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Abstract We study how the average performance of a sys-

tem degrades as the load nears its peak capacity. We restrict

our attention to the performance measures of average so-

journ time and the large deviation rates of buffer overflow

probabilities. We first show that for certain queueing sys-

tems, the average sojourn time of requests depends much

more weakly on the load ρ than the commonly observed

1/(1 − ρ) dependence for most queueing policies. For ex-

ample, we show that for an M/G/1 system under the pre-

emptive Shortest Job First (pSJF) policy, the average sojourn

time varies as log(1/(1 − ρ)) with load for a certain class of

distributions.

We observe that such results hold even for more restricted

policies. We give some examples of non-preemptive policies

and policies that do not use the knowledge of job sizes while

scheduling, where the dependence of average sojourn time

on load is significantly better than 1/(1 − ρ). Similar results

hold even for very simple non-preemptive threshold based

policies that partition all the jobs into two job classes based

on a fixed threshold and do FIFO within each class. Finally

we study the large deviations rate of the queue length under

a simple dedicated partition-based policy.

Keywords M/G/1 queues · Average solourn time · Heavy

traffic · Heavy tailed distributions · Large deviations.

1 Introduction

We consider two commonly used performance measures in

queueing systems: The average sojourn time and the large
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deviations rate for the steady state queue length. The sojourn

time of a job is defined as the difference between its comple-

tion time and its arrival time, and the average sojourn time

refers to the sojourn time averaged over all jobs. The large

deviations rate for the steady state queue length Q is defined

as

lim
x→∞

log(Pr(Q > x))

x
.

We will restrict our attention to M/G/1 queueing systems, that

is, where the job arrival process is Markovian and the job sizes

are independent and identically distributed. For an M/G/1

system, note that the performance measures considered in

this paper are completely determined by the service policy

used, the load of the system (ρ) and the job size distribution.

We will be interested in how these performance measures

degrade as the load approaches 1.

Recall that for any M/G/1 system the Processor Sharing

(PS) policy has an average sojourn time of E[S]/(1 − ρ),

and the classic Pollaczek-Khintchine formula which shows

that the average sojourn time under the First-In-First out

(FIFO) policy for any M/G/1 system is ρE[S2]/(2E[S](1 −
ρ)) + E[S]. Here, the random variable S denotes the size

of a job. Note that for both of these policies, the average

sojourn time varies as 1/(1 − ρ) with load. The 1/(1 − ρ)

dependence of the average sojourn time also holds more

generally for certain classes of policies. It is known [3] that

for a general M/G/1 system, any policy that is both non-

preemptive and non-size based, has an average sojourn time

of ρE[S]2/2E[S](1 − ρ) + E[S]. Non-sized based policies

are policies that do not use the knowledge of job size in

their scheduling decisions. Some common examples are

FIFO, PS, Last-Come-First-Served (LCFS) and Foreground-

Background (FB). Moreover, for an M/M/1 system any

non-size based policy (possibly preemptive) has an average
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sojourn time of E[S]/(1 − ρ), [3]. In addition, various con-

servation laws are known for fairly general classes of schedul-

ing policies, [7][Page 197], [13][Page 440] and [8]. These

laws essentially state that for any policy in the class, a cer-

tain weighted sum of sojourn times of jobs is proportional to

1/(1 − ρ).

We are interested in the question whether there exist

queueing systems where the average sojourn time can have

a “better” dependence on load than 1/(1 − ρ). The notion of

dependence on load is formally defined in Section 1.1, but in-

tuitively we say that the dependence is better than 1/(1 − ρ),

if the average sojourn time at load ρ divided by 1/(1 − ρ)

approaches 0 as ρ approaches 1. While there has been exten-

sive work on studying the optimality properties and obtaining

exact/approximate results for different performance mea-

sures for several queueing policies (see for example [11,

13, 6, 7] and the references there in), the question ad-

dressed above does not seem to have received much atten-

tion. To the best of our knowledge, the only result in this

spirit is due to Bansal [1] who showed that for an M/M/1

system, the policy Shortest Remaining Processing Time

(SRPT) has an average sojourn time of (1 + o(1))E[S]/((1 −
ρ) log(e/(1 − ρ))). Recently, Wierman et al. (Theorem 5.8

in [12]) showed a very general lower bound on the average

sojourn time achievable in any M/G/1 system. They show

that for any job size distribution and any scheduling pol-

icy, the average sojourn time must be at least (E[S] · log(1/

(1 − ρ))/ρ).

In this paper we show that the lower bound due to

Wierman et al. is tight up to a constant factor independent

of ρ. In particular, the average sojourn time depends on load

as log(1/(1 − ρ)) for the preemptive Shortest Job First pol-

icy under certain heavy-tailed distributions. This closes the

(large) gap between the lower bound due to [12] and previ-

ously known upper bound due to [1].

We next explore if such an improvement holds for a more

restricted class of policies. As mentioned previously, for any

policy that is both non-preemptive and non-size based, the

average sojourn time varies as 1/(1 − ρ) for all job size dis-

tributions. Thus, any policy with load dependence better than

1/(1 − ρ) must either be preemptive, or size-based. We show

that preemption suffices to improve the dependence on load.

In particular, there exists a non-size based (but preemptive)

policy for which the load varies as log(1/(1 − ρ)) for certain

job size distributions. Similarly, we show that being non-size

based suffices. In particular, there exists a non-preemptive

(but size-based) policy which has a load dependence better

than 1/(1 − ρ). In Section 3 we consider a class of poli-

cies that we call threshold based policies (defined formally

in Section 1.1) which are non-preemptive and make very

limited use of the knowledge of job sizes. We show the im-

proved load dependence holds even for these threshold based

policies.

In the second part of this paper we consider the perfor-

mance of scheduling policies with respect to buffer overflow

probabilities. Our motivation for this problem comes from the

application to routers. In routers there is a fixed size buffer

and there are packets that require a fixed amount of size to

store. The amount of time required to transmit the packet

from the head of buffer is distributed exponentially (based

on the complexity of decoding the address).

Recall that in an M/M/1 system at steady state at load ρ,

the queue length Q satisfies, Pr(Q ≥ m) = ρm = elog(ρ)m . In

other words the large deviations rate for the queue length is

log(ρ), which is approximately−(1 − ρ) whenρ is close to 1.

We show that for an M/M/1 system, applying a very simple

dedicated partition-based policy (described formally in Sec-

tion 1.1) can increase the large deviations rate by a constant

factor. While the properties of threshold and class-based poli-

cies have been extensively studied previously, and it is known

that they can lead to substantial performance improvements,

particularly for highly variable job size distributions [13, 5],

we do not know of any related previous work in the regime

of large deviations rate.

1.1 Preliminaries

Throughout this paper we will consider M/M/1 and M/G/1

settings only. We use S to denote the random variable that

corresponds to the service time or the size of a job. We use

f (x) and F(x) to denote the density function and the cdf of

the job size distribution. The first and second moments of job

sizes are denoted by E[S] and E[S2] respectively. We also

use μ to denote the service rate which is equal to 1/E[S] and

ρ to denote the load, defined as λ/μ.

We will only consider two types of job size distributions.

The first is the exponential distribution with rate parameter μ,

defined by f (x) = μe−μx for x ≥ 0. The standard Pareto(α)

distribution is given as F(x) = 1 − ( k
x )α for x ≥ k and 0

for x ≤ k. Thus the density function is f (x) = αkαx−α−1

for x ≥ k and 0 otherwise. The parameter α is assumed

to be greater than 1 so that the mean job size is finite.

For a scheduling policy P , we use E[T (x)]P to denote

the average sojourn time of a job of size x under P , and

E[T ]P to denote the average sojourn time under P . Clearly,

E[T ]P = ∫ ∞
0

f (x)E[T (x)]P dx .

We will be interested in the performance measure of a pol-

icy as the load approaches 1. In particular, for a fixed job size

distribution and a scheduling policy, we increase the arrival

rate λ and study the performance as the load approaches 1.

For a function f , we say that the average sojourn time varies

as O( f (ρ)) if there is a constant c independent of ρ, and a

constant ρ0 < 1, such that for all ρ0 ≤ ρ < 1, the average

sojourn time at load ρ does not exceed c · f (ρ). For two

functions f (ρ) and g(ρ), we say that f has a better depen-

dence on ρ than g, or that f (ρ) = o(g(ρ)), if for every ε > 0
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there exists ρε < 1 such that f (ρ) ≤ ε · g(ρ) for all ρε <

ρ < 1.

We use pSJF to denote the Preemptive Shortest Job First

policy, which at any time works on the job with the smallest

size. Clearly, pSJF is both preemptive and is size-based. We

use nSJF to denote the non-preemptive version of Shortest

Job First policy. FB will denote the Foreground-Background

policy, which at any time works on the job that has received

the least amount of service thus far. Note that FB is a pre-

emptive, non-size based policy.

A threshold based policy with threshold level a classifies

jobs into two classes, small and big, depending on whether

the service time of a job is less than a or not. The policy is

otherwise oblivious to the actual service times. Within each

class the jobs are processed in the FIFO order. The policy is

non-preemptive and gives preference to small jobs over big

jobs. In particular, whenever a job finishes, the next job to

be executed is big if and only if there is no small job in the

system. As the average sojourn time varies as O(1/(1 − ρ))

for any non-preemptive, non-size based policy, the class of

threshold based policies is one of the most restricted classes

of policies for which one can hope to have a load dependence

better than 1/(1 − ρ).

Our dedicated partition-based policy in Section 4 works

as follows. The jobs are divided into two classes, small and

big, for some threshold a, depending on whether the service

time is less than a or not. For some parameter ψ ∈ (0, 1)

we allocate exactly ψ portion of the server to serving small

jobs and remaining portion to big jobs. Within each class the

jobs are served in FIFO order. The partition of the server is

dedicated in the sense that even if there are no small jobs

in the system, the server gives only 1 − ψ portion of its ca-

pacity to the big jobs and vice vs. In particular, if one of

the classes is empty, the full system capacity may not be

used.

1.2 Our results

We show the following results about average sojourn time:� For an M/G/1 system with the pSJF policy, the average

sojourn time is O(log(1/(1 − ρ))) if the job sizes have a

Pareto distribution with parameter α ∈ (1, 2). This shows

that the lower bound due to Wierman et al [12] on the

sojourn time of any scheduling policy in an M/G/1 system

is tight.

For other values of α, the average sojourn time is

O(log2(1/(1 − ρ))) for α = 2, and O((1 − ρ)−(α−2)/(α−1))

for α > 2.� For Pareto job size distributions, FB has identical perfor-

mance as pSJF (up to constant factors that only depend on

α). Thus being size-based is not necessary to obtain load

dependence better than 1/(1 − ρ).

For Pareto distributions with α > 2, we show that the

average sojourn time under the nSJF policy is O((1 −
ρ)−(α−2)/(α−1)), which implies that preemption is not nec-

essary either.� For the simple M/M/1 system, there is a threshold

based policy with an average sojourn time of (2 +
o(1))E[S]/((1 − ρ) log(e/(1 − ρ))), which is twice worse

than that achievable by any arbitrary scheduling policy in

an M/M/1 system [1]. For Pareto distribution with α > 2,

there exist threshold policies for which the average sojourn

performance varies as O((1 − ρ)−(α−1)/α).

For the large deviations rate of the buffer overflow proba-

bilities we consider an M/M/1 system and show that a dedi-

cated partition-based policy can increase the large deviations

rate by a constant factor. In particular, for a certain choice of

a and ψ , the large deviations rate is about 1.37(ρ − 1) as the

load approaches 1. Since the overflow probability depends

exponentially on the large deviations rate, this implies a

significant reduction in the buffer overflow probability. Since

the partitions of the server are dedicated and the full system

capacity may not be used if one of the classes is empty, we

find it somewhat surprising that the overflow probability is

reduced.

2 Average sojourn time

We analyze the load dependence for three well studied poli-

cies: pSJF, FB and nSJF. Recall that FB is non-size based,

nSJF is non-preemptive where as pSJF is completely gen-

eral. FB is the natural candidate for a non-size based policy,

as FB achieves the optimum average sojourn time among

all non-sized based policies for job size distributions with a

decreasing failure rate [9, 4]. While SRPT is the optimum

policy for minimizing the average sojourn time for any job

size distribution [10], we consider pSJF instead of SRPT as

it has a relatively simpler analytic expression for the average

sojourn time.

2.1 Preemptive SJF policy in the M/G/1 queueing system

We study the load dependence of sojourn times under the

Preemptive Shortest Job First (pSJF) policy for Pareto distri-

butions. Let E[T (x)]pSJF denote the average sojourn time of a

job of size x under pSJF, and let E[T ]pSJF denote the average

sojourn time under pSJF. Recall that the Pareto distribution

has density f (x) = αkαx−α−1 for x ≥ k and 0 otherwise.

The mean job size E[S] is
∫ ∞

0
x f (x)dx = kα/(α − 1). Let

ρ(x) = λ
∫ x

0
t f (t)dt denote the load made up by jobs of size

less than or equal to x . The main result of this section is as

follows.
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Theorem 1. For the Preemptive SJF policy with Pareto
job size distribution, the average sojourn time E[T ]pS J F

satisfies

E[T ]pS J F =

⎧⎪⎪⎨⎪⎪⎩
O(ln

(
1

1−ρ

)
) if α < 2

O(ln2
(

1
1−ρ

)
) if α = 2

O((1 − ρ)−
(α−2)
(α−1) ) if α > 2

(1)

Proof: Consider an M/G/1 queue with the service time

distributed according to f (x) and mean arrival rate λ. It

is well known that, [13], the average sojourn time for

a job of size x is E[T (x)]pS J F = E[W (x)] + E[R(x)]

where

E[W (x)] = λ
∫ x

0
t2 f (t) dt

2(1 − ρ(x))2
and E[R(x)] = x

1 − ρ(x)
.

We begin by bounding the contribution of the residence

time.

E[R] =
∫ ∞

0

E[R(x)] f (x) dx

=
∫ ∞

0

x f (x) dx

1 − ρ(x)
= 1

λ

∫ ρ

0

dρ(x)

1 − ρ(x)

(Since dρ(x) = λx f (x) dx)

= 1

λ
ln(1/(1 − ρ)) (2)

Notice that the analysis above in fact holds for any job

size density f (x) and that the average residence time has a

logarithmic dependence on (1 − ρ). Henceforth, we restrict

our attention to bounding the contribution due to the waiting

time.

By a simple calculation, ρ(x) = λ
∫ x

0
t f (t) dt = ρ(1 −

(k/x)α−1), for x ≥ k and
∫ ∞

0
x2 f (x) dx = α

α−2
k2.

As f (x) = 0, for x ≤ k for the Pareto distribution, we can

write the average waiting time as

E[W ] =
∫ ∞

k
λ f (x)

∫ x
k t2 f (t) dt

2(1 − ρ(x))2
dx . (3)

We first focus on the term
∫ x

k t2 f (t) dt . Again, by a

straightforward calculation it can be verified that,

∫ x

k
t2 f (t) dt =

⎧⎪⎪⎨⎪⎪⎩
α

2−α
kα(x2−α − k2−α) if α < 2

2k2 ln(x/k) if α = 2

α
α−2

kα(k2−α − x2−α) if α > 2

(4)

Consider the threshold x0 = k( ρ

1−ρ
)

1
α−1 . Note that if ρ ≥

1/2, then x0 is at least k. If x ≤ x0, then (k/x)α−1ρ ≥ 1 − ρ

and by the definition of ρ(x) it follows that

[(k/x)α−1ρ]2 ≤ (1 − ρ(x))2 ≤ 4[(k/x)α−1ρ]2. (5)

Similarly, for x ≥ x0, we have that (k/x)α−1ρ ≤ 1 − ρ

and hence

(1 − ρ)2 ≤ (1 − ρ(x))2 ≤ 4(1 − ρ)2. (6)

We now upper bound E[W ] in equation (3). We will con-

sider three cases, depending on whether α < 2, α = 2 or

α > 2.

1. When α < 2: By equations (3), (4), (5) and (6),

E[W ] ≤
∫ x0

k

λαkα

xα+1
· α

2 − α
· kα(x2−α − k2−α)

g(x)
dx

+
∫ ∞

x0

λαkα

xα+1
· α

2 − α
· kα(x2−α − k2−α)

2(1 − ρ)2
dx

≤
∫ x0

k

λαk2α

xα+1
· α

2 − α
· x2−α

g(x)
dx

+
∫ ∞

x0

λαk2α

xα+1
· α

2 − α
· x2−α

2(1 − ρ)2
dx

where g(x) = 2[(k/x)α−1ρ]2.

The first term in the equation above can be simplified as∫ x0

k

λαk2α

xα+1
· α

2 − α
· x2−α

g(x)
dx

=
∫ x0

k
λαk2 · α

2 − α
· 1

2ρ2x
dx

= k(α − 1) · α

2 − α
· 1

2ρ

1

α − 1
ln

(
ρ

1 − ρ

)
The second term can be simplified as∫ ∞

x0

λαk2α

xα+1
· α

2 − α
· x2−α

2(1 − ρ)2
dx

=
∫ ∞

x0

λαk2α · α

2 − α
· x1−2α

2(1 − ρ)2
dx

= λαk2α · α

2 − α
· 1

2α − 2

x2−2α
0

2(1 − ρ)2

= k(α − 1) · α

2 − α
· 1

2α − 2

1

2ρ

The last step follows by substituting the values of x0 and

ρ.

Springer



Queueing Syst (2006) 54:45–54 49

2. When α = 2: By equations (3), (5) and (6) we have,

E[W ] ≤
∫ x0

k

2λk2

x3

2k2x2 ln(x/k)

2ρ2k2
dx

+
∫ ∞

x0

2λk2

x3

2k2 ln(x/k)

2(1 − ρ)2
dx

=
∫ x0

k

2λk2 ln(x/k)

ρ2x
dx +

∫ ∞

x0

2λk4 ln(x/k)

x3(1 − ρ)2
dx

= λk2 ln2(x0/k)

ρ2
+ λk4(1 + 2 ln(x0/k))

4x2
0 (1 − ρ)2

=
k ln2

(
ρ

1 − ρ

)
2ρ

+
k(2 ln

(
ρ

1 − ρ

)
+ 1)

8ρ

The last step follows by substituting the values of λ =
ρ(α − 1)/(αk) = ρ/(2k) and x0.

As α = 2, the average sojourn time is easily seen to be

O(ln2
(

ρ

1−ρ

)
).

3. When α > 2: By equations (3), (5) and (6)

E[W ] ≤
∫ x0

k

λαk2α

xα+1
· α

α − 2
· k2−α

g(x)
dx

+
∫ ∞

x0

λαk2α

xα+1
· α

α − 2
· k2−α

2(1 − ρ)2
dx

where g(x) = 2[(k/x)α−1ρ]2.

We now calculate the first term,

∫ x0

k
λkα · α

α − 2
· k3−αxα−3

2ρ2
dx

= (α − 1)

2ρ
· αk

(α − 2)2
·
[(

ρ

1 − ρ

) α−2
α−1

− 1

]

The second term is simply

∫ ∞

x0

λαk2α

xα+1
· α

α − 2
· k2−α

2(1 − ρ)2
dx

= λαkα+2 · 1

α − 2
· x−α

0

2(1 − ρ)2

= k(α − 1)

2(α − 2)
· ρ− 1

α−1 · (1 − ρ)−
α−2
α−1

To finish the proof, by equation (2), we know that the

average residence time is always O(ln( 1
1−ρ

)). The proof of

the theorem follows by considering the obtained expression

for the average waiting time in all the three cases. �

2.2 Foreground-background policy in the M/G/1 system

We now show that a similar result to Theorem 1 holds for the

non size-based policy Foreground Background. In particular,

for the Pareto distribution the average sojourn time under FB

is similar to that under pSJF up to constant factors more than

α2.

Theorem 2. For the FB policy with Pareto job size distribu-
tion, the average sojourn time E[T ]F B satisfies

E[T ]F B =

⎧⎪⎪⎨⎪⎪⎩
O(ln

(
1

1−ρ

)
) if α < 2

O(ln2
(

1
1−ρ

)
) if α = 2

O((1 − ρ)−
(α−2)
(α−1) ) if α > 2

(7)

Proof: Let ρ1(x) = λ
∫ x

0
t f (t) dt + λx(1 − F(x)). It is well

known, [6], that the expected sojourn time of a job of size x
under FB is

E[T (x)]F B = λ

2

∫ x
0

t2 f (t) + x2(1 − F(x))

(1 − ρ1(x))2
+ x

1 − ρ1(x)
.

This expression is similar to that of pSJF except that in

both the denominators we have 1 − ρ1(x) instead of 1 − ρ(x)

and in the numerator of the waiting time term under FB there

is the additional x2(1 − F(x)) term.

We first show that 1 − ρ1(x) is always within a constant

factor of 1 − ρ(x) for the Pareto distribution.

ρ1(x) = λ

∫ x

0

t f (t) dt + λx(1 − F(x))

= ρ · (1 − (k/x)α−1) + λk(k/x)α−1

= ρ · (1 − (k/x)α−1) + (α − 1)(ρ/α)(k/x)α−1

= ρ · (1 − 1

α
(k/x)α−1)

Thus,

1 ≤ 1 − ρ(x)

1 − ρ1(x)
≤ ρ − ρ(x)

ρ − ρ1(x)
= α

which implies that the contribution due to the denominators

of the waiting time under pSJF and FB do not differ by factors

that depend on α.

We now account for the term x2(1 − F(x)). Notice that for

the Pareto distribution for α < 2, x2(1 − F(x)) = kαx2−α . In

bounding the average waiting time under pSJF for this case,

we only use the fact that for pSJF,
∫ x

0
t2 f (t)dt = O(kαx2−α)

and hence the expression for FB changes by a constant factor

only.
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Similarly for α = 2, x2(1 − F(x)) = k2. Under pSJF, the

corresponding term
∫ x

0
t2 f (t)dt is O(k2 log(x/k)). Thus the

expression for the waiting time for FB changes by only a

constant factor as compared with that for pSJF.

Finally for α ≥ 2, x2(1 − F(x)) = kαx−α+2. In bounding

the waiting time under pSJF in this case, we only use the

fact that
∫ x

0
t2 f (t)dt = O(kαx−α+2). Thus the result for the

waiting time under pSJF also holds for FB (up to constant

factors). �

2.3 Non-preemptive SJF policy in the M/G/1 system

Recall that if the job size distribution has infinite variance,

then the average sojourn time for any non-preemptive policy

is infinite. Hence throughout this subsection we assume that

α > 2.

The expression for the expected response time for a job

of size x under the nSJF policy is well known [13].

In particular, for a continuous job size distribution the

expected sojourn time for a job of size x is

E[T (x)]nS J F = λ

∫ ∞
0

t2 f (t) dt

2(1 − ρ(x))2
+ x

= ρ
E[S2]

2E[S](1 − ρ(x))2
+ x .

Theorem 3. For the non-preemptive SJF policy with
Pareto(α), α > 2 job size distributions the average sojourn
time E[T ]nS J F satisfies

E[T ]nS J F = O((1 − ρ)−( α−2
α−1

)) (8)

Proof: As in the proof of Theorem 1, we choose x0 =
k( ρ

1−ρ
)

1
α−1 and rewrite the above integral as

E[T ] =
∫

x
E[T (x)] f (x) dx

= ρ
E[S2]

E[S]

(∫ x0

k

f (x)

2(1 − ρ(x))2
dx

+
∫ ∞

x0

f (x)

2(1 − ρ(x))2
dx

)
+ E[S].

By equations (5) and (6), this sum can be upper bounded

by

ρ
E[S2]

E[S]

(∫ x0

k

f (x)

2((k/x)α−1ρ)2
dx +

∫ ∞

x0

f (x)

2(1 − ρ)2
dx

)
.

Since f (x) = αkαx−α−1 for x ≥ k, E[S2] = αk2/(α − 2)

and E[S] = αk/(α − 1), the above quantity is equal to

ρ
(α − 1)k

α − 2

(∫ x0

k

αkαx−α−1

2(k/x)2α−2ρ2
dx + kαx−α

0

2(1 − ρ)2

)
which by a straightforward calculation can be seen to be

O((1 − ρ)−( α−2
α−1

)). �

3 Non-preemptive threshold based policies

We consider the non-preemptive threshold based policy de-

fined in Section 1.1, with the threshold level x0.

We view the class of these policies as an extreme sim-

plification of nSJF. Note that nSJF can be viewed as thresh-

old based policy with infinitely many thresholds (one for

each x for every x > 0). Also note that if x0 is set to in-

finity then the policy corresponds to FIFO. Since the av-

erage sojourn time depends as 1/(1 − ρ) on load for non-

preemptive, non-size based policies, the threshold policy de-

fined above is one of the most restricted classes of policies

for which one can hope to have a load dependence better than

1/(1 − ρ).

Let ρ1 denote the load comprised of class 1 jobs. Using

the well-known results for average sojourn time under non-

preemptive class based priority systems [13][Page 441], we

have that

E[T ] = E[S] + ρ
E[S2]

2E[S]

(
F(x0)

1 − ρ1

+ 1 − F(x0)

(1 − ρ1)(1 − ρ)

)
.

(9)

3.1 Pareto distributions

We construct a threshold policy for the Pareto distribution

which has a better dependence on load than 1/(1 − ρ). Since

Pareto distributions have infinite variance for α ≤ 2 and our

threshold policy is non-preemptive, we restrict our attention

to the case when α > 2.

Theorem 4. Suppose the service times in an M/G/1 sys-
tem have a Pareto distribution with parameter α > 2 and
a threshold based priority scheduling policy is used with
threshold level x0 = k(1 − ρ)−1/α . Then

E[T ] = O((1 − ρ)−( α−1
α

)).

Proof: Choose x0 such that F(x0) = ρ. Thus, (k/x0)α =
(1 − ρ) and hence x0 = k(1 − ρ)−1/α . Thus by equation (9)
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we get,

E[T ] = E[S] + ρ
E[S2]

2E[S]

(
F(x0)

1 − ρ1

+ 1

1 − ρ1

)
≤ E[S] + ρ

E[S2]

2E[S]

(
2

1 − ρ1

)
.

By a straightforward calculation, 1 − ρ1 = 1 − ρ +
( k

x0
)α−1ρ. As (k/x0) = (1 − ρ)1/α , it follows that

1 − ρ1 = 1 − ρ + ρ(1 − ρ)
α−1
α

which implies the desired result. �

3.2 Exponentially distributed job sizes

We now show that even for the M/M/1 system, there is a

simple threshold policy such that the average sojourn time is

within a factor 2 of the smallest average sojourn time achiev-

able by any arbitrary policy.

Theorem 5. Consider an M/M/1 system with processing rate
μ. Suppose a threshold based priority scheduling policy is
used with threshold level x0 = 1

μ
log ρ

1−ρ
. Then

E[T ] ≤ 2 + o(1)

μ(1 − ρ) log
(

e
1−ρ

) .

Proof: Choose x0 such that F(x0) = ρ. Thus, e−μx0 = 1 −
ρ or x0 = 1

μ
log 1

1−ρ
. Using Equation (9) we obtain

E[T ] ≤ E[S] + ρ
E[S2]

2E[S]

(
ρ + 1

1 − ρ1

)
.

For the exponential distribution, we have that E[S] = 1/μ

and E[S2] = 2/μ2. Thus

E[T ] = 1

μ
·
(

ρ + 1

1 − ρ1

)
≤ 2

μ(1 − ρ1)
.

A direct calculation gives that ρ1 = ρμ
∫ x0

0
t f (t)dt = ρ2 −

ρ(1 − ρ) log
(

1
1−ρ

)
. Thus,

1 − ρ1 = 1 − ρ2 + ρ(1 − ρ) log

(
1

1 − ρ

)
≥ ρ(1 − ρ) log

(
e

1 − ρ

)
.

As 1/ρ = 1 + o(1) as ρ → 1, this implies the desired

result. �

4 Large deviation of queue lengths

We consider an M/M/1 queue with arrival rate λ < 1 and pro-

cessing rate μ = 1. Thus ρ = λ. Recall that in steady state

Pr(Q ≥ m) = ρm = elog(ρ)m , and hence the large deviations

rate for the queue length is log(ρ), which is approximately

ρ − 1 when ρ is close to 1. We now consider the class of

dedicated partition-based policies described in Section 1.1.

A policy in this class is completely characterized by the pa-

rameters a and ψ . We compute the large deviations rates

θ1, θ2 corresponding to steady state queue lengths of classes

with small jobs and big jobs respectively. We will show that

for certain parameters a, ψ , max(θ1, θ2) < log(ρ). Since the

overall large deviations rate for steady state queue length

is given as min(θ1, θ2), our policy achieves an improvement

over FIFO policy in M/M/1 in terms of the large deviations

rates performance.

By Theorem 4.3 [2], the large deviations rate for the steady

state queue length in a G/G/1 system with the FIFO policy

(provided it exists) is given as �A(θ ) where θ is the smallest

negative root of the equation

�A(θ ) + �B(−θ ) = 0 (10)

and �A(s) = log E[es A], �B(s) = log E[es B] and A, B are

random inter-arrival and service times. In particular for the

M/M/1 system the equation becomes

λ

λ − θ
· μ

μ + θ
= 1

implying θ = λ − μ and the large deviations rate becomes

log E[e(λ−μ)A] = log(λ/μ) = log(ρ) as expected. [2] also

give a sufficient condition (see Assumption B in [2]) for the

large deviations rate to exist. We use formula (10) to com-

pute the large deviations rates for individual queues in our

scheduling policy.

4.1 The system with large jobs

Let us consider first the system with large jobs. In this case,

the distribution of job sizes is given by f (x) = eae−x , if

x > a and 0 otherwise. Thus the average job size is a + 1.

The arrival rate of jobs to this system is λe−a . We will set

ψ = e−a(a + 1).

However, note that since we are only giving a portion

ψ to this server, this will stretch the service times in this

system by a factor of 1/ψ . In particular this implies that a
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job of size x in the original system will have size x/ψ in

this system. To remove this effect of scaling we do the fol-

lowing trick: Observe that if we scale the processing and

the arrival rate of any queueing system simultaneously by

a factor c, then the distribution of the queue length re-

mains unchanged. So, in this case we will choose c = 1/ψ =
ea/(a + 1). This transformation has the effect that a job of

size x in the original system also requires x units of ser-

vice in our current system. After this scaling however, the

arrival rate becomes λ′ = λe−a/ψ = λ/(a + 1). Thus, from

now on we will consider the system with the job size distribu-

tion f (x) = eae−x , if x > a and 0 otherwise, and arrival rate

λ′ = λ/(a + 1).

We note that Assumption B in [2] is trivially satisfied for

our system as both the inter-arrival times and the service

times are i.i.d. and have finite moments of all orders, which

implies the existence of the large deviations rate. We now

compute the relevant quantities. Clearly,

�B(−θ ) = log

∫ ∞

a
eae−x e−θx dx = log

(
e−θa

θ + 1

)
.

Since the inter-arrival distribution is still Poisson with rate

λ′ we have that �A(θ ) = log( λ′
λ′−θ

). Thus to obtain the large

deviations rate, we solve for the smallest root of

λ′

λ′ − θ
· e−θa

θ + 1
= 1 (11)

Clearly, the smallest root θ∗ of this equation is negative (oth-

erwise the large deviations rate is undefined). We now show

that as λ → 1, then θ∗ → 0. Of course this is fully expected

since as the system approaches heavy-traffic the large devi-

ations rate must approach zero.

To see this, we rewrite equation (11) as

λ(1 − e−θa) = (a + 1)θ2 − λθ + (a + 1)θ (12)

As θ∗ < 0, we have that 1 − e−θ∗a ≤ aθ∗. Thus, by equation

(12)

λaθ∗ ≥ (a + 1)θ∗2 − λθ∗ + (a + 1)θ∗

As θ∗ < 0, this implies that

λa ≤ (a + 1)(θ∗ + 1) − λ

and hence,

θ∗ ≥ (λ − 1)

Since θ∗ < 0, the above equation implies that as λ → 1,

then θ∗ → 0. Our goal now is to obtain limλ→1
θ∗

λ−1
. As θ∗

satisfies equation (12), we have that

λ − 1

θ∗ = (a + 1)θ∗2 + (a + 1)θ∗ − 1 + e−θ∗a − θ∗

θ∗(1 − e−θ∗a + θ∗)
(13)

Applying the L’Hopital rule twice,

lim
θ∗→0

(a + 1)θ∗2 + (a + 1)θ∗ − 1 + e−θ∗a − θ∗

θ∗(1 − e−θ∗a + θ∗)

= 2(a + 1) + a2

2(a + 1)
. (14)

As λ′ = 1/(a + 1), the large deviations rate

�A(θ∗) = log
λ′

λ′ − θ∗ = − log(1 − (a + 1)θ∗).

As limx→0(log(1 + x))/x = 1, and by equations (13) and

(14) it follows that

lim
λ→1

�A(θ∗)

λ − 1
= lim

λ→1

θ∗

λ − 1
· �A(θ∗)

θ∗

= 2(a + 1)

2(a + 1) + a2
· (a + 1) = 2(a + 1)2

2(a + 1) + a2
.

For a = 1, this implies that

lim
λ→1

�A(θ∗)

λ − 1
= 1.6 (15)

4.2 The system with small jobs

In this system the arrival rate of the jobs is (1 − e−a)λ, and

the speed of the server is 1 − ψ = 1 − (a + 1)e−a . As pre-

viously, for computational convenience, we scale both jobs

sizes and the arrival rate by the factor 1/(1 − ψ). The jobs

sizes now have the distribution (1 − e−a)−1e−x for x ≤ a
and 0 otherwise. The arrival rate λ′ = λ(1 − e−a)/(1 − (a +
1)e−a).

Again, the existence of the large deviations rate is guaran-

teed as Assumption B in [2] is easily satisfied by our system.

We now compute the relevant quantities. By a simple calcu-

lation it follows that

�B(−θ ) = log
1 − e−a(1+θ )

(θ + 1)(1 − e−a)

As �A(θ ) = log(λ′/(λ′ − θ )), we need to solve for

λ′

λ′ − θ
· 1 − e−a(1+θ )

(θ + 1)(1 − e−a)
= 1 (16)
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As usual let θ∗ < 0 denote the smallest root of this

equation. We first note that θ∗ ≥ −1, because (1 −
e−a(1+θ ))/((θ + 1)(1 − e−a)) < 1 for θ < −1 and clearly

λ′/(λ′ − θ ) < 1 for any θ < 0, and hence equation (16) can-

not be satisfied for θ < −1.

We will be interested in the behavior of θ∗ as λ approaches

1. In particular, we will be interested in how θ∗ approaches

0 as λ approaches 1. We also fix a = 1. Then equation (16)

can be written as

e − e−θ∗

(θ∗ + 1)(e − 1)
= 1 − θ∗

λ′ (17)

We first show the weaker statement that θ∗ > −0.8 as λ

approaches 1. For notational convenience, we will use f (θ∗)

to denote the function (1 − e−(1+θ∗))/(1 + θ∗). By definition

of λ′, it follows that limλ→1 λ′ = (e − 1)/(e − 2) > 2.39. As

θ∗ ≥ −1, we have that

lim
λ→1

1 − θ∗

λ′ ≤ lim
λ→1

(
1 + 1

λ′

)
≤ 3.39

2.39
. (18)

By (18) and by equation (17), it follows that

lim
λ→1

f (θ∗) ≤ 3.39(1 − e−1)

2.29
< 0.9.

As (1 − e−x )/x is a decreasing function of x for x ≥ 0, and

as θ∗ ≥ −1, it follows that f (θ∗) is a decreasing function of

θ∗. Now, f (−0.8) > 0.906, which implies that limλ→1 θ∗ >

−0.8.

We are now ready to show that θ∗ actually approaches 0

as λ approaches 1. Using the Taylor expansion of ex , and that

−0.8 ≤ θ∗ < 0, we get that

e−θ∗ = 1 − θ∗ + θ∗2/2! − θ∗3/3! + . . .

≤ 1 − θ∗ + θ∗2/2! + 0.8θ∗2(1/3! + 1/4! + . . .)

= 1 − θ∗ + θ∗2(0.8e − 1.5)

≤ 1 − θ∗ + 0.7θ∗2. (19)

Plugging inequality (19) into equation (17), we find

1 − θ∗

λ′ ≥ e − 1 + θ∗ − 0.7θ∗2

(θ∗ + 1)(e − 1)

= (e − 1)(θ∗ + 1) + θ∗(2 − e) − 0.7θ∗2

(θ∗ + 1)(e − 1)
.

Subtracting 1 from both sides, and multiplying by −λ′(θ∗ +
1)/θ∗ > 0, we get

θ∗ + 1 ≥ λ′
(

e − 2 + 0.7θ∗

e − 1

)
.

After substituting λ′ = λ(e − 1)/(e − 2), and rearranging

terms, we get

θ∗
(

1 − 0.7λ

e − 2

)
≥ λ − 1.

This implies that θ∗ → 0 when λ → 1.

We now evaluate limλ→1
θ∗

λ−1
. Using equation (16), we

write λ as a function of θ∗. Applying the L’Hopital rule twice

and replacing limλ→1 by limθ∗→0, we get

lim
λ→1

θ∗

λ − 1
= 2e − 4

2e − 5
. (20)

The limit of the ratio large deviations rate divided by λ − 1

as λ → 1 can be evaluated as

lim
λ→1

�A(θ∗)

λ − 1
= lim

λ→1

θ∗

λ − 1
· lim

θ∗→0

�A(θ∗)

θ∗

= 2e − 4

2e − 5
· lim

θ∗→0

(
1

θ∗ · log
λ′

λ′ − θ∗

)
= 2e − 4

2e − 5
.
e − 2

e − 1
≈ 1.3755 (21)

The second step follows from equation (20) and the final step

follows as λ′ = λ(e − 1)/(e − 2).

By equations (15) and (21) we have that

Theorem 6. Given an M/M/1 queueing system operating
under a dedicated processor sharing policy, there exists a
threshold value a such that the large deviations rates θ1, θ2

for the two queue lengths satisfy

lim
ρ→1

min(|θ1|, |θ2|)
| log ρ| ≥ 1.37.
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