Two-Sided Learning and the Ratchet Principle

Gonzalo Cisternas MIT Sloan

This Paper

- Class of games of learning and imperfect monitoring. Key elements:
 - Learning about a hidden state
 - Ex ante symmetric uncertainty
 - ullet Imperfect monitoring o strategically affecting beliefs of others
- Challenge: off-path private beliefs. Existing literature:
 - Reputation: linear payoffs (Holmström, 1999; Board and Meyer-ter-Vehn 2013 and 2014)
 - Experimentation: coarse information structures (Bergemann and Hege, 2005; Bonatti and Horner 2010 and 2017)
- This paper: framework that accommodates (i) non-linear payoffs and
 (ii) frequent arrival of information; no experimentation effects

Model

- Long-run player (LRp) and continuum of small players (market)
- $t \in [0, \infty)$; partially observed process

$$\begin{array}{lll} d\theta_t & = & -\kappa(\theta_t - \eta)dt + \sigma_\theta dZ_t^\theta & \textit{fundamentals - hidden} \\ d\xi_t & = & (a_t + \theta_t)dt + \sigma_\xi dZ_t^\xi & \textit{public signal} \end{array}$$

- Common prior: $\theta_0 \sim \mathcal{N}(p, \gamma^*)$; $a_t \in A \subset \mathbb{R}$ LRp's hidden action $t \geq 0$
- Market only observes $(\xi_t)_{t\geq 0}$ and takes action $\chi(a_t^*,p_t^*)$
 - $(a_t^*)_{t\geq 0}$: mkt's conjecture of behavior; $p_t^*:=\mathbb{E}^{a^*}[heta_t|(\xi_s)_{s\leq t}]$
- Given a^* , LRp chooses $(a_t)_{t\geq 0}$ to maximize

$$\mathbb{E}^{\mathbf{a}} \left[\int_{0}^{\infty} e^{-rt} \left(u(\chi(\mathbf{a}_{t}^{*}, p_{t}^{*})) - g(\mathbf{a}_{t}) \right) dt \right]$$

Today: $g(a) = a^2/2$ - can be more general ightharpoonup Diff. & growth conditions

Reputation in Labor Markets: Career Concerns (Holmström 1999)

• Worker and a pool of employers; a_t : worker's **hidden effort**

$$\begin{array}{lll} d\theta_t & = & -\kappa(\theta_t - \eta)dt + \sigma_\theta dZ_t^\theta & \text{skills - hidden} \\ d\xi_t & = & (a_t + \theta_t)dt + \sigma_\xi dZ_t^\xi & \text{output - public} \end{array}$$

• Labor market is *spot* (competition & no explicit contracts):

wage at
$$\mathbf{t} := \lim_{h \to 0} \frac{\mathbb{E}^{a^*}[\xi_{t+h} - \xi_t]}{h} = p_t^* + a_t^* =: \chi(a_t^*, p_t^*)$$

• Risk neutral worker $(u(\chi) = \chi)$ chooses $(a_t)_{t \geq 0}$ to maximize

$$\mathbb{E}^a \left[\int_0^\infty e^{-rt} \left(p_t^* + a_t^* - \frac{a_t^2}{2} \right) dt \right]$$

Equilibrium effort? Key: flow payoff is linear in p_t^*

Macroeconomics: Monetary Policy

• Central bank and an economy; a_t : money growth

$$\begin{array}{lll} d\theta_t & = & -\kappa\theta_t dt + \sigma_\theta dZ_t^\theta & \text{inflation trend - hidden} \\ d\xi_t & = & (a_t + \theta_t) dt + \sigma_\xi dZ_t^\xi & \text{log price index - public} \end{array}$$

• Phillips curve: \log employment (n) evolves according to

$$dn_t = -\kappa_n n_t dt + \nu \underbrace{\left[d\xi_t - (a_t^* + p_t^*) dt \right]}_{\text{unanticipated inflation; } dS_t}$$

- Changes in p_t^* also driven by $dS_t \Rightarrow n_t = p_t^*$ some parameters
- Central bank chooses $(a_t)_{t>0}$ to maximize

$$\mathbb{E}^a \left[\int_0^\infty e^{-rt} \left(-\frac{n_t^2}{2} - \frac{a_t^2}{2} \right) dt \right]$$

Equilibrium inflation? Flow payoff **nonlinear** in $n_t = p_t^*$

Financial Markets: Earnings Management

• Manager and a financial market; a_t : earnings manipulation

$$\begin{array}{lll} d\theta_t &=& \sigma_\theta dZ_t^\theta & \text{firm's fundamentals - hidden} \\ d\xi_t &=& (a_t+\theta_t)dt + \sigma_\xi dZ_t^\xi & \text{earnings report - public} \end{array}$$

- Market expects true earnings $\mathbb{E}^{a^*}[d\xi_t a_t dt] = p_t^* dt$ over [t, t + dt)
- Manager's incentives are more acute at $p^* = 0$ (zero earnings threshold): $\chi' > 0$ and maximized at zero
- Manager chooses $(a_t)_{t\geq 0}$ to maximize

$$\mathbb{E}^{a} \left[\int_{0}^{\infty} e^{-rt} \left(\chi(p_{t}^{*}) - \frac{a_{t}^{2}}{2} \right) dt \right]$$

Equilibrium policy $a^*(p^*)$? Flow payoff is **fully nonlinear**

Overview of Results

- 1. Main finding: learning-driven "ratchet principle"
- 2. Technical contribution: "first-order approach" (FOA) to perform equilibrium analysis with off path hidden actions + hidden info
- Specifically:
- \bullet ODE as a necessary condition for Markov equilibrium $a_t^* = a^*(p_t^*)$
 - ullet ratcheting equation: "Euler equation + ratchet-like forces" o novel
- Sufficiency: verification theorem
 - bypasses belief divergence/private beliefs challenge
- Existence of pure-strategy equilibria in environments with nonlinear flow payoffs
- Applications: ratchet effects & nonlinearities

Roadmap

- 1. Strategies and Equilibrium Concept
- 2. Laws of Motion of Beliefs
- 3. Necessary Condition: Ratcheting Equation
- 4. Applications
- 5. Sufficiency: Verification Theorem
- 6. Existence of Markov Equilibria

Public Strategies and Nash Equilibrium

- \bullet $(\xi_t)_{t\geq 0}$ satisfies the full-support assumption
 - "Nash eq. is outcome-equivalent to sequential eq." ⇒ focus on Nash
- A pure strategy $(a_t)_{t\geq 0}$ is **feasible** if it is ξ -prog. measurable, $\mathbb{E}[\int_0^t (a_s^2) ds] < \infty$, and $(\xi_t)_{t\geq 0}$ has a solution
- \bullet Nash eq.: $(a_t^*)_{t\geq 0}$ is optimal for the LRp when $p_t^*=p_t^*[\xi,a^*],\, t\geq 0$
 - Belief coincide on the equilibrium path
- ullet A N.E. is **Markov** if $a_t^*=a^*(p_t^*)$, $a^*\in C^2(\mathbb{R};A)$, Lipschitz

In what follows, mkt's conjecture $(a_t^*)_{t\geq 0}$ is fixed and study deviations

Law of Motion of Beliefs

$$\bullet \ d\xi_t - a_t dt = \underbrace{\theta_t dt + \sigma_\xi dZ_t^\xi}_{dY_t :=}; \ p_t := \mathbb{E}[\theta_t | (Y_s)_{0 \le s \le t}] \colon \mathbf{LRp's} \ \mathbf{belief}$$

 $\qquad \text{Prior variance } \gamma^* := \sigma_\xi^2[(\kappa^2 + \sigma_\theta^2/\sigma_\xi^2)^{1/2} - \kappa] \Rightarrow \text{posteriors } \mathcal{N}(\cdot, \gamma^*)$

Lemma

$$dp_t^* = -\kappa (p_t^* - \eta) dt + \underbrace{\frac{\gamma^*}{\sigma_{\xi}^2}}_{\beta :=} [d\xi_t - (a_t^* + p_t^*) dt] \text{ and } (1)$$

$$dp_t = -\kappa(p_t - \eta)dt + \underbrace{\frac{\gamma^*}{\sigma_{\xi}}}_{\sigma := \underbrace{\frac{[d\xi_t - (a_t + p_t)dt]}{\sigma_{\xi}}}_{=dY_t - p_t := dZ_t}, t \ge 0, \quad (2)$$

where $(Z_t)_{t\geq 0}$ is a BM from the LRp's perspective and $d\xi_t=(a_t+p_t)dt+\sigma_\xi dZ_t$ from his standpoint.

Obs: $a_t > a_t^* \Rightarrow p_t^* > p_t$, i.e., off-path belief asymmetry

HJB Approach

Theorem

Suppose that V satisfies the equation

$$rV(p, p^{*}) = \sup_{a \in A} \left\{ \underbrace{u(\chi(p^{*}, a^{*}(p^{*}))) - a^{2}/2}_{\text{flow payoff}} \underbrace{-\kappa(p - \eta)}_{\text{drift of } p} V_{p}(p, p^{*}) + \underbrace{[-(\beta + \kappa)(p^{*} - p) + \beta[a - a^{*}(p^{*})]}_{\text{drift of } p^{*}} V_{p^{*}}(p, p^{*}) + \underbrace{0.5\sigma^{2}[V_{pp}(p, p^{*}) + 2V_{p, p^{*}}(p, p^{*}) + V_{p^{*}p^{*}}(p, p^{*})]}_{\text{second-order terms}} \right\}$$

$$s.t. \qquad \arg\max_{a \in A} \left\{ \beta V_{p^{*}}(p^{*}, p^{*})a - a^{2}/2 \right\} = a^{*}(p^{*})$$

Then $a^*(p^*) = \beta V_{p^*}(p^*, p^*)$ is a **Markov eq.** and V(p, p) its payoff.

• Non-local PDE: $V_{p^*}(p^*, p^*)$ term

Necessary Conditions and Ratchet Principle

Ratchet Principle

• Suppose $\chi(p^*, a^*) = p^*$; $(p_t^*)_{t \ge 0}$ is effectively an incentive scheme

$$\underbrace{dp_t^*}_{\text{change in payments}} = \underbrace{-\kappa(p_t^* - \eta)dt}_{\text{exogenous trend}} + \underbrace{\beta}_{\text{sensitivity}} \times \big[\underbrace{d\xi_t}_{\text{performance}} - \underbrace{(p_t^* + a^*(p_t^*))dt}_{\text{target performance}} \big].$$

• Ratchet:= sensitivity of target to contemporaneous performance

$$:= \frac{d(p_t^* + a^*(p_t^*))}{d\xi_t} = \left[1 + \frac{da^*(p^*)}{dp^*}\right] \Big|_{p^* = p_t^*} \times \underbrace{\frac{dp_t^*}{d\xi_t}}_{=\beta} = \beta + \beta \frac{da^*(p_t^*)}{dp^*}$$

ullet Holds for general χ via Ito's rule

Ratcheting Cost - Heuristic

ullet Deviation: LRp chooses $a_t = a(p_t^*) + 1$ and matches target thereafter

$$\underbrace{dp_t^*}_{\text{change in payments}} = \underbrace{-\kappa(p_t^* - \eta)dt}_{\text{exogenous trend}} + \underbrace{\beta}_{\text{sensitivity}} \times [\underbrace{d\xi_t}_{\text{performance}} - \underbrace{(p_t^* + a^*(p_t^*))dt}_{\text{target performance}}].$$

- 1) $\Rightarrow p_{t+dt}^* p_{t+dt} > 0$
- 2) $\Rightarrow a_t = a^*(p_t^*) + p_t^* p_t \Rightarrow d\xi_s (a^*(p_s^*) + p_s^*)ds = \text{martingale}$
- 1)+2) \Rightarrow payments increase by $p_s^* p_s = e^{-\kappa(s-t)} > 0$
- Matching market's expectation of performance is costly:

$$\underbrace{g(a_t) - g(a^*(p_s))}_{\text{extra cost}} = g'(a^*(p_s)) \times \underbrace{\left[1 + \frac{da^*(p_s)}{dp^*}\right] \beta}_{\text{ratchet}} e^{-\kappa(s-t)}$$

Necessary Condition

Proposition (Necessary Conditions)

In a Markov equilibrium, $a^*(p) = \beta q(p)$, where

$$q(p) := \mathbb{E}\left[\int_0^\infty e^{-(r+\kappa)t} \left[(u \circ \chi)'(p_t) - g'(a^*(p_t)) \left(1 + \frac{da^*(p_t)}{dp^*} \right) \right] dt \middle| p_0 = p \right]$$

and $dp_t = -\kappa(p_t - \eta)dt + \sigma dZ_t$, $p_0 = p$. The corresponding equilibrium payoff is given by

$$U(p) := \mathbb{E}\left[\int_0^\infty e^{-rt} [u(\chi(p_t)) - g(\beta q(p_t))] dt \middle| p_0 = p\right].$$

 $ightarrow q(\cdot)$ is a measure of marginal utility in which future beliefs differ

ODEs

Since
$$g(a) = a^2/2$$
 and $g'(a^*(p)) = \beta q(p) \Rightarrow da^*(p)/dp = \beta q'(p)$

Proposition (ODE Characterization)

In a Markov equilibrium, $a^*(\cdot) = \beta q(\cdot)$, where $q(\cdot)$ satisfies

$$\Big[r+\kappa+\underbrace{\beta+\beta^2q'(p)}_{\textit{ratchet}}\Big]q(p)=(u\circ\psi)'(p)-\kappa(p-\eta)q'(p)+\frac{1}{2}\sigma^2q''(p)$$

 $U(\cdot)$ in turn satisfies the linear ODE

$$rU(p) = u(\chi(p)) - g(\beta q(p)) - \kappa(p - \eta)U'(p) + \frac{1}{2}\sigma^2 U''(p)$$

Ratcheting ODE

$$\Big[\underbrace{r+\kappa}_{\text{discounting}} + \underbrace{\beta+\beta^2q'(p)}_{\text{ratchet}}\Big]q(p) = \underbrace{(u\circ\psi)'(p)}_{\text{myopic}} \underbrace{-\kappa(p-\eta)q'(p) + \frac{1}{2}\sigma^2q''(p)}_{\text{cost smoothing}}$$

- Ratchet puts downward pressure on incentives. Ratcheting costs
 - $\beta q(\cdot)$ results from off-path belief asymmetry (which matters for on-path incentives!) \rightarrow not borne along the path of play
 - $\beta rac{da^*(\cdot)}{dp^*}q(\cdot)$ results from changes in $a^* o$ borne along the path of play
- Interaction term $q'(\cdot)q(\cdot)$ has opposite effect in eqns. for mg. utility in **decision problems**; but this is a **game**

Applications:

Impact of β and $\beta \frac{da^*}{dp^*}$ on incentives

Career Concerns

Look for constant q:

$$q = \frac{1}{r + \kappa + \beta} \Rightarrow g'(a^*(p)) = \frac{\beta}{r + \kappa + \frac{\beta}{\beta}}$$

as ratchet $=\beta+\beta\frac{da^*}{dp}=\beta$ in a deterministic equilibrium

• Intuition: recall $dp_t^* = \kappa(p_t^* - \eta)dt + \beta[d\xi_t - (a^*(p_t^*) - p_t^*)dt];$ consider one-time mg. surprise along the path of play vs. deviation

Monetary Policy

• Central bank chooses $(a_t)_{t\geq 0}$ to maximize

$$\mathbb{E}^a \left[\int_0^\infty e^{-rt} \left(-\frac{n_t^2}{2} - \frac{a_t^2}{2} \right) dt \right]$$

where $dn_t = -\kappa n_t dt + \beta [d\xi_t - (a_t^* + p_t^*)dt]$, $n_0 = p_0 \Rightarrow n_t = p_t^*$

• Suppose $(\theta_t)_{t\geq 0}$ is observable or absent. Then

$$dn_t = [-\kappa n_t + \beta(a_t - a_t^*)]dt + \sigma dZ_t^{\xi}$$

⇒ environment becomes one of imperfect monitoring only

Proposition (Observable case)

In any linear equilibrium, $a^{*,o}(n) = \beta \alpha^o n$, where $\alpha^o < 0$.

Monetary Policy

Hidden case: Phillips curve now becomes

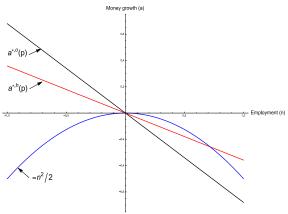
$$dn_t = \left[-\kappa n_t + \beta(a_t - a_t^*) - \underbrace{\beta(p_t^* - p_t)}_{\text{ratcheting}} \right] dt + \sigma dZ_t$$

But $a_t>a_t^*\Rightarrow p_t^*>p_t$, i.e. ratcheting puts **extra downward** pressure on employment

Proposition (Hidden case)

There exists a linear eqbm. $a^{*,h}(n) = \beta \alpha^h n$, $\alpha^h < 0$, s.t. $|\alpha^h| < |\alpha^o|$.

Monetary Policy



 \bullet Ratcheting generates $\emph{commitment}$ & lower inflationary bias for n<0

$$\underbrace{\left[r+2\kappa+\beta^2\alpha^o\right]\alpha^o=-1}_{\text{obs. case}} \quad \text{ and } \quad \underbrace{\left[r+2\kappa+\beta+\beta^2\alpha^h\right]\alpha^h=-1}_{\text{hidden case}},$$

Earnings Manipulation

Recall

$$\begin{array}{lll} d\theta_t &=& \sigma_\theta dZ_t^\theta & \text{firm's fundamentals} \\ d\xi_t &=& (a_t+\theta_t)dt + \sigma_\xi Z_t^\xi & \text{earnings report} \end{array}$$

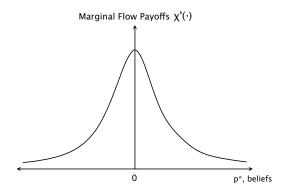
- Market expects true earnings $\mathbb{E}^{a^*}[d\xi_t a_t^*dt|\mathcal{F}_t] = p_t^*dt$
- Manager's flow payoff: $u(\chi(p^*)) g(a) = \chi(p^*) a^2/2$
- Evidence: manipulation strong at key thresholds or benchmarks
 - zero earnings, zero earnings growth, and/or analysts' forecasts
 - Burgstahler and Dichev (1997); Degeorge at al. (1999); Burgstahler and Chuck (2012); Dichev et al. (2013)

Thresholds and Nonlinear Incentives

• Recall $\mathbb{E}_t^{a^*}[d\xi_t - a_t^*dt] = p_t^*dt$; $p^* = 0$: zero-earnings threshold

Assumption

 $\chi'(\cdot)>0$ is single-peaked and symmetric around zero, with $\chi'''(0)<0$

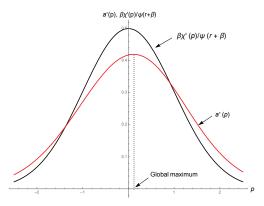


• $p \mapsto \beta \chi'(p)/(r+\beta)$ myopic benchmark

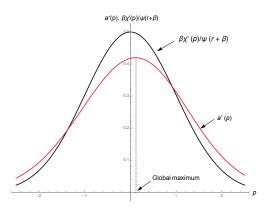
Equilibrium: Policy Skewed to the Right

Proposition

In equilibrium:
$$a^*(0)<\frac{\chi'(0)}{r+\beta}$$
, $\frac{da^*}{dp^*}(0)>0$ and $a^*(p)>a^*(-p)$, $\forall p>0$



Endogenous Ratcheting



• Ratcheting $\beta da^*/dp^*$ breaks the symmetry:

$$q(p) = \frac{\chi'(p) + \frac{1}{2}\sigma^2 q''(p)}{r + \beta + \beta^2 q'(p)} = \frac{\chi'(p) + \frac{1}{2}\sigma^2 q''(p)}{r + \beta + \beta \frac{da^*}{dp}(p)}$$

Sufficiency

$$[r+\beta+\kappa+\beta^2q'(p)/\psi]q(p) = (u\circ\chi)'(p)-\kappa(p-\eta)q'(p)+\frac{1}{2}\sigma^2q''(p)$$

$$rU(p) = (u\circ\chi)(p)-g(\beta q(p)/\psi)-\kappa(p-\eta)q'(p)$$

$$+\frac{1}{2}\sigma^2U''(p)$$

Verification Theorem

Theorem (General $g(\cdot)$ with $g'' > \psi > 0$)

(U,q) of class C^2 solves the previous system $+\ \mathit{TVC}$ and satisfies

$$|U''(\cdot) - q'(\cdot)| \le \frac{\psi(r + 4\beta + 2\kappa)}{4\beta^2}. \quad (*)$$

If $a_t^* = (g')^{-1}(\beta q(p_t^*[\xi]))$ is feasible, $a^*(\cdot)$ is a Markov equilibrium and $U(\cdot)$ its corresponding payoff.

- ullet (*) is a bound on the rate of change of information rent, $q-U^\prime$
- \bullet Idea: construct upper bound to $V(p,p^{\ast})$ that coincides with U on the equilibrium path
 - \bullet Use info rent U'-q to account for the value of having pvte information about ξ \bullet Bound

Existence of Markov Equilibria

$$\chi = \chi(p^*)$$
 & $g'' > \psi$

Linear-Quadratic Games

Definition (LQ Environment)

 $A=\mathbb{R};\ g(a)=\tfrac{\psi}{2}a^2,\ \psi>0;\ \text{and}\ u(\chi(p^*,a^*))=u_0+u_1p^*-u_2p_t^{*2},$ where $u_0,u_1\in\mathbb{R}$ and $u_2\geq0.$

Theorem

A linear $q(\cdot)$ and a quadratic $U(\cdot)$ solving (q,U) system exist iff

$$u_2 \le \frac{\psi(r+\beta+2\kappa)^2}{8\beta^2}.$$

In this case, $a^*(p)=\beta[q_1+q_2p]/\psi$, with $q_1=rac{\eta\kappa q_2+u_1}{r+\beta+\kappa+rac{\beta^2}{\psi}q_2}$ and

$$q_2 = \frac{\psi}{2\beta^2} \left[-(r+\beta+2\kappa) + \sqrt{(r+\beta+2\kappa)^2 - \frac{8u_2\beta^2}{\psi}} \right] < 0,$$

is a linear Markov equilibrium.

Bounded Marginal Flow Payoffs

- (i) $h(p):=u(\chi(p))$ is differentiable and $m:=\inf_{p\in\mathbb{R}}h'(p)>-\infty$ and $M:=\sup_{p\in\mathbb{R}}h'(p)<\infty$
- (ii) $g:A\to\mathbb{R}$ is twice differentiable and strongly convex, and $g^{-1}(J)\subset A$, where $J:=\left[\frac{m}{r+\beta(\kappa)+\kappa},\frac{M}{r+\beta(\kappa)+\kappa}\right]$

A solution to the ratcheting equation is bounded if q and q^\prime are bounded

Existence of Markov Equilibria

Theorem

- ullet There exists a bounded solution q(p) to the ratcheting eqn. taking values in J
- Given q(p), there exists a unique C^2 -solution to the U-ODE:

$$\mathbb{E}\left[\int_0^\infty e^{-rt}(h(p_t) - g(\beta q(p_t)))\right], \ p_0 = p$$

• U'(p) - q(p) has an analytic solution. Moreover, when $\kappa = 0$, if

$$\frac{M-m}{\psi} \le \frac{\sqrt{2r\sigma_{\xi}^2}(r\sigma_{\xi} + \sigma_{\theta})^2}{4\sigma_{\theta}^2},$$

 $a^*(\cdot) = \beta q(\cdot)/\psi$ is a Markov equilibrium

Literature

- Symmetric learning in reputation games (no experimentation)
 - Holmstrom (1999), Board and Meyer-ter-Vehn (2013, 2014), Kovrijnykh (2007), Martinez (2009), Bar-Isaac and Deb (2014)
- Symmetric learning and experimentation (linear payoffs and poisson learning)
 - Bergeman and Hege (2005), Horner and Samuelson (2014), Bonatti and Hörner (2014)
- First-order approach to contracting
 - Williams (2011), Sannikov (2015), Prat and Jovanovic (2014), DeMarzo and Sannikov (2015)
- Ratchet effect
 - Weitzman (1980), Laffont and Tirole (1988), Martinez (2009), Bhaskar (2014)

Conclusions

- Class of games of symmetric learning and imperfect monitoring
 - Necessary and sufficient conditions for Markov equilibrium
 - ullet \exists Markov eqbm. and simple tool for computation
 - Generality is important: (i) uncovers new economic insights; (ii) expands class of applications
- Regarding the key assumptions of the model:
 - N long-run players
 - Beyond symmetric uncertainty: Bonatti, Cisternas and Toikka (2017)
 - Experimentation and first-order approach

Technical Conditions

Assumption

(i) Differentiability: $u \in C^1(\mathbb{R})$, $\chi \in C^1(\mathbb{R} \times A)$ and $g \in C^2(A; \mathbb{R}_+)$ with

$$\rho := (g')^{-1} \in C^2(\mathbb{R}).$$

- (ii) Growth conditions: the partial derivatives χ_p and χ_{a^*} are bounded in $\mathbb{R} \times A$, and u, u' and g' have polynomial growth.
- (iii) Strong convexity: $g''(\cdot) \ge \psi$ for some $\psi > 0$.

▶ Back to the model

Dealing with Off-Path Private Beliefs

• Market constructs beliefs using q, and (*) holds, there is $\Gamma > 0$ s.t.

$$U(p^*) + \underbrace{[U'(p^*) - q(p^*)]}_{\text{info rent}} (p - p^*) + \Gamma \frac{(p - p^*)^2}{2}$$

is an upper bound to the LRp's payoff

- In particular, $U(\cdot)$ is an upper bound when $p=p^*$
- By construction, $U(\cdot)$ is attained $q \Rightarrow q$ is optimal
- "Tight upper bounds"
 - Principle behind HJB equations
 - Williams (2011); Prat and Jovanovic (2014), Sannikov (2015)

▶ Verification Theorem