominal adjectives** (i.e. cute little puppy):
Lexical richness

- Gender marking allows for greater lexical richness of nouns.
Grammatical gender makes nouns more predictable in context.

3. Is it adapted for this function?
Gender assignment

• Gender can give cues about the semantic neighborhood of upcoming words.
• Zubin and Köpcke (1986) find regular semantic fields:
 • Weather conditions (masculine),
 • Alcoholic drinks (masculine),
 • Generic terms (neuter), etc.
• We aim to show semantic regularities quantitatively and comprehensively. **Semantically similar nouns should share gender.**
Measuring Semantic Similarity

• Define two words by sparse contextual feature vectors.
• Take the cosine between vectors as a measure of similarity.
• Say that two words are similar if two vectors are similar.
• I used this method in the Google German 4-Gram corpus, with gender information removed.
Predicting Noun Semantics

• Nouns are in the **same gender** as their **nearest semantic neighbor** 50% of the time:
Semantics and discrimination

• So, **semantically similar nouns** tend to be in the **same gender**. But not when **both are frequent**.
Where we went

1. How does it work?
 - Gender is predictable from nouns, so in context it predicts nouns.

2. What are the effects?
 - Increased lexical richness depending on availability of gender information.

3. Is it adapted for this function?
 - Yes—it facilitates the prediction of the semantic neighborhood of nouns.
Where we should go

• **More languages!** More corpora!
• Better psycholinguistic models, which should encompass the effects of **gender after nouns**.
 • Other concepts from communication/information theory: **error correction codes**?
• **Closer examination** of semantic/distributional effects. Does context predict (only) what gender doesn’t?
• Extension of the theory to **classifier languages** like Chinese, and to other contextual predictive relationships.
• We would like to thank Dan Jurafsky for patience and help, Tom Wasow, Joan Bresnan, and the Spoken Syntax Lab for thoughtful discussions, Uriel Cohen Priva for the example of conditional probability, Victor Kuperman for help with statistics and for constructive skepticism, Hal Tily and Steven Piantadosi for provocative suggestions, and Stanford Corpus TAs Rob Munro, David Clausen, and Tyler Schnoebelen for appeasing my neverending requests for corpora.
Spoken english and German and Spanish

Vocabulary growth of Nouns after Definite Articles

CALLHOME

- **German**
- **English**
- **Spanish**
Spoken english and german

- two-tailed tests (Spanish vs. German)
 - Vocabulary Size 1.0964 0.2729
 - Vocabulary Growth Rate 0.2752 0.7832

- two-tailed tests (English vs. Spanish)
 - Vocabulary Size -3.4392 0.0006
 - Vocabulary Growth Rate -3.0353 0.0024
Informativity of articles

- Gender information is **always** available from Spanish articles.
- Gender information is **sometimes** available from German articles....
- Expected informativity of German articles: **1.04 bits**.
- Of Spanish articles: **1 bit**.

<table>
<thead>
<tr>
<th></th>
<th>M</th>
<th>F</th>
<th>N</th>
<th>Plu</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOM</td>
<td>der</td>
<td>die</td>
<td>das</td>
<td>die</td>
</tr>
<tr>
<td>ACC</td>
<td>den</td>
<td>die</td>
<td>das</td>
<td>die</td>
</tr>
<tr>
<td>DAT</td>
<td>dem</td>
<td>der</td>
<td>dem</td>
<td>den</td>
</tr>
<tr>
<td>GEN</td>
<td>des</td>
<td>der</td>
<td>des</td>
<td>der</td>
</tr>
</tbody>
</table>
Informativity of articles

• French genders are indistinguishable in the plural.
• And French definite nouns are plural 16% of the time.
• The expected informativity of French articles is 0.84 bits.
two kinds of prediction

- Gender can either discriminate **within** members of a semantic neighborhood, or **between** semantic neighborhoods.

- If two nouns are (1) semantically **similar** and (2) **both frequent**, then speakers have to discriminate between them more frequently.
 - So they should be in different genders!
Spanish and French

two-tailed tests:

<table>
<thead>
<tr>
<th></th>
<th>Z</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vocabulary Size</td>
<td>-16.4796</td>
<td>0</td>
</tr>
<tr>
<td>Vocabulary Growth Rate</td>
<td>-10.1702</td>
<td>0</td>
</tr>
</tbody>
</table>
Informativity of articles