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PREFACE

This book has been written primarily to serve as a textbook for a first
course in modern logic. No background in mathematics or philosophy is
supposed. My main objective has been to familiarize the reader with
an exact and complete theory of logical inference and to show how it
may be used in mathematics and the empirical sciences. Since several
books already available have aims closely related to the one just stated,
it may be well to mention the major distinguishing features of the present
book.

Part 1 (the first eight chapters) deals with formal principles of infer-
ence and definition. Beginning with the theory of sentential inference in
Chapter 2 there is continual emphasis on application of the method of
interpretation to prove arguments invalid, premises consistent, or axioms
of a theory independent. There is a detailed attempt (Chapter 7) to
relate the formal theory of inference to the standard informal proofs
common throughout mathematics. The theory of definition is presented
(Chapter 8) in more detail than in any other textbook known to the
author; a discussion of the method of Padoa for proving the independence
of primitive concepts is included.

Part I (the last four chapters) is devoted to elementary intuitive set
theory, with separate chapters on sets, relations, and functions. The
treatment of ordering relations in Chapter 10 is rather extensive. Part
II is nearly self-contained and can be read independently of Part I. The
last chapter (Chapter 12) is concerned with the set-theoretical founda-
tions of the axiomatic method. The idea that the best way to axiomatize
a branch of mathematics is to define appropriate set-theoretical predicates
is familiar to modern mathematicians and certainly does not originate
with the author, but the exposition of this idea, which provides a sharp
logical foundation for the axiomatic method, has been omitted from the
excellent elementary textbooks on modern mathematics which have ap-
peared in recent years.

Beginning with Chapter 4, numerous examples of axiomatically formu-
lated theories are introduced in the discussion and exercises. - These ex-
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amples range from the theory of groups and the algebra of the real
numbers to elementary probability theory, classical particle mechanics
and the theory of measurement of sensation intensities. (The section on
mechanics is the one exception to the general statement that there are
no mathematical prerequisites for the reading of this book; some knowl-
edge of the differential and integral caleulus is required for the full under-
standing of this section, the final one in the book.) Certain of the ex-
ercises included in connection with these substantive examples are more
difficult than those ordinarily put in an elementary logic text. The pur-
pose of these exercises is to challenge the ablest students. There is,
however, a very large number of additional exercises of relatively simple
character which adequately illustrate all the general principles intro-
duced. It is hoped that the material on measurement, probability, and
mechanics in Chapter 12 may be useful in some Philosophy of Science
courses.

The system of inference for first-order predicate logic developed in
Chapters 2, 4, and 5 has been designed to correspond as closely as pos-
sible to the author’s conception of the most natural techniques of informal
proof. Probably the most novel feature of the system is the method of
handling existential quantifiers by the use of “ambiguous names”; the
central idea of this approach is related to Hilbert’s ¢ symbol. Since
many teachers of logic have their own preferred rules for handling infer-
ences with quantifiers, it should be mentioned that the particular rules
introduced here play a major role only in Chapters 4 and 5.

Numerous people have contributed to the gradual development of this
book. I am particularly indebted to Professor Robert McNaughton for
many useful criticisms and suggestions, based on his teaching experience
with earlier drafts; to Professor Herman Rubin who contributed to the
formulation of the system of natural deduction presented in Chapters 2
and 4; and to Mr. Dana Scott for many helpful suggestions concerning
Chapters 8 and 12. I am also indebted to Professor Moffatt Hancock
of the Stanford Law School for several exercises in Chapters 2 and 4.
Various teaching assistants at Stanford have aided in the preparation
of exercises and made numerous useful criticisms—notably Mr. Leonard
Leving, Mrs. Muriel Wood Gerlach and Mrs. Rina Ullmann.

The last set of revisions has benefited from the comments and criti-
cisms of Professors Ernest Adams, Herman Chernoff, Benson Mates, John
Myhill, David Nivison, Hartley Rogers, Jr., Leo Simons, Robert Vaught,
and Mr. Richard Robinson. The extraordinarily detailed and perspica-
cious criticisms of Professor Vaught were especially valuable. Miss
Peggy Reis and Mrs. Karol Valpreda Walsh have been of much assistance
in reading proofs. In addition, Miss Reis has cheerfully and accurately
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typed the several preliminary editions used in courses since the summer
of 1954.

This book is dedicated to the memory of Professor J. C. C. McKinsey.
A joint book with him was originally planned, but owing to his untimely
death in 1953 his competent handiwork is now little evident. He wrote
the original drafts of Chapters 9, 10, and 11, but these chapters have been
revised three times and the length of Chapters 10 and 11 has been more
than doubled. The other nine chapters are my sole responsibility in all
respects.

PATRICK SUPPES
Stanford, California
April, 1957
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INTRODUCTION

Our everyday use of language is vague, and our everyday level of think-
ing is often muddled. One of the main purposes of this book is to
introduce you to a way of thinking that encourages carefulness and
precision. There are many ways to learn how to use language and ideas
precisely. Our approach shall be through a study of logic. In modern
times logic has become a deep and broad subject. We shall initially
concentrate on that portion of it which is concerned with the theory of
correct reasoning, which is also called the theory of logical inference,
the theory of proof or the theory of deduction. The principles of logical
inference are universally applied in every branch of systematic knowl-
edge. It is often said that the most important critical test of any sci-
entific theory is its usefulness and accuracy in predicting phenomena
before the phenomena are observed. Any such prediction must involve
application of the principles of logical inference. For example, if we
know what forces are acting on a body and we know at a given time
where the body is and what its velocity is, we may use the theory of
mechanics together with the rules of logical inference and certain theo-
rems of mathematics to predict where the body will be at some later
time.

For over two thousand years mathematicians have been making correct
inferences of a systematic and intricate sort, and logicians and philoso-
phers have been analyzing the character of valid arguments. It is,
therefore, somewhat surprising that a fully adequate formal theory of
inference has been developed only in the last three or four decades. In
the long period extending from Aristotle in the fourth century B.c. to
Leibniz in the seventeenth century, much of importance and significance
was discovered about logic by ancient, medieval and post-medieval
logicians, but the most important defect in this classical tradition was
the failure to relate logic as the theory of inference to the kind of deduec-
tive reasonings that are continually used in mathematics.

Leibniz had some insight into the necessity of making this connection,
but not until the latter part of the nineteenth century and the beginning

xv



xvi INTRODUCTION

of this century were systematic relations between logic and mathemat-
ics established, primarily through the work of Frege, Peano, and Russell.
In spite of the scope and magnitude of their researches, only in recent
years has there been formulated a completely explicit theory of inference
adequate to deal with all the standard examples of deductive reasoning
in mathematics and the empirical sciences. The number of people who
have contributed to these recent developments is large, but perhaps most
prominent have been Kurt Godel, David Hilbert, and Alfred Tarski.

Yet it is a mistake to think that the theory of inference developed in
the first part of this book has relevance exclusively to scientific con-
texts. The theory applies just as well to proceedings in ecourts of law or
to philosophical analyses of the eternal verities. Indeed, it is not too
much to claim that the theory of inference is pertinent to every serious
human deliberation.

A correct piece of reasoning, whether in mathematics, physics or casual
conversation, is valid by virtue of its logical form. Because most argu-
ments are expressed in ordinary language with the addition of a few
technical symbols particular to the discipline at hand, the logical form
of the argument is not transparent. Fortunately, this logical structure
may be laid bare by isolating a small number of key words and phrases
like ‘and’, ‘not’, ‘every’ and ‘some’. In order to fix upon these central
expressions and to lay down explicit rules of inference depending on their
occurrence, one of our first steps shall be to introduce logical symbols
for them. With the aid of these symbols it is relatively easy to state and
apply rules of valid inference, a task which occupies the first seven
chapters.

To bring logical precision to our analysis of ideas, it is not ordinarily
enough to be able to construct valid inferences; it is also essential to have
some mastery of methods for defining in an exact way one concept in
terms of other concepts. In any given branch of science or mathematics
one of the most powerful methods for eliminating conceptual vagueness
is to isolate a small number of concepts basic to the subject at hand and
then to define the other concepts of the discipline in terms of the basic set.
The purpose of Chapter 8 is to lay down exact rules for giving such
definitions. Correct definitions like correct inferences will be shown to
depend primarily on matters of logical form. However, certain subtle
questions of existence arise in the theory of definition which have no
counterpart in the theory of inference.

The first eight chapters constitute Part I, which is devoted to general
principles of inference and definition. Part II, the last four chapters,
is concerned with elementary set theory. Because the several respects
in which set theory is intimately tied to logic will not be familiar to many
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readers, some explanation for the inclusion of this material will not be
amiss,

Set theory, or the general theory of classes as it is sometimes called, is
the basic discipline of mathematics, for with a few rare exceptions the
entities which are studied and analyzed in mathematics may be regarded
as certain particular sets or classes of objects. As we shall see, the ob-
jects studied in a branch of pure mathematics like the theory of groups
or in a branch of mathematical physics like the theory of mechanics may
be characterized as certain sets. For this reason any part of mathematics
may be called a special branch of set theory. However, since this usage
would identify set theory with the whole of mathematics it is customary
to reserve the term ‘set theory’ for the general theory of classes or sets
and certain topics, such as the construction of the integers and real num-
bers as sets, which are closely connected historically with investigations
into the foundations of mathematics.

The first chapter of Part II is concerned with an intuitive account
of the more important relationships among arbitrary sets. There are,
for example, simple operations on sets which correspond to the arith-
metical operations of addition, multiplication, and subtraction. The next
chapter (Chapter 10) deals with the theory of relations, which is brought
within set theory via the notion of an ordered couple of objects. Empha-
sis is given to ordering relations because of their importance in many
branches of mathematics and science. Chapter 11 deals with functions,
which from the standpoint of set theory are just relations having a special
property.

While the first three chapters of Part II are concerned with general
set theory, the final chapter (Chapter 12) turns to the relation between
set theory and certain methodological or foundational questions in
mathematics and philosophy. The central point of this chapter is to
indicate how any branch of mathematics or any scientific theory may be
axiomatized within set theory. The viewpoint which is expounded in
detail in Chapter 12 is that the best way to axiomatize a theory is to
define an appropriate predicate within set theory.

Since the beginning of this century philosophers have written a great
deal about the structure of scientific theories but they have said lamen-
tably little about the detailed structure of particular theories. The axio-
matization of a theory within set theory is an important initial step in
making its structure both exact and explicit. Once such an axiomatiza-
tion is provided it is then possible to ask the kind of “structure” questions
characteristic of modern mathematics. For instance, when are two
models of a theory isomorphic, that is, when do they have exactly the
same structure? Indeed, familiar philosophical problems like the reduc-
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tion of one branch of empirical science to another may be made precise
in terms of such set-theoretical notions as that of isomorphism. Applica-
tion of these ideas to substantive examples from pure mathematics and
the empirical sciences is given in Chapter 12.

The aim of both Parts I and II is to present logic as a part of mathe-
matics and science and to show by numerous detailed examples how
relevant logic is even to empirical sciences like psychology. For this
reason it may be said that the emphasis in this book is on the systematic
use and application of logic rather than on the development of logic as
an autonomous discipline.

Finally, it should be remarked that no precise definition of logic is at-
tempted in these pages. In the narrow sense, logic is the theory of valid
arguments or the theory of deductive inference. A slightly broader
sense includes the theory of definition. A still broader sense includes
the general theory of sets. Moreover, the theory of definition together
with the theory of sets provides an exact foundation for the axiomatic
method, the study of which is informally considered part of logic by
most mathematicians.



PART 1

PRINCIPLES OF INFERENCE AND DEFINITION







CHAPTER 1

THE SENTENTIAL CONNECTIVES

To begin with, we want to develop a vocabulary which is precise and at
the same time adequate for analysis of the problems and concepts of sys-
tematic knowledge. We must use vague language to create a precise lan-
guage. This is not as silly as it seems. The rules of chess, for example,
are a good deal more precise than those of English grammar, and yet we
use English sentences governed by imprecise rules to state the precise
rules of chess. In point of fact, our first step will be rather similar to draw-
ing up the rules of a game. We want to lay down careful rules of usage
for certain key words: ‘not’, ‘and’, ‘or’, ‘if ..., then ...’, ‘if and only if’,
which are called senlential connectives. The rules of usage will not, how-
ever, represent the rules of an arbitrary game. They are designed to make
explicit the predominant systematic usage of these words; this systematic
usage has itself arisen from reflection on the ways in which these words are
used in ordinary, everyday contexts. Yet we shall not hesitate to deviate
from ordinary usage whenever there are persuasive reasons for so doing.

§ 1.1 Negation and Conjunction. We deny the truth of a sentence
by asserting its negation. For example, if we think that the sentence
‘Sugar causes tooth decay’ is false, we assert the sentence ‘Sugar does not
cause tooth decay’. The usual method of asserting the negation of a simple
sentence is illustrated in this example: we attach the word ‘not’ to the
main verb of the sentence. However, the assertion of the negation of a
compound sentence is more complicated. For example, we deny the sen-
tence ‘Sugar causes tooth decay and whiskey causes ulcers’ by asserting
‘Tt is not the case that both sugar causes tooth decay and whiskey causes
ulcers’. In spite of the apparent divergence between these two examples,
it is convenient to adopt in logic & single sign for forming the negation of
s sentence. We shall use the prefix ‘~’, which is placed before the whole
sentence. Thus the negation of the first example is written:

—(Sugar causes tooth decay).
3
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The second example illustrates how we may always translate ‘~’; we may
always use ‘it is not the case that’.

The main reason for adopting the single sign -’ for negation, regardless
of whether the sentence being negated is simple or compound, is that the
meaning of the sign is the same in both cases. The negation of a true sen~
tence is false, and the negation of a false sentence ts true.

‘We use the word ‘and’ to conjoin two sentences to make a single sen-
tence which we call the conjunction of the two sentences. For example,
the sentence ‘Mary loves John and John loves Mary’ is the conjunction of
the sentence ‘Mary loves John’ and the sentence ‘John loves Mary’. We
shall use the ampersand sign ‘&’ for conjunction. Thus the conjunction of
any two sentences P and Q is written

P&Q.

The rule governing the use of the sign ‘&’ is in close accord with ordinary
usage. The conjunction of two sentences i3 true if and only if both sentences
are irue. We remark that in logic we may combine any two sentences to
form a conjunction. There is no requirement that the two sentences be
related in content or subject matter. Any combinations, however absurd,
are permitted. Of course, we are usually not interested in sentences like
‘John loves Mary, and 4 is divisible by 2’. Although it might seem de-
sirable to have an additional rule stating that we may only conjoin two
sentences which have a common subject matter, the undesirability of such
a rule becomes apparent once we reflect on the vagueness of the notion of
common subject matter.

Various words are used as approximate synonyms for ‘not’ and ‘and’ in
ordinary language. For example, the word ‘never’ in the sentence:

I will never surrender to your demands
has almost the same meaning as ‘not’ in:
I will not surrender to your demands.

Yet it is true that ‘never’ carries a sense of continuing refusal which ‘not’
does not.

The word ‘but’ has about the sense of ‘and’, and we symbolize it by ‘&’,
although in many cases of ordinary usage there are differences of meaning.
For example, if a young woman told & young man:

I love you and I love your brother almost as well,
he would probably react differently than if she had said:
I love you but I love your brother almost as well.
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In view of such differences in meaning, a natural suggestion is that dif-
ferent symbols be introduced for sentential connectives like ‘never’ and
‘but’. There is, however, a profound argument against such a course of
action. The rules of usage agreed upon for negation and conjunction
make these two sentential connectives iruth-funciional; that is, the truth
or falsity of the negation of a sentence P, or the truth or falsity of the con-
junetion of two sentences P and Q is a function just of the truth or falsity
of P in the case of negation, and of P and Q in the case of conjunction.
Clearly a truth-functional analysis of ‘but’ different from that given for
‘and’ is out of the question, but any venture into non-truth-functional
analysis leads to considerations which are vague and obscure. Any doubt
about this is quickly dispelled by the attempt to state a precise rule of
usage for ‘but’ which differs from that already given for ‘and’.

Of course, the rich, variegated character of English or any other natural
language guarantees that in many contexts connectives are used in deli-
cately shaded, non-truth-functional ways. Loss in subtlety of nuance
seems a necessary concomitant to developing a precise, symbolic analysis
of sentences. But this process of distorting abstraction is not peculiar to
logic; it is characteristic of science in general. Few poets would be inter-
ested in a truth-functional analysis of language, and no naturalist would
consider the physicist’s concepts of position, velocity, acceleration, mass,
and force adequate to describe the flight of an eagle. The concepts of
logic developed in this book are useful in discovering and communicating
systematic knowledge, but their relevance to other functions of language
and thought is less direct.

§ 1.2 Disjunction. We use the word ‘or’ to obtain the disjunction of
two sentences. In everyday language, the word ‘or’ is used in two distinet
senses. In the so-called non-exclusive sense, the disjunction of two sen-
tences is true if at least one of the sentences is true. In legal contracts
this sense is often expressed by the barbarism ‘and/or’, illustrated in the
following example:

Before any such work is done or any such materials are furnished, the Lessee

and any contractor or other person engaged to do such work and/or furnish
such materials shall furnish such bond or bonds as the Lessor may reasonably

require . .

We remark that in the above example there are no disjunctions of sen-
tences, but disjunctions of clauses or terms which are not sentences. We
shall find, however, that it is more convenient to treat such examples as
disjunctions of sentences; this viewpoint reflects another divergence be-
tween logic and everyday language.

The Latin word ‘vel’ has approximately the sense of ‘or’ in the non-
exclusive sense, and consequently we use the sign ‘v’ for the disjunction
of two sentences in this sense. Thus the disjunction of any two sentences
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P and Q is written

PvaQ.

We shall restrict our use of the word ‘disjunction’ to the non-exclusive
sense, and our rule of usage is: The disjunction of two sentences is true if and
only if af least one of the sentences is true.

When people use ‘or’ in the exclusive sense to combine two sentences,
they are asserting that one of the sentences is true and the other is false.
This usage is often made more explicit by adding the phrase ‘but not
both’. Thus a father tells his child, “You may go to the movies or you
may go to the circus this Saturday but not both’. We shall introduce no
special sign for ‘or’ in the exclusive sense, for it turns out that in scientific
discussions we can always get along with ‘or’ in the non-exclusive sense
(which is also called the inclusive sense).

§ 1.3 Implication: Conditional Sentences. We use the words ‘if .. .,
then ...’ to obtain from two sentences a conditional sentence. A condi-
tional sentence is also called an tmplicaiion. As words are used in every-
day language, it is difficult to characterize the circumstances under which
most people will accept a conditional sentence as true. Consider an exam-
ple similar to one we have already used:

(¢))] If Mary loves John, then John loves Mary.

If the sentence ‘Mary loves John’ is true and the sentence ‘John loves
Mary’ is false, then everyone would agree that (1) is false. Furthermore,
if the sentence ‘Mary loves John’ is true and the sentence ‘John loves
Mary’ is also true, then nearly everyone would agree that (1) is true. The
two possibilities of truth and falsity which we have just stated are the only
ones that arise very often in the ordinary use of language. There are,
however, two further possibilities, and if we ask the proverbial man in the
street about them, there is no telling what his reply will be. These two
further cases are the following. Suppose that the sentence ‘Mary loves
John’ is false, then what do we say about the truth of (1): first, when the
sentence ‘John loves Mary’ is also false; and second, when the sentence
‘John loves Mary’ is true? In mathematics and logic, this question is
answered in the following way: sentence (1) is true if the sentence ‘Mary
loves John’ is false, regardless of the truth or falsity of the sentence ‘John
loves Mary’.

To state our rule of usage for 4if ..., then ...’, it is convenient to use
the terminology that the sentence immediately following ‘if’ is the ante-
cedent or hypothesis of the conditional sentence, and the sentence immedi-
ately following ‘then’ is the consequent or conclusion. Thus ‘Mary loves
John’ is the antecedent of (1), and ‘John loves Mary’ is the consequent.
The rule of usage is then: A conditional sentence is false if the antecedent is
true and the consequent is false; otherwise st is irue.
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Intuitive objections to this rule could be made on two counts. First, it
can be maintained that implication is not a truth-functional connective,
but that there should be some sort of definite connection between the ante-
cedent and the consequent of a conditional sentence. According to the
rule of usage just stated, the sentence:

@) If poetry is for the young, then 3 4+ 8 = 11

is true, since the consequent is true. Yet many people would want to dis-
miss such a sentence as nonsensical; they would claim that the truth of
the consequent in no way depends on the truth of the antecedent, and
therefore (2) is not a meaningful implication. However, the logician’s com-
mitment to truth-functional connectives is not without its reasons. How
is one to characterize such an obscure notion as that of dependence? This
is the same problem we encountered in considering conjunctions. If you
think an important, perhaps crueial problem is being dodged simply on the
grounds that it is difficult, assurances will be forthcoming in the next chap-
ter that truth-functional connectives are very adequate for both the theory
and practice of logical inference.

Even if truth-functional commitments are accepted, a second objection
to the rule of usage for implication is that the wrong stipulation has been
made in calling any implication true when its antecedent is false. But
particular examples argue strongly for our rule. For the case when the
consequent is also false, consider:

3) If there are approximately one hundred million husbands in the
United States, then there are approximately one hundred million
wives in the United States.

It is hard to imagine anyone denying the truth of (3). For the case when
the consequent is true, consider the following modification of (3):

) If there are approximately one hundred million husbands in the
United States, then the number of husbands in this country is
greater than the number in France.

If (3) and (4) are admitted as true, then the truth-functional rule for con-
ditional sentences with false antecedents is fixed.

It might be objected that by choosing slightly different examples a case
could be made for considering any implication false when its antecedent is
false. For instance, suppose that (3) were replaced by:

®) If there are approximately one hundred million husbands in the
United States, then there is exactly one wife in the United States.

Then within our truth-functional framework it might be maintained that
an implication with false antecedent and false consequent is false, since it
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may be plausibly argued that in ordinary usage (5) is false. However,
there are good grounds for choosing (3) rather than (5), for (3) has the
property that its consequent follows from its antecedent on the basis of
some familiar principles of arithmetic and marriage. With respect to (5)
no such intuitive line of reasoning seems possible; in fact, it is the very
absence of such a connection which makes us declare it false. Although
we have already admitted that the notion of connection or dependence
being appealed to here is too vague to be a formal concept of logic, in
choosing examples which will force upon us, within our truth-functional
framework, a truth value for implications with false antecedents it is rea-
sonable to pick an example like (3) for which our intuitive feeling of de-
pendence is strong rather than an example like (5) for which it is weak.
The truth-functional demand that sentences like (5) be counted as true
has no undesirable effects, since conditional sentences whose antecedents
and consequents are unrelated and whose antecedents are false play no
serious role in systematic arguments.

As a matter of notation, the conditional sentence formed from any two
sentences P and Q is written

P - Q.

The sign ‘-’ is often called the sign of tmplication. Several other idioms
in English have approximately the same systematic meaning as if ...,
then ...”. We shall also write P — Q, for

P only if Q

Qif P

Q provided that P

P is a sufficient condition for Q
Q i8 & necessary condition for P

Of these five idioms, variant use of ‘only if’ is most pronounced. It is a
common “mistake’ to use ‘only if’ in the sense of ‘if’. For example, the
sentence:

6) John dates Mary only if Elizabeth is mad at him
would not ordinarily be taken to mean:
If John dates Mary then Elizabeth is mad at him,

and it would be more accurate (but still not exactly idiomatically correct)
to translate (6) as:

If Elizabeth is mad at him then John dates Mary.
The prevalence of sentences like (6) makes it difficult for many people first
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learning logic or mathematics to accept the stipulation that
7 P only if Q

means the same as
€] If P then Q.

Yet it is the case that in scientific discourse (7) and (8) are idiomatically
equivalent and they will be treated as such throughout the rest of this
book.
Concerning the last two idioms it is worth noting that they are widely
used in mathematics. Thus the sentence ‘If a triangle is equilateral then
it is isosceles’ may be rephrased:
In order for a triangle to be isosceles it is sufficient that it be
equilateral

or:
It is necessary that an equilateral triangle be isosceles.

Notice that some grammatical changes in the component sentences P and
Q are appropriate when we go from

If P then Q
to

9) P is a sufficient condition for Q

so that (9) is not an exact formulation; but these changes are usually obvi-
ous and need not be pursued here.

§ 1.4 Equivalence: Biconditional Sentences. We use the words ‘if
and only if’ to obtain from two sentences a biconditional sentence. A bi-
conditional sentence is also called an equivalence, and the two sentences
connected by ‘if and only if’ are called the left and right members of the
equivalence. The biconditional

(1) P if and only if Q

has the same meaning as the sentence
@ Pif Q, and P only if Q@

and (2) is equivalent to
(8) If P then Q, and if Q then P.

Qur rules of usage for conjunction and implication tell us that (3) is true
just when P and Q are both true or both false. Thus the rule: A bicondi-
tional sentence 8 true if and only if its two members are either both true or
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both false. As a matter of notation, we write
Peo Q@

for the biconditional formed from sentences P and Q.
Corresponding to our remarks at the end of the last section it should be
noted that (1) is equivalent to

Q is & necessary and sufficient condition for P.

$§ 1.5 Grouping and Parentheses. In ordinary language the proper
grouping of sentences which are combined into a compound sentence is in-
dicated by a variety of linguistic devices. When symbolizing such sen-
tences in logic, these devices may all be accurately translated by an ap-
propriate use of parentheses.

For instance, the sentence:

If Showboat wins the race, then Shotless and Ursula will show
is symbolized by
(¢))] S — (H&U),

where S is ‘Showboat wins the race’, H is ‘Shotless will show’, and U is
‘Ursula will show’. We read (1)

If S then H and U.
On the other hand, we read
@ S—H&U
a8
Both if S then H, and U.

It should thus be clear why (1) rather than (2) is the correct symboliza-
tion of the original sentence. The parentheses are used in a natural way,
familiar from elementary algebra, to indicate which connective is dominant.

By adopting one natural convention concerning the relative dominance
of the various connectives, a considerable reduction in the number of paren~
theses used in practice will be effected. The convention is ‘>’ and *—’
dominate ‘&’ and ‘v’. Thus (1) may be written

® S > H&U,
and
Pe Q&R
mesns

P o (Q&R):
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On the other hand, under this convention it is not clear what
P&QVR
is supposed to mean, and similarly for
P Q—R

§1.6 Truth Tables and Tautologies. Our truth-functional rules of
usage for negation, conjunction, disjunction, implication and equivalence
may be summarized in tabular form. These basic truth tables tell us at a
glance under what circumstances the negation of a sentence is true if we
know the truth or falsity of the sentence, similarly for the conjunction of
two sentences, and the disjunction or implication of two sentences as well.

Negation Conjunction Digjunction
P ' -p P QlP&Q P QlPvQ
T F T T T T T T
F T T F F T F T
FT F F T T
F F F F F F
Implication Equivalence
P Q@ lP—>Q P Q |[PoQ
T T T T T T
T F F T F F
F T T FT F
F F T F F T

We may think of using the basic truth tables in the following manner. If
N is the true sentence ‘Newton was born in 1642’ and G is the false sen-
tence ‘Galileo died in 1640’, then we may compute the truth or falsity of
& complicated compound sentence such as

1 (NVG)&-N) - (G — N).

Since N is true, we see from the disjunction table that N v G is true, from
the negation table that ~N is false, and hence from the conjunction table
that the antecedent of (1) is false. Finally, from the implication table we
conclude that the whole sentence is true. A more explicit application of
the truth tables in & manner analogous to the use of a multiplication table
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is illustrated by the following diagrammatic analysis, which is self-explana-

tory.
(NVG) & N)>(G—N)

T T * T
\Tf F’/ T/
N———

(Note that in this diagram the analysis proceeds from the inside out. The
final loop connects the two members of the major connective.)

Let us call a sentence atomic if it contains no sentential connectives.
Thus the sentence:

Mr. Knightley loved Emma
is atomiec, while the sentences:

Emma did not love Frank Churchill
and
Mrs. Elton was a snob and Miss Bates a bore

are not atomie, for the first contains a negation and the second a con-
junction.

We now use the concept of a sentence being atomic to define what is
probably the most important notion of this chapter. The intuitive ides is
that a compound sentence is a faufology if it is true independently of the
truth values of its component atomic sentences. For instance for any
atomic sentence P

Pv-~-P

is a tautology. If P is true, we have:
Pv-P

If P is false, we have:
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Thus whether P is true or false, P v -P is true and hence a tautology.
Derived truth tables are more convenient and compact than the diagram-
matic analysis shown above when we want to know if a sentence is a
tautology.

P|—PIPV—P
T’FI T
F| T T

The second column is obtained from the first by using the negation table,
and the third column from the first two by using the disjunction table.
Since both lines in the final column have the entry “I’, the whole sentence
is a tautology. The idea of the derived truth table is that a sentence is a
tautology if it is true for all combinations of possible truth values of its
component atomic sentences. The number of such combinations depends
on the number of component atomic sentences. Thus, if there are three
distinct atomic sentences, there are eight distinct combinations of possible
truth values, since each atomic sentence has exactly two possible truth
values: truth and falsity. In general, if there are n component atomic
sentences, there are 2" combinations of possible truth values, which means
that the derived truth table for a compound sentence having n distinet
atomic sentences has 2" lines. For instance, to show that PV Q — P is
not a tautology when P and Q are distinct atomic sentences, we need 22 = 4
lines, as in the following truth table.

P | Q vaQvaQ——»P

R R ]
e
iR
=

In this table the third column is obtained from the first two by using the
disjunction table, and the final column from the third and first by using
the implication table. Since the third row of the fourth column has the
entry ‘F’ for false, we conclude that P v Q — P is not a tautology, for
this third row shows that if P is false and Q true, then P v Q@ — P is false.
It should be emphasized that a sentence is a tautology if and only if every
entry in the final column is “T” (for true). The letter ‘F’ in a single row
of the final column is sufficient to guarantee that the sentence being ana-
lyzed is not a tautology.
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When we take as our formal definition

A sentence 18 a tautology if and only if the result of replacing any of s
component atomic sentences (in all occurrences) by other alomic sen~
tences 18 always a true sentence

the relation of this definition to the truth table test for a tautology should
be clear.* A given row of the table represents trying a particular combina-
tion of atomic sentences. Since only the truth or falsity of the atomic
sentences effects the truth or falsity of the whole sentence in a truth-func-
tional analysis, once all possible combinations of truth and falsity have
been tested, the effects of all possible substitutions of atomic sentences
have been tested. As we have seen, if a sentence contains just one atomic
sentence, there are only two possibilities:

T
F

If it has two distinct component atomic sentences, there are four:

T T
TF
F T
F F

If it has three distinct component atomic sentences, there are eight:

H

e
e
=HHEEES S

And in general, as we have already remarked, if there are n distinct com-
ponent atomic sentences there are 2" possible combinations of truth values
and thus 2" rows to the truth table.

The phrase ‘in all occurrences’ is added parenthetically in the formal
definition to make explicit that all occurrences of a given atomic sentence
in a compound sentence are to be treated alike. Thus in the truth table
for P v Q — P given above, one occurrence of P is given the value T
when and only when the other is. This point is made clearer by using the
following format (which is not as convenient for computational purposes):

* Tt is understood that we are considering only truth-functional sentences.
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P vaQ->?P

T TTTT
TTFTT
FTTTFTF
FFFTF

Note the identical columns for both occurrences of P.*

It is also important to notice that if the requirement that P and Q be
distinct atomic sentences is lifted, instances of P and Q can be found for
which P v Q — P is a tautology: e.g., let P be ‘it is raining or it is not
raining’ and Q be ‘it is hot’. Then it is easily shown by means of the ap-
propriate derived truth table that the sentence ‘if either it is raining or it
i8 not raining or it is hot then either it is raining or it is not raining’ is a
tautology. Furthermore, if P and Q are the same sentence thenP v Q — P
is a tautology. As a second example, in general P — Q is not a tautology,
that is, it is easy to find sentences P and Q such that P — Q is not a
tautology, but if P and Q are the same sentence P — Q is a tautology.

Finally it should also be noticed that if a sentence is a tautology, we
may substitute any compound sentence for a component atomic sentence
(in all its occurrences) and the result will be a tautology. For example,
the appropriate truth table quickly shows that if P is an atomic sentence
P — P is a tautology, but once this is shown it easily follows that P — P
is a tautology when P is any sentence whatsoever.

The last two paragraphs may be summarized in two useful rules:

(I) A statement which is not a tautology may become one upon the sub-
stitution of compound sentences for atomic sentences or substiltution of the
same afomic sentence for distinct atomic sentences in the original state-
ment.} '

(IT) A statement which is a tautology remains so when any sentences are
substituted for its component atomic seniences in all occurrences.

§ 1.7 Tautological Implication and Equivalence. A sentence P is
said to teutologically mply a sentence Q if and only if the conditional
P — Q is a tautology. Thus the sentence ‘Locke was s bachelor and
Newton never married’ tautologically implies ‘Newton never married’,
since for any two sentences P; and P, we know that the sentence P; &

* HistoricAL Nore. The tabular test for tautology is essentially due to the American
logician and philosopher Charles S. Peirce (1839-1914). The use in logic of ‘tautology’
is rather recent, being first introduced by Ludwig Wittgenstein in his book Tractatus
Logico-Philosophicus, London, 1922. Some philosophers call any logical or mathematical
truth a tautology, but this wider, somewhat obscure usage will not be needed in this book.

1 It should be obvious that not every sentence can become a tautology by such sub-
stitution. In fact, any sentence which is the negatlon of a tautology cannot.
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P; — P, is a tautology. This example may falsely encourage the idea that
the notion of tautological implication is trivial. As we shall see in the
next chapter, it is in fact basic to the theory of logical inference. If P
tautologically implies Q, then when P is true Q must be true. It can never
happen that P is true and Q false, since it is required that P — Q be a
tautology. Thus from the premise P we may safely infer Q without re-
course to any other premises.

By use of truth tables it is easy to decide if one sentence tautologically
implies another. The test is simply: any row which has the entry “I” for
the first sentence must have the same entry for the second. We may con-
sider the above example; namely, the sentence P; & P, tautologically im-
plies Ps.

P l P2 l P1 &Py

T T T
T F F
F T F
F F F

We notice that the sentence P; & P, has the entry ‘T only in the first row,
and P; has the entry “I” in this row also. On the other hand, P, does not
tautologically imply P; & Py, for P, has the entry “I” in the third row,
whereas P; & P, has the entry ‘F’.

When two sentences tautologically imply each other, they are said to be
tautologically equivalent. The notion of tautological equivalence is stronger
than the notion of tautological implication; its role in inference is not as
central as that of tautological implication, but it is important. The reason
for this importance is not hard to find. If two sentences are tautologically
equivalent, they express essentially the same facts, and consequently their
roles in inference are nearly identical.

By way of example; let A be ‘Aristotle was left-handed’ and L be ‘Leibniz
was left-handed’. Then the sentence A & —L is tautologically equivalent to
the sentence —(-A v L). To see this, we may use truth tables.

Al L l—A -1 I—AVLI-(—AVL) A&-L
T|T|F|F T F F
T|F|F!|T F T T
F|T|T|F T F F
FIF|T|T T F F

The test is clear: the columns corresponding to the two sentences must
agree row for row in their entries in order for the two sentences to be
tautologically equivalent. This test is satisfied by Columns 6 and 7 of
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the above table, and we conclude —(-A v L) is tautologically equivalent to
A&-L

It is perhaps worth remarking that P and Q are tautologically equivalent
when and only when the biconditional P « Q is a tautology.

EXERCISES

1. A classical example of a non-truth-functional connective is that of possibility.
For example, the sentence:

(1) It is possible that there is life on Mars

is true under any liberal interpretation of the notion of possibility; but then so is
the sentence:

(2) It is possible that there is not any life on Mars.
On the other hand, the sentence:
3) It is possible that 2 +2 = 5

is ordinarily regarded as false. Using a diamond symbol ‘>’ for ‘it is possible that’,
M for ‘there is life on Mars’ and W for ‘2 4 2 = 5', we get the following tabular
analysis of (1)—(3):

M I—MIW IOMIO—M,(}W

T F T T F

F T T T

The analysis of OM and (~M entails that the only truth-functional analysis of
the possibility connective is that for any sentence P, QP is true, but the truth
value of )W controverts this; and we see that there is no appropriate truth-func-
tional analysis.

Give examples and an analysis to show that the following are not truth-functional
connectives:

(a) ‘Mr. Smith believes that ...’
(b) ‘It is necessary that ...’

2. Which of the truth-functional connectives introduced in this chapter is an
approximate synonym of the connective ‘unless’? (HinT: To say ‘There will be
peace unless there is a major war in the next five years’ is equivalent to saying
‘If there is not a major war in the next five years, then there will be peace’.)

3. Translate the following compound sentences into symbolic notation, using
letters to stand for atomic sentences.

(a) Either the fire was produced by arson or it was produced by spontaneous
combustion.

(b) If the water is clear, then either Henry can see the bottom of the pool or
he is a nincompoop.

(c) Either John is not here or Mary is, and Helen certainly is.

(d) If there are more cats than dogs, then there are more horses than dogs
and there are fewer snakes than cats.

F
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(e) The man in the moon is a fake, and if the same is true of Santa Claus,
many children are deceived.

(f) If either red-heads are lovely or blondes do not have freckles, then logic
is confusing.

() If either housing is scarce or people like to live with their in-laws, and if
people do not like to live with their in-laws, then housing is scarce.

(h) If John testifies and tells the truth, he will be found guilty; and if he
does not testify, he will be found guilty.

(i) Either John must testify and tell the truth, or he does not have to testify.

4. In the following examples determine the truth value of the compound sen-
tences from the given truth values of the component sentences (i)-(iv).

() ‘Galileo was born before Descartes’ is true.

(i) ‘Descartes was born in the sixteenth century’ is true.
(iii) ‘Newton was born before Shakespeare’ is false.
(iv) ‘Racine was a compatriot of Galileo’ is false.

(a) If Galileo was born before Descartes, then Newton was not born before
Shakespeare.

(b) If either Racine was a compatriot of Galileo or Newton was born before
Shakespeare, then Descartes was born in the sixteenth century.

(¢) If Racine was not a compatriot of Galileo, then either Descartes was not
born in the sixteenth century or Newton was born before Shakespeare.

5. Let

N = ‘New York is larger than Chicago’;
W = ‘New York is north of Washington’;
C = ‘Chicago is larger than New York’.
(Thus N and W are true and C is false.)

Which of the following sentences are true?

(@ NvC ® WVvN) - (W - -0
(b) N&C 8 We -Nyo N Q
(c) ~N&-C h) (W - N = [N--C
AN -WvC — (-C — W)]
() Wv~C > N

6. Let

P = ‘Jane Austen was a contemporary of Beethoven’;
Q = ‘Beethoven was a contemporary of Gauss’;

R = ‘Gauss was a contemporary of Napoleon’;

S = ‘Napoleon was a contemporary of Julius Caesar’.
(Thus P, Q, and R are true, and S is false.)

Find the truth values of the following sentences:

(a) PEQ) &R @ PeoQ) > SR
b)P&E(Q&R) th)(-P-Q —> (S —R

(¢ S—P QA P—--Q —> SR

dP—-S GP-Q—-[(Q—->R —-R—-S)]
() PEQ&RE&S) kP —[Qe (R— 8

H P&Qe R&-S
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7. Let P be a sentence such that for any sentence Q the sentence P v Q is true.
What can be said about the truth value of P?
8. Let P be a sentence such that for any sentence Q the sentence P & Q is false.
What can be said about the truth value of P?
9. If P <> Q is true, what can be said about the truth value of P v —Q?
10. Let P, Q, and R be any three distinct atomic sentences. Decide by truth
tables which of the following sentences are tautologies:

(a) PvQ@ hP-[Q-(@Q—>P)]

(b) Pv-P @ P&EQ —>PVR

) PvQ@ o> QvP G Pv(-P&EQ)IVv(-P&-Q)
@P—->PvQ VR k)P&Q - (P<> QvVR)

e P—(-P - Q O P&EQ - P&-P - Qv-Q)]
O P-Q-Q@Q@—-P &(Q - Q)

@IP->Q Q] —»P
11. If P and Q are distinet atomic sentences, which of the following are tautolo-
gies?
(@ PeoQ @DP-Q9e(@—>P)
(b)P<—>PvP (e PoP)es P
ePvQe—QVP
12. On the basis of ordinary usage construct truth tables for the sentential con-
nectives used in the following examples:
(a) Not both P and Q. (b) Neither P nor Q.

13. Give examples of sentences P and Q (not necessarily atomic) such that the
following compound sentences are tautologies.

(@) P&Q ) P> P&-Q
b)Pv(P&E-Q) dP—-P
14. Is there any sentence P such that P & ~P is a tautology?

15. If P and Q are distinet atomic sentences, the sentence P & Q tautologically
implies which of the following?

032,
(b -
Gre LR

16. If P and Q are distinct atomic sentences, the sentence =P v Q tautologically
implies which of the following?

() P @ -Q — -P
b)Q—-P (e) P& Q
0P-Q

17. If P and Q are distinct atomic sentences, the sentence P is tautologically
equivalent to which of the following?

(a) PvQ@ (e) =P - P
®Pv-P ) P—-P
(c) P&P ®Av-Q - P

dP—-P



CHAPTER 2

SENTENTIAL THEORY OF INFERENCE

§ 2.1 Two Major Criteria of Inference and Sentential Interpreta-
tions. In this chapter we turn to the theory of logical inference. The
rules of inference governing sentential connectives turn out to be quite
simple. You may find it helpful to think of the rules introduced in this
chapter and Chapter 4 as the elaborate statement of how to play a not-
too-complicated game. The game shapes up as follows: we begin with a
set of formulas which we call premises. The object of the game is to apply
the rules so as to obtain some other given formula (the desired conclusion).
The set of premises corresponds to the initial position of a player in a
game. By a succession of moves, each move being sanctioned by a rule,
we reach a winning position: the sought for conclusion. As in any game,
the rules permit all kinds of silly moves; the problem is to learn how to
make the right moves. (In learning the theory of inference it will be use-
ful to remember that we ordinarily learn a game by example and illustra-
tion; we refer to the formal statement of the rules only to settle arguments
or dispel confusions.)

Now for a game such as bridge or chess, rules are chosen which pre-
sumably yield something interesting or entertaining. The theory of logical
inference, on the other hand, is more than entertaining. There are many
considerations which guide the construction of a set of rules of inference,
and certain aspects of the problem of giving such a set of rules are too
technical to discuss here. However, there are two major criteria of con-
struction which dominate all others.

CrITERION 1. Given a set of premises, the rules of logical derivation must
permit us to infer ONLY those conclusions which logically follow from
the premises.

CrrTerION II. Ghven a set of premises, the rules of logical derivation
must permit us to infer ALL conclusions which logically follow from the
premsses.

20
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But, it is proper to ask, how can criteria for adequate rules of inference be
stated in terms of a conclusion logically following from premises? Is it not
the very point of the rules of inference to characterize explicitly the notion
of logical consequence? To avoid the charge of circularity an independent,
intuitively plausible definition of logical consequence or logical validity
needs to be given. A completely precise definition is somewhat technical;
on the other hand, the basic idea is not too complicated and it introduces
the notion of ¢nterpretation which will prove repeatedly useful. The idea
is that Q logically follows from P when Q is true in every interpretation or
model for which P is true. For our present purposes we may define the re-
stricted notion of a sentential interpretation:

A sentence P 13 a senlential interpretation of a sentence Q if and only if
P can be oblained from Q by replacing the component atomic sentences of
Q by other (not necessarily distinct) sentences.

If this definition sounds slightly bizarre an example will show how simple
itis. Let Q; be

‘If the sun is shining Marianne is happy’
and let P, be

‘If either the battalion advances too fast or the general is wrong,
then the battle is lost’.

Then P, is a sentential interpretation of Q;, for ‘the sun is shining’ is re-
placed by ‘either the battalion advances too fast or the general is wrong’,
and ‘Marianne is happy’ is replaced by ‘the battle is lost’. To be a sen-
tential interpretation of the particular sentence Q;, P; need have just one
characteristic: its major sentential connective must be an implication. In
other words a sentential interpretation of a sentence must preserve its
sentential form. For this reason Q; is not a sentential interpretation of
P,, for the disjunction in the antecedent of P; is missing in Q;. Of course,
the sentential interpretation may have more structure (thus P; has more
structure than Q;), but it must not have less.

It should be understood that if a component atomic sentence occurs
more than once in a sentence, any sentential interpretation of that sentence
must replace that component atomic sentence by the same thing in both
of its occurrences. Thus if Q; is

‘If the sun is shining then either it is raining or the sun is shining’
and Pg is

‘If 1 + 2 = 4 then either snow is black or I am a fool’,

then P, is not a sentential interpretation of Qg, for the first occurrence of
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‘the sun is shining’ in Q; is replaced by ‘1 + 2 = 4’, and the second occur-
rence by a different sentence.

A sufficient (but not necessary) condition for one sentence to be a logical
consequence of another may now be stated.

(D) Q logically follows from P if every sentential tnterprelation of the im-
plication P — Q 18 true.*

(As we shall see in Chapter 4, we obtain a complete characterization of
logical consequence by omitting the restriction to sentential interpretations.)
We may relate (I) to P tautologically implying Q by the following argu-
ment. First, we call a sentential interpretation atomic if the interpretation
consists of replacing atomic sentences by atomic sentences. The definition
of tautologies given in Chapter 1 may then be phrased:

(IT) A tautology is a sentence whose atomic sentential inlerpretaiions are
all true.

And as we implicitly observed in Chapter 1, it is not difficult to see that

(IIT) If every atomic sentential interpretation of a sentence 13 true then
every senlenlial interpretation of the sentence is true.

From (I)-(III) we arrive at the workable criterion that Q logically follows
from P if P — Q is a tautology, or in other words:

(IV) Q logically follows from P if Q is tautologically implied by P.

The whole sentential theory of inference is summarized by (V). To de-
termine if by virtue of the logical properties of the sentential connectives
a given conclusion logically follows from a set of premises, we need only
construct the appropriate truth table and see if the premises tautologically
imply the conclusion. For example, suppose we want to know if the con-
clusion ‘Peter is going to cry’ logically follows from the two premises:

1 Either Mary gives Peter his toy or Peter is going to cry.
)] Mary does not give Peter his toy.

Let P be ‘Peter is going to ery’ and let M be ‘Mary gives Peter his toy’.
The argument may then be symbolized:

Premise 1: M vP
Premise 2: -M

Conclusion: P

* The use of ‘if’ without ‘only if’ indicates that & sufficient condition is given, but
that no commitment regarding necessity is made. Compare § 1.3 for a discussion of the
idiom of necessity and sufficiency.
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To decide if the argument is valid we need to decide if the conjunction
(M v P) & -M tautologically implies P. For this task we construct the fol-
lowing four-line truth table:

M| P IMVP{-M|(MVP)&-M
T|{T T F F
T|F T F F
F|T T T T
FI|F F T F

And we observe that in the only case in which the premises are jointly
true (third row, last column) the conclusion P is also true (third row, second
column). We conclude that the argument is valid, that is, the conclusion
. is a logical consequence of the premises.

There are, however, two good reasons for developing a theory of senten-
tial inference which does not simply consist of constructing a massive
truth table to check the validity of an argument. In the first place, if a
set of premises and the desired conclusion contain five or more distinct
atomic sentences, the appropriate truth table must have at least 32 lines
(2° = 32). It is not only tedious to construct a truth table with 32 lines
but also difficult to avoid making mistakes when such a large number of
elementary computations is involved. Secondly, the direct truth table ap-
proach is adequate to but a pitifully small fragment of logically valid ar-
guments, as we shall see in Chapter 4. It is therefore desirable to develop
a sentential theory of inference which has ready application in more gen-
eral contexts. Before turning to this task in the nexi section, some further
general remarks on the two criteria introduced at the beginning of this
section are pertinent.

Criterion I says that the rules of inference must be sound, that is, they
must not permit a fallacious inference. Combining the criterion with (I)
we may obtain a working criterion for testing the validity of a proposed
rule of inference. First we see that Q should be derivable from P by use
of the rules only if every interpretation of P — Q is true. The test cri-
terion is then:

If a new proposed rule of inference permits the derivation of a false con-
clusion from true premises, reject it.

That is, if Q is derivable from P by use of the rule and some interpretation
of P — Q is false, reject the rule.

For example, suppose someone proposes the rule:

(A) - From a sentence Q and a sentence P — Q, we may infer P.
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Then we may immediately construct the kind of counterexample required
by the test criterion. Let

P = ‘Lincoln was born in Illinois’
Q = ‘Lincoln was born in the United States’.

Clearly both Q and P — Q are true, but P is false since Lincoln was born
in Kentucky. By use of (A) we have derived a false conclusion from true
premises, and our only alternative is to reject it.

Criterion II says that the rules of inference must be complete, that is,
they must permit the derivation of every valid conclusion.*

The uses of Criterion II are more sophisticated, but a simple example
can show why Criterion I alone is not sufficient.

Suppose some Simple Simon proposes as the only rule of inference:

B) From any sentence P we may infer P.

Clearly (B) satisfies Criterion I, for if we begin with the true premise P we
can only derive P itself. But to maintain that (B) is sufficient for all
logical inference violates Criterion II. By use of (B) we cannot, for in-
stance, infer the valid conclusion P from the premises M v P and -M (the
example discussed above).

We shall refer to Criteria I and II a number of times in discussing the
theory and practice of valid inference. In Chapter 4 particularly we shall
use Criterion I to justify various restrictions on the rules of inference.

EXERCISES

1. Construet specific counterexamples for the following two fallacious rules of
inference (for (a) give a different example than the one in the text). The traditional
names of these two fallacies are indicated.

(a) Fallacy of Affirming the Consequent: From Q and P — Q, we may de-
rive P,

(b) Fallacy of Denying the Antecedent: From —P and P — Q, we may de-
rive —Q.

2. Using Criterion I, decide which of the following are valid rules of inference.
For those which you think are invalid, construct a specific counterexample to show
it violates Criterion I; that is, give an example in which a false conclusion is derived
from true premises by use of the invalid rule.

(8) From P and Q, we may derive P & Q.
_(b) From P and P v Q, we may derive Q.

(¢) From —~Q and P v Q, we may derive P.

(d) From =P and P v Q, we may derive —Q.

* Although the set of rules introduced in this and the fourth chapter is sound and
complete, it is beyond the scope of Part I {o establish these facts. The notion of com-
pleteness ia discussed in more detail in § 4.2.
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3. Suppose someone proposed as the only rule of inference: From P we may de-
rive Q v ~Q. Does this rule violate Criterion I? Does it violate Criterion II? If
80, explain why.

4. Construct a (non-valid) rule of inference which by itself will satisfy Criterion
II but violates Criterion I.

5. Utilizing the discussion of sentential interpretations, explain exactly why the
following rule of inference violates Criterion I.

From ‘Thomas Jefferson was President’ we may infer ‘Jane Austen wrote
EMma’,

(Note that this is not a case of a true premise and a false conclusion, since both
statements are true.)
6. Which of the following sentences are sentential interpretations of the sentence
‘It is raining or it is snowing’?
(a) If it is raining, then it is snowing.
(b) It is snowing.
(c¢) It is snowing or it is snowing.
(d) It is snowing or it is raining.
(e) Either it is snowing and it is raining or it is not raining,
7. Which of the following assertions are true? If false, give a counterexample.

(a) A sentential interpretation of a sentence P must have the same number of
distinct atomic sentences as P.

(b) A sentential interpretation of a non-atomic sentence P must have the same
major sentential connective as P.

(¢) A sentential interpretation of a sentence P must have the same number of
occurrences of sentential connectives as P.

(d) A sentential interpretation of a sentence P must have at least as many
occurrences of (not necessarily distinet) atomic sentences as P.

§ 2.2 The Three Sentential Rules of Derivation. For the reasons
given in the previous section we replace the construction of a single truth
table to test the validity of an argument by three rules of derivation. For
the moment we consider only two of these rules. One permits us to intro-
duce premises when needed, and the other permits piecemeal use of tauto-
logical implications.

Before giving a precise statement of these first two rules of inference, we
may consider an example to show how they are used.

ExamprLE 1. If there are no government subsidies of agriculture, then
there are government controls of agriculture. If there are government con-
trols of agriculture, there is not an agricultural depression. There s
either an agricultural depression or overproduction. As a matler of fact,
there is no overproduction. Therefore, there are government subsidies of
agriculture.

We want to derive the conclusion ‘There are government subsidies of agri-
culture’ from the four premises given. For clarity, here and subsequently,
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we symbolize the argument; the meaning of the various numerals on the
left is explained below.

1 1 -s—-c¢C Premise

2 @ C—-D Premise

3 @ DbDvO Premise

4 4) -0 Premise

3,4 5) D (3) & (4) tautologically
imply (5)

2,34 6) C (2) & (5) tautologically
imply (6)

1,2,8,4 s (1) & (6) tautologically
imply (7)

The use of letters should be obvious: S is the sentence “There are govern-
ment subsidies of agriculture’; C is the sentence ‘There are government
controls of agriculture’; D is the sentence ‘There is an agricultural depres-
sion’; O is the sentence ‘There is overproduction’. There are seven lines
to the derivation. The introduction of each line may be justified by one
of the two rules. The first four lines are just the premises of the argument.
And the last three lines are obtained by showing they are tautological im-
plications of preceding lines. In the case of line (6), for example, it is easy
to see that the conjunction of lines (2) and (5), that is, the conjunction

(C—>-D)&D
tautologically implies
-C

In the case of line (7), the conjunction of lines (1) and (6), that is, the
conjunction
-S> C)&-C
tautologically implies
S

by use of a tautology similar to the one permitting us to infer line (6)
from (2) and (5).

Notice how simple the three tautological implications used are, in com-
parison with the over-all implication needed to establish the conclusion at
one stroke:

[(-S—>C)&(C — -D)&(DVO)&-0] — S.

Moreover, a tedious sixteen-line truth table would be required to test this
implication. The three tautological implications used are not only simple,
but constantly recurring. About ten or twelve simple types of tautological
implications are adequate for breaking down into parts most tautological
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inferences encountered in practice. (The next section will be concerned
with these useful tautologies.)

We have not yet explained the listing of numbers on the left in the
above derivation. For each line of the derivation, the list of numbers at
the left corresponds to the premises on which that line depends. Thus line
(1) depends only on itself, the first premise; similarly, line (2) depends
only on itself, the second premise. But line (5) depends on the third and
fourth premise; line (6) is derived from the second and fifth lines, hence it
depends on the premises lines (2) and (5) depend on, that is, the second,
third, and fourth premises; and line (7) is derived from lines (1) and (6),
whence it depends on all four premises. Thus, two premises were used to
derive line (5); three premises to derive line (6); and four premises to derive
line (7). The intuitive significance of the numerals at the left should be
emphasized: each line is a logical consequence of the set of premises corre-
sponding to the numerals at the left. Thus, line (1) is trivially a logical
consequence of itself, and line (6), for example, is a logical consequence of
the second, third, and fourth premises. Note that the numerals at the
left indicate the premises from which the line has been inferred, perhaps
by a very complicated chain of inferences. On the other hand, the nu-
merals at the right simply indicate what particular lines the line was im-
mediately inferred from by the application of a single tautological implica-
tion.

A word of warning about how we enter the listing of numbers on the
left. When we enter a premise as a line, we list at the left the number of
that line, since it only depends on that line. We do not enter the number
corresponding to the total number of premises now introduced. This is an
important point to remember. We may make it clear by rewriting the
previous derivation. Some useful abbreviations are also incorporated in
this version.

(1 (M) DVO P
{2} 2 -o P
(1, 2} 3) D 1,2T
{4} 4 C—--D P
{1, 2, 4} ) 3,4T
{6} 6 -s—C P
{1, 2, 4, 6) @) S 56T

Thus, at line (4) we introduce the third premise, but the number we list
at the left is 4, to indicate that this line depends only on itself; to list the
number 3 instead would indicate to us that line (4) depended on line (3)
which it does not. Similar remarks apply to line (6). We have also added
braces around the numerals at the left. This additional notation makes it
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clearer that a given line is a logical consequence of the set of premises
corresponding to the set of numbers attached to the line. (It is convenient
and customary to describe a set by writing down the names of its members,
separated by commas, and enclosing the whole in braces. Thus the set
whose members are the numbers 1, 2, and 4 is described by writing:
{1,2,4})

In the above rewrite of Example 1 we have abbreviated ‘Premise’ to ‘P’
and phrases like (3) and (4) tautologically imply (5)’ to ‘8, 4 T'. The
numerals ‘3’ and ‘4’ indicate the previous lines used, and the letter “I’
refers to an application of a tautological implication. Rules P and T may
be summarized:

RuLe P. We may infroduce a premise at any point in a dertvation.
Rure T. We may introduce a sentence S in o derivation if there are
preceding senlences in the derivation such thal their conjunction tauio-
logically implies S.*

Rule P permits us to introduce a new assumption or premise whenever
we desire. This may sound absurd, since it would appear that with suffi-
cient premises at hand, one could prove anything at all. The point is:
exactly what premises we have used in an argument are explicitly indi-
cated by the set of numbers at the left, and any logically correct argument
is no better or worse than the premises on which it rests. A serious logical
error is committed, of course, if a premise is used in an argument without
explicit recognition. Moreover, it has not been shown that a conclusion
is & logical consequence of a given set of premises if the set of numbers at
the left contains a number referring to a premise not in the given set.
Thus suppose someone said that the following derivation shows that from
the premise P v Q we may derive Q:

{1} MPva P
{2} @) -P P (additional premise)
{1, 2} ®B) Q L2T

The derivation itself is correct, but it does not show that Q logically follows
from P v Q, for line (3) has two numbers, not just the number 1, listed at
the left, and consequently Q is a logical consequence of two premises,
P v Q and -P.

The third and last rule for sentential derivations is the rule of conditional
proof, which we call Rule C.P. The general idea of this rule is that we
may introduce a premise R conditionally, so to speak, use it in conjunction
with the original premises to derive a conclusion S, and then assert that
the implication R — S follows from the original premises alone. It should
be intuitively clear that this rule does not violate Criterion I and is thus

* We permit the conjunction of any finite number of sentences, not just two. Thus
we might have ((P — Q) & (@ — R)) & (R — §), which tautologically implies P — s.
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acceptable. If we may validly infer S from premises Py, Py, ..., P, and R,
then we may infer R — S from Py, Py, ..., P,. For suppose the first in-
ference were valid and the second not valid in some particular case. Then
R — S would have to be false; but this could happen only if R were true
and S false. However, if this were the case, S would be false, the premises
Pi, P, ..., Py, R true, and the first inference invalid also. Thus we may
accept: *

Ruie C.P. If we can derive S from R and a set of premises, then we may
derive R — S from the set of premises alone.

Let us see how Rule C.P. works in an example. (We remark that this
example, along with the previous one and any subsequent one, is not in-
tended as a serious factual argument: we are not committed in this book
to maintaining that the premises are factually true.)

ExampLE 2 (THE NATIONAL LEAGUE RACE). If the Cards are third,
then if the Dodgers are second the Braves will be fourth. Either the Giants
will not be first or the Cards will be third. In fact, the Dodgers will be
second. Therefore, if the Giants are first, then the Braves will be fourth.

We use letters ‘C’, ‘D’, ete., in the obvious way; thus, C is the sentence
‘The Cards are third’.

{1} (1) ¢ = (D — B) P
{2} @) -G vC P

{3} @D P

{4} @G P

{2, 4} ) C 2,4T
{1,2, 4} 6) D — B ,5T
{1,2,3,4} @) B 3,6T
(1,2, 3} @) G > B 4,7 C.P.

In this example, we wanted to obtain as a conclusion the conditional sen-
tence G — B. The derivation was greatly facilitated by introducing the
sentence G as an additional premise and using this additional premise to
help derive the sentence B. We then use the rule of conditional proof to
assert that the sentence G — B follows from the three given premises,
which is what is asserted in line (8). Notice that to the right of line (8)
we list 4 and 7, which indicates that line (4) was our conditional premise
and line (7) our conditional conclusion. By conditionalizing on line (4),
when we pass from (7) to (8) we remove the number 4 from the set
{1, 2, 3, 4} of numbers which correspond to the premises (7) depends on.
The set of premises which (8) depends on then corresponds to the set

* The rule of conditional proof was first explicitly shown to be a valid rule of inference

by Alfred Tarski in 1929. When the rule is derived from other rules of inference rather
than taken as primitive, it is usually called the deduction theorem.
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{1, 2, 3}. It is important to realize:

(a) Rule C.P. is the only rule we shall introduce which permits us to
reduce the set of numbers listed at the left.

(b) When Rule C.P. is applied to reduce the set of numbers listed at the
left, only one number can be eliminated in a given application of
the rule,

(¢) Only a line which is a premise can be conditionalized on; in Exam-
ple 2 we can conditionalize on line (4); it would be incorrect to con-
ditionalize on line (5) and write as line (8)

@) C—B

for we would then not know what number to remove from the set
{1, 2,3, 4}.

The above remarks have been directed at showing you how the rule of
conditional proof works, but nothing has been said about the strafegy of
applying it. The best general hint about strategy is that when you want
to derive a conclusion which is an implication, always consider using a
conditional proof. In Example 2, for instance, the desired conclusion is of
the form P — Q, so we assumed temporarily the premise corresponding
to P.

A slightly more intricate example than the first two is desirable for refer-
ence in discussing useful tautologies in the next section. Notice that the
conclusion of this example is an implication, and hence it is efficient to use
a conditional proof.

ExamprLE 3 (A HorsE RAcE). If A wins, then either B or C will place.

If B places, then A will not win. If D places, then C will not. Therefore,
if A wins, D will not place.

{1} (DA—-BvVC P

{2} (2) B — -A P

{3} 3 D ——C P

{4} 4) A P

{1, 4} B)yBvcC 1,4 T (Law of Detach-
ment)

{2, 4} (6) -B 2, 4 T (Laws of Double
Negation and modus
tollendo tollens)

{1, 2, 4} (7) C 5, 6 T (modus tollendo
ponens)

{1, 2, 3, 4} 8) -b 3,7 T (Laws of Double
Negation and modus
tollendo tollens)

{1, 2, 8} 9 A—-D 4,8 C.P.
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Since the application of particular tautologies is the core of sentential
derivations, we shall not list any exercises until after the next section. In
Example 3 the names of the particular tautologies used have been given.

Before turning to consideration of useful tautological implications, there
are two general remarks about sentential derivations to be made. First,
it should be clear by now what sort of thing a sentential derivation is.
Roughly speaking, it is a sequence of sentences such that each sentence is
either a premise, is tautologically implied by preceding sentences in the
sequence, or is obtained from two preceding sentences in the sequence by
conditionalization. The sentences or lines of a derivation correspond to
the successive moves of a game, and each move must be sanctioned by one
of the three rules given.

Second, although the virtues of sentential derivations in establishing the
validity of a sentential argument are considerable, the alternative tedious
one-shot truth table approach has one theoretical advantage which should
be mentioned: it provides a mechanical test for the validity of a sentential
argument. By a systematic check of the appropriate truth table we can
always decide in a finite number of steps if the premises do tautologically
imply the conclusion and thus if the conclusion is sententially valid.

On the other hand, a derivation which consists of a sequence of steps
applying the three sentential rules only shows us if the conclusion is valid.
If the conclusion of the argument is not valid, we could theoretically go on
endlessly trying to find a valid derivation. At no point would we neces-
sarily be able to decide that the conclusion was invalid by a piecemeal use
of new premises, tautological implications and conditionalizations. How-
ever, when it appears intuitively that a conclusion is invalid, we may be
able to find a sentential interpretation of the implication whose antecedent
is the conjunction of the premises and whose consequent is the conclusion
such that in this interpretation the premises are true and the conclusion
false. This method is not mechanical like the truth table test, but it has
the advantage of generalizing to the framework of inference considered in
Chapter 4.

The application of the method of interpretation to show that an argu-
ment is invalid is straightforward. Suppose, for instance, someone claims
that from the premises:

€)) Either Jane Austen wrote NORTHANGER ABBEY or Immanuel
Kant wrote Tae METAPHYSICAL FOUNDATIONS OF NATURAL
ScIENCE

(2) Jane Austen wrote NORTHANGER ABBEY,

he may validly infer:

3) Immanuel Kant wrote T METAPHYSICAL FOUNDATIONS OF
NATURAL ScIENCE.
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We should not be misled by the fact that all the statements (1)—(3) are
true into thinking that the argument is valid. We may symbolize the
premises and conclusion in the obvious way:

1Yy AvK
2) A

@)K

To show that the argument is invalid we search for an interpretation of A
and K such that (1’) and (2) are true, but (3') is false. In this case it is
easy to find such an interpretation. Let A be ‘George Washington was the
first President of the United States’ and let K be ‘Andrew Jackson was the
second President of the United States’. Under this interpretation, both
A v K and A are true since A is true, but K is false. Hence we conclude
(3) does not logically follow from (1) and (2), since there is a sentential
interpretation for which (1) and (2) are true and (3) is false.

The exercises at the end of the next section call for applications of the
method of interpretation to show that some of the arguments given are
invalid.

§ 2.3 Some Useful Tautological Implications. The tautological im-
plication most frequently used in derivations is probably the Law of
Detachment

PEP — Q) — Q.

This tautology corresponds to the rule that from P and P — Q we msay
infer Q. To each of the other tautological implications we consider in this
section there is a corresponding rule of inference, which is simply a special
case of Rule T. It is, of course, the rule corresponding to the tautology
which we actually use in derivations. In Example 3 of the previous sec-
tion the Law of Detachment is used to derive line (5) from (1) and (4):

()A—-BvVC
@) A

) BvC

The Latin name for the Law of Detachment is modus ponendo ponens.

The tautology whose Latin name is modus tollendo tollens is similar to
the Law of Detachment. In this case, instead of affirming (ponendo) the
antecedent, we may by denying ({ollendo) the consequent of an implication
deny (follens) the antecedent. Thus

Q&P — Q) — -P.
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Modus tollendo tollens is conveniently combined with the Law of Double
Negation:

P & --P.

For instance, in Example 3 we used these two tautologies to derive line (6)
from lines (2) and (4):

(2 B— -A
@) A
(6) -B

We may expand this use of the two tautologies together to understand
clearly the role of each:

2) B— -A

4) A

4) --A 4 T (Law of Double
Negation)

6) -B 2, 4 T (modus tollendo
tollens)

These two tautologies are used in combination a great deal, and ordinarily
we will not insert the step (4’) explicitly. There is, of course, no formal
necessity of (4'), since Q & (P — -Q) — -P is a tautology. The point
here is simply to name for useful reference the more familiar, recurrent
tautologies, but it is important to realize there is nothing sacred nor
special about these named tautologies, and you are free to use any tautol-
ogies that you find convenient. The listing of certain key ones is analogous
to telling a beginner in chess about certain standard openings, or explaining
when to bid a slam in bridge. Such hints are intended to help you develop
a workable strategy.

In Example 3 we used the tautological implication modus tollendo ponens
to derive line (7) from lines (5) and (6):

B)BvVC
6) -B

) C

The principle of this tautology, as its name indicates, is that if we deny
(tollendo) one member of a disjunction, we may then assert (pomens) the
other. Stated as a rule of derivation it assumes the form:

From —P and P v Q we may derive Q.
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We have named all the tautologies used in the three examples of deriva-
tions in the previous section. We shall now list some further tautologies
and illustrate the use of some of them by simple examples. For complete-
ness of reference we include the four tautologies already discussed.

TABLE OF USEFUL TAUTOLOGIES

TAUTOLOGICAL IMPLICATIONS

Law of Detachment PEP—-Q - Q
Modus tollendo tollens Q&P - Q) —» -P
Modus tollendo ponens ~-P&EPVQ) — Q
Law of Simplification P&Q —> P
Law of Adjunction P&Q - P&Q
Law of Hypothetical Syllogism P->D&(@—>R - P —-R
Law of Exportation P&Q - Rl = [P - (Q = R)]
Law of Importation P-Q@—->R]—[P&Q — R]
Law of Absurdity P—-Q&-Q] — -P
Law of Addition P-PvQ
TAUTOLOGICAL EQUIVALENCES
Law of Double Negation P& ~-P
Law of Contraposition P—-Q) < (-Q—-P
De Morgan’s Laws -P&Q) e -Pv-Q
“PvQ)« -P&-Q
Commutative Laws P&Q > Q&P
PvQe QyvP
Law of Equivalence for Implication and
Disjunction P-Qeo-PvQ
Law of Negation for Implication —P-> Q) P&-Q
A Law for Biconditional Sentences PoQeaeP-oQ&Q—P

Another Law for Biconditional Sentences Po@QeoPEQVEPEQ)

TWO FURTHER TAUTOLOGIES

Law of Excluded Middle Pv-P
Law of Contradiction -(P&-P)

Given the premise:

(6] If Fillmore was born in New York then he was born in the
United States,

we derive by the Law of Contraposition:

)] If Fillmore was not born in the United States then he was not
born in New York,

and by the Law of Equivalence for Implication and Disjunction:

3) Either Fillmore was not born in New York or he was born in the
United States;
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and from (3) by De Morgan’s Laws, we derive:

@) It is not the case that Fillmore was born in New York and not
born in the United States.

Given the premise:

5) If the store is open and the sale is still on, then I will buy a
rowboat,

we derive by the Law of Exportation:

(6) If the store is open, then if the sale is still on I will buy a rowboat,
and by the Law of Contraposition we obtain from (6):

)] If it is not the case that if the sale is still on then I will buy a
rowboat, then the store is not open.

The above illustrations are limited in value because they are not embedded
in logical derivations of any complexity. As we come to use tautologies
from our table in the next section and also in Chapter 4, we shall explicitly
mention them.

EXERCISES

1. State the rule of derivation corresponding to each of the tautologies in the
above table, except for the Laws of Excluded Middle and Contradiction. When
the tautology is an equivalence rather than just an implication, the rule is stated
as in the following for the Law of Double Negation:

From P we may dertve ——P, and conversely.

We add ‘and conversely’ to indicate that the inference goes both ways.

Far the following arguments (Exercises 2-14) try to construct sentential deriva-
tions like those for Examples 1-3 in the previous section. In some cases the argu-
ment is logically invalid ; in such cases, write ‘C.D.N.F.’ (conclusion does not follow)
and then give a sentential interpretation which will show its invalidity. Use the
letters indicated, and identify by name the tautologies you use.

2. If the market is perfectly free, then a single supplier cannot affect prices. If
a single supplier cannot affect prices, then there are a large number of suppliers.
Moreover, there are a large number of suppliers. Therefore, the market is per-
fectly free. (F, S, N)

3. If prices are high, then wages are high. Prices are high or there are price
controls. Also, if there are price controls, then there is not an inflation. However,
there is an inflation. Therefore, wages are high. (P, W, C, )

4. If either wages or prices are raised, there will be inflation. If there is infla-
tion, then either Congress must regulate it or the people will suffer. If the people
suffer, Congressmen will be unpopular. Congress will not regulate inflation, and
Congressmen will not be unpopular. Therefore, wages will not rise. (W, P, I, C,
S, U

5. Either logic is difficult, or not many students like it. If mathematics is easy,
then logic is not difficult. Therefore, if many students like logic, mathematics is
not easy. (D, L, M)
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6. If Algernon is in jail, then he is not a nuisance to his family. If he is not in
jail, then he is not a disgrace. If he is not a disgrace, then he is in the army. If
he is drunk, he is & nuisance to his family. Therefore, he is either not drunk or in
the army. (J, N, D, A, R)

7. If Algernon is a nuisance, then he is not in jail. If he is in jail, then he is a
disgrace. If he is a disgrace, then he is not in the army. Therefore, he is either
not in the army or not a nuisance. (N, J, D, A)

8. Either John and Henry are the same age, or John is older than Henry. If
John and Henry are the same age, then Elizabeth and John are not the same age.
If John is older than Henry, then John is older than Mary. Therefore, either
Elizabeth and John are not the same age or John is older than Mary. (S, O,
E, M)

9. Marianne believed that Colonel Brandon was too old to marry. If Marianne’s
conduct was always consistent with her beliefs, and if she believed that Colonel
Brandon was too old to marry, then she did not marry Colonel Brandon. But
Marianne married Colonel Brandon. Therefore, Marianne’s conduct was not
always consistent with her beliefs. (B, C, M)

10. If this is December, then last month was November. If last month was
November, then six months ago it was June. If six months ago it was June, then
eleven months ago it was January. If next month will be January, then this is
December. Last month was November. Therefore, this is December. (D, N, J,
A, X)

11. If Mary is a true friend, then John is telling the truth. If John is telling
the truth, then Helen is not a true friend. If Helen is not a true friend, then Helen
is not telling the truth. If Helen is not telling the truth, then Mary is a true friend.
But if Mary is a true friend, then Helen is not a true friend. Therefore, Helen is
not telling the truth. (M, J, H, T)

12. If, and only if, Roger has entered into the contract, and the contract is legal,
and Roger has not performed the contract, Jones will win the lawsuit. If Roger
has not accepted Jones’ offer, Roger has not entered into the contract. The fact
is that Roger has not accepted Jones’ offer. Therefore, Jones will not win the law-
suit. (R, L,P, J, A

13. If Brown entered into the contract, or if Brown received substantial benefits
from acts performed by Smith, Brown will not win the lawsuit. If Brown revoked
his offer before Smith accepted it, Brown did not enter into the contract. The fact
is that Brown did not revoke his offer before Smith accepted it. Therefore, Brown
will not win the lawsuit. (C, B, W, R)

14. If Brown did not enter into the contract, or if Brown performed the con-
tract, Smith will not win the lawsuit. If Brown failed to deliver the goods on the
due date, Brown did not perform the contract. The fact is that Brown did enter
into the contract and failed to deliver the goods on the due date. Therefore, Smith
will win the lawsuit. (C, P, W, D)

§ 2.4 Consistency of Premises and Indirect Proofs. Sometimes we
are not interested in deriving a particular conclusion from a set of premises,
but in deciding if the premises are consistent. This is often the prime
objective of a lawyer cross-examining a witness for the other side. If he
can show that the testimony is inconsistent, he has gone far toward dis-
crediting the evidence presented by that witness. The intuitive notion of
inconsistency is that a set of premises is inconsistent if the premises cannot
be true together. For example, if one witness testifies that
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) Blenker was in Washington, D. C., on the night of the murder,
and Blenker asserts that

)] He, Blenker, was not in Washington, D. C., on the night of the
murder,

then we know at once that someone is lying, since (1) and (2) cannot be
true together, that is, the statements of Blenker and the witness are in-
consistent.

In many cases, it is not easy to decide if a set of premises is consistent
simply by “looking” at them, and consequently it is desirable to develop
an analytical technique for investigating consistency. To begin with, two
sentences are said to be contradictory if one is the negation of the other; a
contradiction is a conjunction of two contradictory sentences, that is, it is
a conjunction of the form S &-S. Now it is easy to see that a set of
premises is inconsistent if a contradiction can be logically derived, for if
the premises could all be true together, we could construct an example
violating Criterion I—that is, true premises and the necessarily false con-
clusion § & -S. Our technique for investigating the consistency of a set of
premises is thus to attempt to derive a contradiction. We approach the
problem of attempting to derive a contradiction in the same general way
we approach the problem of deriving a given conclusion. The essential
difference is that in deriving a given conclusion the terminal point of the
derivation is fixed in advance, whereas in deriving a contradiction, the
terminal point is any contradiction—it does not matter what particular one.

The purpose of the following example is to illustrate how the rules of
logical inference may be used to show that a set of premises is inconsistent.

ExampLE 4. If the contract is valid, then Horatio is liable. If Horatio
i¢ liable he will go bankrupt. If the bank will loan him money, he will
not go bankrupt. As a matler of fact, the contract is valid and the bank
will loan him money.

{1} BHv-l P

{2} 2L-—->B P

{3} )M — -B P

{4} @WVeEM P

{4} B v 4 T (Law of Simplifica~
tion)

{1, 2} 6)Vy—8 1,2 T (Law of Hypo-
thetical Syllogism)

{1, 2, 4} (7) B 56T

{4} 8 M 4T

{3, 4} 9) -B 3,8T

{1,2, 3,4} (10) B &-B 7,9 T (Law of Adjunc-

tion)
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Notice that in the proof that the four premises of Example 4 imply a con-
tradiction, we have used from the list in the previous section three tauto-
logical implications not previously used.

Once a logical technique for showing that a set of premises is inconsistent
has been described, it is natural to ask about the existence of a similar
technique for proving a set of premises consistent. The method of inter-
pretation is the appropriate device. If a true sentential interpretation of
the conjunction of the premises can be found, then the premises are con-
sistent; for if a contradiction could also be derived from them, then in the
interpretation we would have true premises and a valid false conclusion
(the contradiction) in violation of Criterion I. As an application of this
method, consider the premises:

If war is near then the army has mobilized. If the army has mobilized
then labor costs are high. However, war is not near and yet labor costs
are high.

We may symbolize these premises:

1) W — A
2) A—> L
3 W&l

To show that the three premises are consistent, we want to find an inter-
pretation of W, A and L such that under this interpretation all three
premises will be true. This is an easy task. Let

W=2+2=5§
A=1+1=2
L=24+2=¢

Then W is false, A and L are true, and a simple truth-functional analysis
shows that (1)-(3) are true. Hence the given premises are consistent.

It should be noticed, of course, that the consistency of a set of premises
whose logical structure may be expressed by sentential connectives alone
may be determined directly by a mechanical truth table test. The truth
table for the conjunction of the premises is constructed. If every entry in
the final column is ‘F’ then the premises are inconsistent, for there is no
interpretation of their component atomic sentences which will render them
true. If at least one entry is ‘I’ the premises are consistent, for this par-
ticular row of the truth table provides the basis for a true interpretation.
The difficulty with this test, like the difficulty with the mechanical truth
. table test for logical validity, is that it cannot be used once the additional
logical apparatus of Chapter 4 is introduced.

We may use the rule of conditional proof and the notion of an incon-
sistent set of premises to introduce the important method of indirect proof
(also called: proof by contradiction, reductio ad absurdum proof). The use
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of indirect arguments is perhaps familiar from elementary geometry. The
technique of such proofs runs as follows:
(1) Introduce the negation of the desired conclusion as a new premise.
(2) From this new premise, together with the given premises, derive a
contradiction.
(3) Assert the desired conclusion as a logical inference from the premises.
We may show schematically how these three steps fall into the pattern
of a formal derivation. Let & be the conjunction of the premises, and C
the desired coneclusion.

{1} n$y & P

{2} @ - P

{1, 2} (n) S&-S By rules of derivation

{1} n+1)-C— (5&-5) 2,nC.P.

{1} n+2)C n+1 T (Law of Ab-
surdity)

To illustrate this schema and to give a particular example of an indirect
proof, we may re-prove the validity of the conclusion of Example 3 of
§ 2.2. Notice that line (4) is tautologically equivalent to the negation of
the desired conclusion A — ~D. (The fact that A&D <> —(A — -D)isa
tautology follows from the Law of Negation for Implication.)

{1} (1) A-BvC P

{2} (2) B — -A P

{3} @ Db —-C P

{4} (4) A&D P

{1, 4} ) BvC ,4T
(3, 4} ©®) —C 3,4T
{1, 3, 4} (8 56T
(1,23, 4} 8) -A 2,7T
(1,23, 4} ©) A &-A 4,8T
{1, 2,3} (10) A&D — A&-A 4,9 C.P.
{1, 2, 3} 1) A — -D 10T

In this example, line (4) corresponds to (2) of the schema, line (9) to line
(n), line (10) to line (n + 1), and line (11) to line (n + 2). Note that (11)
follows from (10) by the Law of Absurdity and the Law of Negation for
Implication.

Tt is clear that the line corresponding to line (n 4 1) of the schema (line
(10) of the above example) is going to have the same form in every in-
direct proof. The natural suggestion is to introduce a new rule permitting
the elimination of this intuitively redundant line and sanctioning direct
passage from line (n) to (n + 2) of the schema (from line (9) to (11) of
the example). Since this new rule will shorten derivations by only one
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line, it is not of great practical importance. However, in Chapter 5 a
number of such “short cut” rules are introduced, and some of them lead
to considerable simplifications of derivations. Thus, for the moment the
important thing is to be very clear about the general status of this new
rule for indirect proofs. The most significant fact about it is that it is not
on the same footing with the three rules already introduced. Why? Be-
cause we use the three rules already introduced to establish its logical
validity. In other words, the rule for indirect proofs is a derived rule
rather than an original rule.*

Derivep RuLe ror InpiRECT PrOOFS: R.A.A. If a contradiction s
derivable from a set of premises and the negaiion of a formula S, then S
18 derivable from the set of premises alone.

We use the expression ‘R.A.A.’ to stand for ‘reductio ad absurdum’.

Proor oF Derivep RuLe: R.A.A. Let & be the set of premises. By
hypothesis we derive from $and -T a contradiction, i.e., a sentence S & -S.
By the rule for conditional proof we then obtain that the sentence -T —
S & -S is derivable from &”. Using next the tautological implication which
we called the Law of Absurdity in § 2.4, we derive T.

We have written this proof in the above form to emphasize that the
proof of a derived (i.e., short cut) rule is nof a derivation. The proof cannot
be a derivation, for a derivation is concerned with definite formulas,
whereas the proof of a derived rule must be given in a manner which will
apply to any formulas whatsoever.

The use of Rule R.A.A. is illustrated in the following example.

ExampLE 5. If twenty-five divisions are enough, then the general will
win the battle. Either three wings of tactical air support will be provided,
or the general will nol win the battle. Also, 1t is not the case that twenty-
Jive divisions are enough and that three wings of tactical air support will
be provided. Therefore, twenty-five divisions are not enough.

{1} QA D-—-W P

{2} 2) Av-w P

{3} @) -(D&A) P

{4} 4D P

{1, 4} 6) W 1,4T

{1, 2, 4} 6) A 2,5T

{3} (7) -D v -A 3T (De Morgan’s Laws)
{1, 23,4} @) -D 6,7T

{1, 2, 3, 4} 9) D&-D 4,8T

{1, 2, 8} (10) -D 4,9 R.AA.

* In this context, the reader might wonder if any one of the three original rules could
have been derived from the other two. As they are formulated in the text, the answer
is negative; each is independent of the other two. This point is returned to in Chapter 5.



CONSISTENCY OF PREMISES AND INDIRECT PROOFS 41

In this example, Rule R.A.A. is used to derive line (10) directly from lines
(4) and (9). Since a reductio ad absurdum argument is a special case of the
rule of conditional proof, it permits a reduction in the set of numbers at-
tached to a given line. Thus in the above example, {1, 2, 3, 4} is attached
to (9), and the reduced set {1, 2, 3} is attached to (10). Intuitively this
situation reflects the fact that the contradiction of the conclusion, line (4),
is a premise introduced for working purposes only.

The decision to attempt an indirect proof rather than a direct proof is
always determined by a number of factors. An indirect proof is immedi-
ately suggested by a situation where there do not seem to be enough
premises, for by venturing to find an indirect proof, we are permitted to
introduce the negation of the conclusion as another premise. Although
Example 5 involves a very simple inference, it illustrates this point. The
conclusion is represented by a simple negation, so a direct conditional proof
is not convenient. Moreover, none of the three premises is a simple atomic
sentence. Faced with an implication and two disjunctions, it is hard to
see how to begin. Negate the conclusion, obtain an atomic sentence as an
extra premise, and the deductive machinery is ready to grind out an
answer.

EXERCISES

1. Which of the following sets of premises are inconsistent? If a set is incon-
sistent, derive a contradiction. If consistent, give a true sentential interpretation
to prove it.

() If the contract is valid, then Horatio is liable. If Horatio is liable he will go
bankrupt. Either Horatio will go bankrupt or the bank will lend him money.
However, the bank will definitely not lend him money. (V, L, B, M)

(b) If Jones committed the murder, then he was in the victim’s apartment and
he did not leave before eleven. In fact, he was in the vietim's apartment. If he
left before eleven, then the doorman saw him. But it is not the case either that
the doorman saw him or that he committed the murder. (M, A, L, D)

(c) The contract is satisfied if and only if the building is completed by November
30. The building is completed by November 30 if and only if the electrical subcon-
tractor completes his work by November 10. The bank loses money if and only if
the contract is not satisfied. Yet the electrical subcontractor completes his work
by November 10 if and only if the bank loses money. (C, B, E, L)

(d) Smiling Pete will win the fourth race if and only if Crazy Cat comes in to
show. If Crazy Cat comes in to show, then Dapper Dan will come in last. Either
Dapper Dan will not come in last or Wildwood will tie for first. If Smiling Pete
does not win the fourth race then Wildwood will tie for first. Furthermore, Wild-
wood will not tie for first. (S, C, D, W)

)P - Q

Qe R
RvSe -Q
® (-QvP)
Pv-R
Q—R
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2. Show that any formula may be derived from an inconsistent set of premises.

3. Prove if possible by reductio ad absurdum:

(a) If John plays first base, and Smith pitches against us, then Winsocki will win.
Either Winsocki will not win, or the team will end up at the bottom of the league.
The team will not end up at the bottom of the league. Furthermore, John will
play first base. Therefore, Smith will not pitch against us. (J, S, W, T)

(b) If hedonism is not correct then eroticism is not virtuous. If eroticism is
virtuous, then either duty is not the highest virtue or the supreme duty is the pur-
suit of pleasure. But the supreme duty is not the pursuit of pleasure. Therefore,
either duty is not the highest virtue or hedonism is not correct. (H, E, D, S)

(c) If a declaration of war is a sound strategy then either fifty divisions are
poised at the border or twenty wings of long-range bombers are ready to strike.
However, fifty divisions are not poised at the border. Therefore, if twenty wings
of long-range bombers are not ready to strike, then either a declaration of war is
not a sound strategy or new secret weapons are available. (D, F, T, S)

4. Prove by reductio ad absurdum:

(a) Exercise 5 of § 2.3.

(b) Exercise 8 of § 2.3.



CHAPTER 3

SYMBOLIZING EVERYDAY LANGUAGE

§ 3.1 Grammar and Logic. In the previous two chapters we have de-
veloped the logic of the sentential connectives. Our notation has con-
sisted just of “, ‘&’, ‘v’ ‘—’, ‘o, parentheses, and single letters standing
for sentences. A moment’s reflection is enough to make anyone realize
that an apparatus as meager as this is not sufficient to express logical dis-
tinctions of the most obvious and elementary kind. For example, simple
truths of arithmetic cannot be formulated within this framework. In fact,
our logical apparatus would not be adequate for the needs of a three-year-
old child. There are no means of symbolizing common and proper nouns,
pronouns, verbs, adjectives, or adverbs; most common grammatical dis-
tinctions cannot be indicated. Of course, we are not committed to de-
veloping a logic adequate to all the nuances of everyday language. What
we do want is enough logical notions to express any set of systematic
facts. Specifically we shall introduce three kinds of expressions corre-
sponding to the many kinds distinguished in the grammar of ordinary
language. We shall consider terms, predicates, and quantifiers; and we shall
be concerned to see how well we can translate sentences of everyday lan-
guage into a language consisting just of sentential connectives, terms,
predicates, quantifiers, and parentheses. We shall also be interested in
comparing the grammar of our logical symbolism with the grammar of
everyday language.

It should be realized at the very beginning of this discussion that the
usage of ordinary language is not sufficiently uniform and precise to permit
the statement of unambiguous and categorical rules of translation. In
translating a sentence of English into our symbolism, it is often necessary
carefully to consider several possibilities.

§ 3.2 Terms. A precise definition of ‘term’ will now be given. Perhaps
the best place to begin is by considering the most important kind of terms
in logic and mathematics, namely, variables. Beginning students of logic
sometimes find the notion of variables rather confusing. The important
thing to remember is that variables are simply letters, such as, @', ‘y’, 7,

43
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or letters with subscripts, such as ‘z;’, ‘z’, ‘z3’, .... The grammatical
function of variables is similar to that of pronouns and common nouns in
everyday language. Thus, the sentence:

(¢h)] Everything is either red or not red
is equivalent to the sentence:
2) For every z, z is red or z is not red.

In this instance the use of the variable ‘z’ in (2) corresponds to the use of
‘thing’ in (1). The particular variable ‘z’ has no special significance, and
(2) can be rewritten using ‘Y’ in place of ‘z’:

For every v, y is red or y is not red.

From a literary standpoint (2) seems to be a rather barbarous version of
(1). However, variables come into their own proper place when even the
simplest arithmetical statements are considered. For example, we all know
that for any numbers z, y, and 2,

3) zyY+2)=zy+z-z

However, a literary rendering of (3) is awkward and far from perspicuous.
It would run something like:

4) If a number is multiplied by the sum of a second and third
number then the result is equal to the sum of the number multi-
plied by the second number, and the number multiplied by the
third number.

Even more awkward than (4) is the statement of a piece of reasoning in
arithmetic without the use of variables.

Proper names form another important class of terms. In order to have
a compact notation, we use lower-case letters at the beginning of the
alphabet to stand for proper names. Thus if we let

o = Isaac Newton
we may translate:

6)) Isaac Newton is the greatest mathematician of the last three
centuries,
by:
6) a is the greatest mathematician of the last three centuries.
Now (6) does not seem to be much more compact than (5), but a further
substantial abbreviation is permitted when we notice that definite descrip-

tions such as ‘the greatest mathematician of the last three centuries’ fune-
tion just like proper names and thus form another class of terms. Since
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we also use lower-case letters standing at the beginning of the alphabet to
stand for definite descriptions, if we let

b = the greatest mathematician of the last three centuries,
we may now translate (5) by:
Q) aish.

The meaning of ‘i’ in (5) and (7) is that of identity and we may in fact
write (7):
a =b.

We remark that names or descriptions of objects are sometimes designated
‘constants’. For example, ‘a’, ‘b’ and ‘Isaac Newton’ are constants.

Thus far we have considered three kinds of terms: variables, proper
names, and definite descriptions. The intuitive idea of a term is that it
designates or names an entity. On the other hand, variables do not name
anything. For example, in the expression:

z>3

the variable ‘z’ does not name some unique number like 5 or 17. None
the less, this intuitive idea of terms naming is a sound one, and we may
use it to provide a general definition.

DrrinitioN. A TERM 4s an expression which either names or describes
some object, or resulis in a name or description of an object when the
variables in the expression are replaced by names or descriptions.

Thus ‘z’ is a term according to the definition because when we replace ‘z’
by the Arabic numeral ‘3’ we obtain an expression which designates the
number three. The definition also classifies as terms such expressions as
‘2 4+ 3, for when we replace ‘2’ by ‘2’ and 4’ by ‘3’, we obtain 2 4 3,
an expression which designates (i.e., names) the number 5. Some other
examples of terms are:

z+3
2+ -1
the fattest man in township z.

§ 3.3 Predicates. In addition to our notation for sentential connectives
and terms, we shall use capital letters to stand for predicates. Thus, we
may use the letter ‘R’ in place of the predicate ‘is red’ and symbolize (2)
of the previous section:

For every z, Rz v -Rz.
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It should be clear that ‘~Rz’ is read ‘r is not red’; no new use of negation
is involved, since ‘~R2’ is simply the negation of the formula ‘Rz’.

Now in traditional grammar a predicate is the word or words in a sen-
tence or clause which express what is said of the subject. In English,
predicates may be formed in several ways: a verb standing alone, a verb
together with an adverb or adverbial clause modifying it, a copula verb
with a noun or an adjective. Thus, examples of predicates are ‘swims’,
‘is swimming rapidly’, ‘is a man’, ‘is cantankerous’. In logic we do not
distinguish predicates according to the grammatical parts out of which
they are constructed; in fact, no place is even accorded to adverbs, adjec-
tives, and common nouns. Single letters alone stand for predicates, and
there are no symbols admitted for adverbs and the like. Furthermore,
predicates are given a broader role in logic than in ordinary usage. For
example, since a notation for common nouns is not introduced, common
nouns which stand as the subjects of sentences are symbolized by means
of variables and predicates. Consider, for instance, the sentence:

(¢} Every man is an animal.
We translate this:
)] For every z, if z is a man then z is an animal.

In ordinary grammar ‘is an animal’ is the predicate of (1). Its transla-
tion (2), has the additional predicate ‘is a man’ which replaces the common
noun ‘man’ in (1). Using ‘M’ for the predicate ‘is a man’ and ‘A’ for the
predicate ‘is an animal’, we may then symbolize (1):

3) For every z, Mz — Ax.

Sentence (3) in fact exemplifies the standard form for sentences of the type
‘Every such and such is so and so’.

There is a useful logical distinction concerning predicates which may be
illustrated by symbolizing the sentences:

4 Emma was very gay
and:
) Mr. Knightly was considerably older than Emma,
Letting
¢ = Emma
and

k = Mr. Knightley,

and using ‘G’ for the predicate ‘was very gay’ and ‘O’ for the predicate
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‘“was considerably older than’, we may symbolize (4) and (5):

QGe,
Oke.

For obvious reasons we refer to ‘G’ as a one-place predicate and to ‘0’ as a
iwo-place predicate. A simple example of a three-place predicate is sug-
gested by the notion of betweenness. An example of a four-place predicate
is suggested by the relation of two objects being the same distance apart
as two other objects. (Euclidean geometry, by the way, can be axiomatized
in terms of just these two notions of betweenness and equidistance.)

In the sentence:

6) Emma was very gay and beautiful

the predicate ‘was very gay and beautiful’ is called in grammar a com-
pound predicate. Using ‘B’ for the predicate ‘was beautiful’, we may sym-
bolize (6):

) Ge & Be.

On the other hand, using ‘W’ for ‘was very gay and beautiful’, we may
also symbolize (6):

@®) We.

In logic there is no commitment to simple predicates and hence the choice
between (7) and (8) should turn on questions of convenience and context.
If in a given argument gaiety and beauty are always associated, then (8)
would probably be the best symbolization. For an argument which dis-
sociates these two properties, (7) is to be preferred.

§ 3.4 Quantifiers. Certain formulas containing variables are neither
true nor false. Thus:

¢)) z loved y
and:
@ zty=2z+2

are neither true nor false. However, if we replace ‘2’ by ‘Emma’ and %’
by ‘Mr. Knightley’ we obtain from (1) a true sentence (true at least in the
world of Jane Austen). And if in (2) we replace ‘z’ by 2°, 4’ by ‘3’ and
‘2’ by ‘4’, we obtain a false sentence of arithmetic.

But one of the profoundest facts of logic is that we do not have to re-
place variables by names in order to get true or false sentences from (1)
and (2). Another and equally important method is to prefix to expres-
gions such as (1) and (2) phrases like ‘for every z’, ‘there is an z such that’,
“or all .
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Thus from the formula:
z 18 a miser

we obtain the true sentence:
There exists an z such that z is a miser,
which has the same meaning as the less strange-looking sentence:
There are misers;
and we can also obtain from this same formula the false sentence:
3 For every z, z is a miser,
which has the same meaning as the more usual form:
Everyone is a miser.

The phrase ‘for every 2’ is called a universal quantifier. The logical sym-
bol we use for the universal quantifier is illustrated by rewriting (3):

(z)(z is a miser).

In everyday language and in mathematics, words and phrases like ‘some’,
‘there exists an z such that’, ‘there is at least one z such that’ are called
existential quantifiers. Thus the formula:

z>0

becomes a true sentence when the existential quantifier ‘there is an z such
that’ is prefixed to it. The logical symbol we use is illustrated by writing
this sentence:

(3z)(x > 0).

It is important to realize that a formula which is neither true nor false is
not necessarily made so by simply adding a single quantifier. The appro-
priate number of quantifiers must be added. For example, if we add an
existential quantifier to (2), we obtain:

@ (A)z+y=2+2),

and (4) is neither true nor false. However, if we also add ‘(3y)’ and
‘(3z)’ then we obtain the true sentence:

®) (A2)( 3z +y=2+2).
Put in ordinary mathematical language, (5) says:
There are numbers z, ¥, and zsuch that z 4y = z 4+ 2.

With a logical notation for quantifiers available, we may now completely
symbolize sentence (1) of the previous section:
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6) (x)(Mz — Axz).

As already remarked, (6) exemplifies the appropriate symbolic formulation
of sentences of the type ‘Every such and such is so and so’, or what is
equivalent, sentences of the type ‘All such and such are so and so’. Thus,
as a second example, we would symbolize the sentence:

) All freshmen are intelligent
by:
® (@)Fz — Iz),

where we use ‘F’ for the predicate ‘is a freshman’ and ‘I’ for the predicate
‘ig intelligent’.
Consider now the sentence:

) No freshmen are intelligent.
We first obtain as a partial translation of (9):

(10) For all z, if z is a freshman then z is not intelligent.
And (10) is translated into symbols by:

(11) z)(Fr — -Iz).

The only difference between (8) and (11) is the presence in (11) of the
negation sign before the predicate ‘I’, but this difference is, of course,
crucial. Sentence (11) exemplifies the standard form for sentences of the
type ‘No such and such are so and so’.

We now turn to some sentences whose translations use existential quan-

tifiers.*
(12) Some freshmen are intelligent.

We translate (12) by:

(13) For some z, z is a freshman and z is intelligent.
And (13) is easily translated into symbols by:
(14) (Az)(Fz & Ix).

There is a very common mistake which beginners make in translating (12),
and which should be carefully avoided. The translation of (7) as (8) falsely
suggests the translation of (12) by:

(15) For some z, if z is a freshman then z is intelligent.

* It is also possible to use an existential quantifier to translate (11) by: ~(3x)(Fz &
Iz). By use of the rules of inference given in the next chapter we may establish the
logical equivalence of these two translations.



50 SYMBGLIZING EVERYDAY LANGUAGE

Sentence (15) is rendered in symbols by:
(16) (Az)(Fz - Iz).

It is important to understand why (14) rather than (16) is the correct
symbolization of (12). To see that (16) is incorrect, let us see what it
really asserts. If in (16) we replace the formula ‘Fz — Iz’ by the tauto-
logically equivalent formula ‘~Fz v Iz’, we obtain:

an (z)(~Fz v Iz),
which we may translate in words by:

(18) For some z, either z is not a freshman or z is intelligent,
or, using another idiom for the existential quantifiers, by:

(19 There is something which is either not a freshman or is intelli-
gent.

It should be obvious that (12) and (19) are not logically equivalent. If all
freshmen were completely stupid, (12) would be false, but (19) would still
be true as long as there is something in the universe which is not a fresh-
man,

Statements of the form of (16) are nearly always true but utterly trivial.
Consequently, such statements are very seldom the correct translation of
any sentence of ordinary language in which we are interested.

Another example may help to underscore the triviality of (16). Let us
translate the sentence:

(20) Some men are three-headed.
The correct symbolization is:
(21) (A2)(Mz & Tz),

and (20) and (21) are, to the best of our knowledge, false. If we had
translated (15) by:
(z)(Mz — Tz),

and thus committed ourselves to the logically equivalent statement:
22) (3z)(-Mz v Tz),

we would be affirming the absurdity that (20) is true, as long as there are
objects in the universe which are not men; for this trivial condition guaran-
tees the truth of (22).
From the above discussion, the correct translation of such related sen-
tences as:
Some freshmen are not intelligent
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should be obvious. It is:
(A2)(Fz & -Ix).

A useful extension of the kinds of sentences considered so far is to sen-
tences using both variables and proper names. Thus we symbolize:

Adams is not married to anyone,
by:
(x)-(Maz),

where ‘Maz’ is read: Adams is married to z. As another example, we
symbolize:
Some freshmen date Elizabeth
by:
(Az)(Fx & Dze),

where the one-place predicate ‘F’ and the two-place predicate ‘D’ have the
obvious meaning, and ¢ = Elizabeth.

EXERCISES

1. State without the use of variables the following two true sentences of arith-
metic:

(a) (Fz)(3y)(z +y #= z-y).
(b) (Fz)(3y)( I}z — (y—2) # (x — y) — 2).

2, Translate the following sentences from everyday language into a notation
using terms, predicates, quantifiers, and sentential connectives. Use the letters
indicated for predicates and proper names. Note that plural nouns not preceded
by ‘some’ or ‘all’ sometimes are to be translated using universal quantifiers and
sometimes using existential quantifiers.

(a) All seniors are dignified. (Sz, Dx)

(b) Some juniors are pretty. (Jz, Px)

(c¢) No freshmen are dignified. (Fzx)

(d) Some freshmen are not pretty.

(e) Some seniors are both pretty and dignified.

(f) Betty is pretty but not dignified. (b)

(g) Not all juniors are pretty.

(h) Some seniors who are not serious like Greek. (T'z, Gx)
(1) No freshmen are not serious.

(j) Some juniors who like Greek are not pretty.

(k) All freshmen who like Greek are pretty.

() Anyone who likes Greek is either a senior or a junior.
(m) Some seniors like both Greek and mathematics. (Mxz)
(n) No juniors like both Greek and mathematics.

(o) There are some seniors who like Greek but not mathematics.
(p) Every freshman dates some junior. (Dzy)

(q) Elizabeth does not date any freshmen. (¢)
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(r) Some juniors date only seniors.

(8) Some freshmen date seniors.

(t) Some seniors date no juniors.

(u) There are both seniors and juniors who date Betty.,
(v) Some freshmen date only seniors who like Greek.
(w) Only freshmen date freshmen.

(x) Freshmen date only freshmen.

(y) Adams dates freshmen only if they are pretty. (a)
(z) Adams dates a junior.

§3.5 Bound and Free Variables. An occurrence of a variable in a
formula can be one of two types: either that occurrence is controlled by a
quantifier, or it is not. For the exact statement of the rules of inference
governing quantifiers it is important to make precise this notion of an
occurrence of a variable “being controlled” by a quantifier. To begin
with, we need to make the notion of a formula more precise. An afomic
formula is a predicate followed or flanked by the appropriate number of
terms as arguments. Thus the expressions:

Ra, z+y=z¢, z is blue

are atomic formulas. We may then give what is called a recursive defini-
tion of formulas:

(a) Every atomic formula 1s a formula.

(b) If S is a formula, then —(S) is a formula.

(¢) If R and S are formulas then R) & (S), (R) v (S), R) — (S), and
(R) & (8) are formulas.

(d) If R is a formula and v i3 any variable then (v)(R) and (Iv)(R)
are formulas.

(e) No expression is a formula unless its being so follows from the above
rules.

This rather elaborate definition makes explicit what should be intuitively
obvious.* (In practice we omit the indicated parentheses when they are
unnecessary.) Giving this definition corresponds to listing in the rules of
chess, checkers, or bridge exactly what positions make sense in the game:
for example, no one player may have six cards and his partner eight at
any point in a bridge game. And the expression:

z=y > V() &

is not a formula, but a meaningless string of symbols. (Here the word

* The definition given here is not completely precise, for no explicit list of primitive
terms and predicates is given, as would be required in constructing a completely for-
malized language. Moreover, in a formalized language admitting terms like ‘z + 3, a
recursive definition of terms would also be needed.
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‘meaningless’ should be taken in a formal sense. A formula is not re-
quired to be meaningful in the sense of saying something significant; it
simply has to have a certain formal or syntactical structure.)

With a relatively precise idea of formula before us, we may now define
the important notion of the scope of a quantifier.

DeriniTioON. The SCOPE of a quantifier occurring tn a formula is the
quantifier together with the smallest formula tmmediately following the
quantifier.

In the following examples the scope of the quantifier ‘(3 z)’ is indicated
by the line underneath the formula:

(1) (32)Mz v Rz
L1
2 W (3z)(z >y & (2)(z = 2))
| o ]
3) f3x)(y)((xy =0 & @@z +z=2+ x))I
@) (An)@(xy = 0) & @)@z + 2z =2+ 2)
|———mo

The parentheses in a formula always make clear in a perfectly natural way
what expression is the smallest formula following a quantifier. Thus in
(1) ‘Mz’ is the smallest formula following ‘(3z)’. In (2) the mate of the
left parenthesis immediately following ‘(3 z)’ occurs at the end of the for-
mula, which determines that the smallest formula is in this case the whole
remaining formula. But as (3) shows, it is not sufficient to look for the
mate of the left parenthesis immediately following the quantifier, for in
the case of (3) this would falsely determine ‘(y)’ as the smallest formula
following ‘(3z)’, but the quantifier ‘(y)’ is not a formula. However, if
such quantifiers are ignored the hunt-for-the-mate rule always works.

We are now in a position to define bound and free occurrences of variables.

DEFINTTION. An occurrence of a variable in a formula s BOUND if
and only if this occurrence is within the scope of a quantifier using this
variable.
The phrase ‘quantifier using this variable’ should be clear. Thus, the
quantifier ‘(3z)’ uses the variable ‘2’; the quantifier ‘(y)’ uses the variable

y’. In formulas (2)-(4) above, every occurrence of variables is bound.

DEFINITION. An occurrence of a variable 8 FREE if and only if this
occurrence of the variable 13 not bound.
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In the formula:
) Ay >y

both occurrences of the variable ‘9’ are bound and the single oceurrence of
‘2’ is free. In (1) the first two occurrences of ‘z’ are bound and the third
occurrence is free.

DeriniTION. A variable s a FREE VARIABLE in a formula if and
only if at least one occurrence of the variable is free, and a variable is a
BOUND VARIABLE in a formula if and only if at least one occur-
rence of the variable is bound.

We notice that a variable may be both free and bound in the same
formula, but any given occurrence of the variable is either bound or free
but not both. Thus in the formula:

y>0v(3y <0

the variable ‘Y’ is both free and bound; its first occurrence is free, and the
second and third oceurrences are bound.

Without explicitly giving notice, we have reserved the word ‘sentence’
to apply to formulas which are true or false, but a formula is true or false
if and only if it has no free variables. Consequently a precise syntactical
definition is simply:

DerintrioNn. A SENTENCE is a formula which has no free variables.

Thus formulas (2)—(4) of this section are sentences, but (5) is not, because
of the free occurrence of ‘x’.

With respect to the problem of correctly symbolizing sentences of every-
day language, it should be emphasized that the end result should contain
no free variables. In other words, the symbolized expression should also
be a sentence. In Chapter 7, on the other hand, we shall discuss the uni-
versal tendency in mathematics to use formulas which have free variables.

EXERCISES

1. Classify the following expressions as: (i) terms, (ii) formulas, or (iii) neither
terms nor formulas.

(a) Thomas Jefferson

(b) slowly

(¢) the number six

(d) zis purple

(e) the integer y

(f) the number z such that x =z + 2
@ z+y=2
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M) (z+y) +2
(i) every man z
(j) that man who will be the next President
(k) z hates y, but loves z
M B@+n+10
(m) very pretty
2. How many free occurrences of variables and how many free variables are
there in each of the following formulas? Which of the formulas are sentences?

(8) W)= >y&y >2) - (Iw)w > w)

(b) (3x)(x is red) v (¥)(y is blue and z is purple)

) ztz=z+=2

@ (IYPez+z=z+2)

(e) (32)( Ay)(z is married to y and 2 is their child)

§3.6 A Final Example. The sentences considered so far in this chapter

are relatively simple in structure. It is desirable to consider a relatively
more complicated example:

) If one instant of time is after a second, then there is an instant
of time after the second and before the first.

The best way to begin a translation is to introduce variables before we
symbolize the sentence. It is clear that we need three distinct variables
in translating (1):

2) If instant of time z is after instant of time y, then there is an
instant of time z such that z is after ¥ and 2 is before z.

It is not difficult to pass from (2) to a complete symbolization of (1). The
main change is to replace the descriptive adjectival phrase ‘instant of time’
by the corresponding predicate. The result of this substitution is a more
awkward English sentence, but one whose logical structure is simpler than
that of (2):

@) If z is an instant of time, y is an instant of time, and z is after y,
then there is a 2 such that z is an instant of time, z is after y,
and z is before z.

It is a routine fask to symbolize (3):
@) Tz & Ty & Azy — (32)(Tz & Azy & Bz),

where ‘T” stands for ‘is an instant of time’, ‘A’ for the two-place predicate
‘is after’, and ‘B’ for the two-place predicate ‘is before’.

Several remarks are in order concerning the formulas (1) to (4). For-
mula (4) has two free variables and consequently is not strictly a sentence
which is either true or false. On the other hand, it seems natural and in-
tuitively correct to regard (1) as a sentence. In (1) the words ‘one’ and
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‘second’ function as universal quantifiers. You will perhaps have a better
sense of their role if you insert the word ‘arbitrary’ after ‘one’ and ‘second’,
and change (1) to read:

If one arbitrary instant of time is after a second arbitrary instant
of time, then ....

On the other hand, we easily obtain a sentence (in the strict sense of the
word) from (4) by adding two universal quantifiers:

) @)W[Tz & Ty & Azy — (32)(T2 & Azy & Bzzx)]

which is the final step in completely symbolizing (1).

Comparison of (1) and (5) emphasizes the point that universal quanti
fiers are expressed in idiomatic English usage in a variety of ways. It
might seem that it would be difficult to ferret out and recognize these dif-
ferent idioms, but in practice it turns out to be fairly simple: after giving
a translation which seems intuitively appropriate, add however many uni-
versal quantifiers are necessary to obtain a sentence, as we did in obtaining
(5) from (4). As already remarked, in the next chapter we shall see that
formulas such as (4), which contain free variables and are not sentences,
play an important role in the theory of inference.

It perhaps needs to be repeated that no hard and fast rules can be given
for correctly symbolizing sentences of ordinary language. The correctness
or incorrectness of a proposed translation must be decided by a variety of
informal, intuitive considerations. In certain cases several non-equivalent
translations seem equally correct, but it is usually the case that if two non-
equivalent translations are put forth, one can be shown to be incorrect.

EXERCISES

1. Using the letters indicated for predicates and constants, translate the follow-
ing. The variables following the predicates are not necessarily the ones you should
use in symbolizing the sentence.

(a) Sophomores like Greek only if they like mathematics. (Sz, Gz, Mz)

(b) Seniors date only juniors. (Sz, Dzy, Jz)

(c) Some seniors like Greek, but no seniors like both French and mathe-
matics, (Fz)

(d) Every instant of time is after some instant. (Iz, Azy)

(e) If two instants of time are not identical, then one is after the other.
(z=1y9)

(f) There is no instant of time such that every instant is after it.

() There is no instant of time such that no instant is after it.

(b) If one instant is after a second instant, then the second is before the first.
(Bzy)

() The only sophomores who date Betty are those who like Greek. (Dzy, b)

(j) Some seniors who like mathematics do not date Elizabeth. ()



A FINAL EXAMPLE 57

(k) Some juniors who do not like French date both Betty and Elizabeth.

(1) Some freshmen who like both Greek and mathematics date neither Betty
nor Elizabeth.

(m) If all sophomores like Greek then some freshmen do.

(n) Either all juniors like mathematics or some sophomores like Greek.

(o) If seniors date only juniors then some seniors date no one.

(p) If no senior dates Betty then either some sophomore or some junior does.

2. Using the logical notation developed, and the standard symbols of arithmetic,
such as ‘<’ for ‘less than’, symbolize the following sentences.

(a) There is a number z less than 5 and greater than 3.

(b) Given any number z there is a smaller number y.

(¢) There is no largest number.

(d) For any two numbers z and y the sum of z and y is the same as the sum
of y and z.

(e) There are numbers z, y, and 2 such that the difference of z and y is less
than the product of z and z.

(f) For every number z there is a number y such that for every number z if
the difference of z and 5 is less than y then the difference of z and 7 is
less than 3.

() If the sum of two numbers which are neither zero is zero then one of the
numbers is greater than zero,




CHAPTER 4

GENERAL THEORY OF INFERENCE

§ 4.1 Inference Involving Only Universal Quantifiers. It is advis-
able to learn in piecemeal fashion the somewhat complex rules of inference
which go beyond the truth-functional methods of Chapter 2 and depend
upon the logical properties of quantifiers. Four new rules are needed: a
pair for dropping and adding universal quantifiers, and a like pair for
existential quantifiers. Roughly speaking, the strategy for handling infer-
ences involving quantifiers falls into four parts:

I. Symbolize premises in logical notation.
II. Drop quantifiers according to rules introduced in this chapter.
II1. Apply sentential methods of derivation to obtain conclusion with-
out quantifiers.
IV. Add quantifiers to obtain conclusion in final form.

(This statement about strategy is to be regarded as a useful hint; some-
times it is not applicable.)

In order to begin in a simple way, in this section we consider formulas
which have only universal quantifiers with scopes running over the entire
formula. A classical syllogism may serve as the first example.

All animals are mortal.
All human beings are animals.
Therefore, all human beings are mortal.

Using the methods of translation of the previous chapter we symbolize
this argument:

(z)(Az > Mx)

(z)(Hz — Ax)

(z)(Hz — Mz)
58
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To construct a derivation corresponding to this simple argument we intro-

duce two new rules of inference. The first permits us to drop a universal

quantifier whose scope runs over the whole formula. The intuitive idea of

the rule is that whatever is true for every object is true for any given ob-

ject. The second rule permits us to add a quantifier; in this case we infer

a truth about everything from a truth about an arbitrarily selected object.
The derivation goes as follows:

ExamrLE 1.

{1} 1) (x)(4z — Mz) P

{2} (2) (@)(Hz — Ax) P

{1} 3) Az —» Mz Drop universal quanti-
fier of (1)

{2} (4) Hz — Az Drop universal quanti-
fier of (2)

{1, 2} (5) Hx —» M=z 3, 4 T (Law of Hypo-
thetical Syllogism)

{1, 2} 6) (z)(Hx — Mz) Add universal quanti-
fier to (5)

The analysis of this example in terms of the four-part strategy suggested
above is straightforward:

Srep I.  Symbolize premises: lines (1) & (2).
Step II.  Drop quantifiers: lines (3) & (4).
Step II1. Apply sentential methods: line (5).
Step IV. Add quantifier: line (6).

We now want to give an exact statement of the two rules governing uni-
versal quantifiers. We call the first one, the rule of universal specification,
because a statement true of everything is true of any arbitrarily specified
thing.* The exact formulation is:

RuLe oF UNIVERSAL SPECIFICATION: US. If a formula S results from
a formula R by substituting a term t for every free occurrence of a variable
v in R then S is derivable from (v)R.}

In the above derivation, the term t is simply ‘2’ in both cases of universal
specification, which is why we spoke of dropping quantifiers, but in general

* The phrase ‘universal instantiation’ is often used. I prefer ‘specification’ to ‘instan-
tiation’ on the principle that peculiar words unused in everyday language should be
introduced only as a last resort.

+ Here and in the subsequent rules, to avoid any possible ambiguity in the scope of
the quantifier we may treat ‘R’ as if it were flanked by parentheses. Thus we read ‘S is
derivable from (v)R’ as if it were ‘S is derivable from (v)(R)’.
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we want to be able to replace the quantified variable by any term.* Thus
if ‘e’ is the name of John Quincy Adams, we may infer ‘da — Ma’, as
well as ‘Ay — My, from ‘(x)(Ax — Mz)’. And in the case of arithmetic
from the statement ‘(z)(z + 0 = z)’ we may infer by universal specifica-
tion ‘(z 4+ y) + 0 = z + ¥’; in this case the term tis ‘z + y.

The second rule, which permits the addition of quantifiers, is complicated
by the necessity of a restriction on its range of applicability, even for the
limited arguments of this section. The character of this restriction may
be elucidated by the following simple argument. We begin with the prem-
ise that some arbitrary z is human, and we conclude fallaciously that
everything is human,

{1} (1) Hz P
{1} (2) (z)Hz Add universal quanti-
fier to (1)

The argument says that for every object z if z is human then everything
is human. If no objects were human the antecedent would be always
false, but since there are humans there are cases of z for which the ante-
cedent is true and obviously the conclusion is false. But a restriction
which blocks this fallacious inference is not hard to find: do not universally
generalize, that is, do not universally quantify, a variable which is free in
a premise. In the above fallacious argument we universally generalized
on the variable ‘z’ free in the premise ‘Hz’. For compactness of reference
we shall say that a variable free in a premise is flagged. Moreover, a
variable which is free in a premise is also flagged in any line in which it is
free and which depends on the premise. We list the flagged variables in a
formula at the right in a derivation (see Example 2 below).

The exact statement of the rule of inference for adding a universal quan-
tifier is then:

RuLe oF UNIVERSAL GENERALIZATION: UG. From formula S we may
derive (v)S, provided the variable v is not flagged in S.1

The following example applying the two new rules of inference illustrates
three things: (i) the abbreviated notation: US for universal specification
(lines (4)-(6)) and the abbreviated notation: UG for universal generaliza-
tion (line (12)); (i) how flagged variables are indicated (lines (7)—(10));
(iii) how universal specification is applied when the premises happen to be
symbolized by use of different variables.

* In connection with the systematic consideration of terms in the theory of deriva-
tion, there is one informal restriction that needs to be made clear. We always assume
that the object designated by a term exists and is unique. In other words, names and
descriptions of fictitious objects are excluded. We thus prohibit such terms as ‘the
only son of Franklin Delano Roosevelt’, ‘the eleventh wife of Napoleon’, ‘the prime
number between eight and ten’. We return to these matters in Chapter 8.

+ The flagging restriction is also discussed in the next section. Itsintuitive significance
%6 further expounded in Chapter 7.
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ExamrLe 2 (Lewis CArroLL). No ducks are willing to waltz. No
officers are unwilling to waltz. Al my pouliry are ducks. Therefore,

none of my poultry are officers.

{1} 1) (x)(Dz —» -Wz) P

{2} @) WOy — Wy) P

{3} 8) (»(Pz — D2) P

{1} 4) Dz —» -Wz 1US
{2} (5) Oz — Wz 2U8
{3} (6) Pr —» Dz 3US
{7} (7) Pz zP

{3, 7} (8) Dz z6,7T
{1, 8, 7} 9) -Wz z24,8T
{1,237 (10) -0z 25 9T
{1, 2, 3} (11) Pz — ~Oz 7,10 C.P.
{1, 2, 3} (12) (z)(Pz — -O2) 11 U@

Notice that ‘2’ is first flagged in line (7) because it is free in ‘Pz’ and ‘Pz’
is a premise. It remains flagged in lines (8)—(10) because these three lines
depend on (7), as indicated by the numbers listed at the left. The condi-
tionalization resulting in line (11) ends the flagging of ‘z’ and permits uni-
versal generalization on (11). In working out derivations it is & mistake
to worry very much about the flagging restriction. Ordinarily one is only
inclined to universally generalize on a variable when it is both natural and
correct to do so. Hence the practical recommendation is: construet a deri-
vation without regard to flagging, at the end quickly inspect each line,
flag the appropriate variables and check that no flagged variable has been
universally generalized. In derivations involving manipulation of quanti-
fiers, almost any application of the rule of conditional proof involves rou-
tine flagging of at least one variable for a few lines.

The symbolization of the three premises of the above argument by use
of three different variables was done only for purposes of illustration,
showing how the term ‘2’ is substituted in all three by universal specifica-
tion. Ordinarily the natural thing to do is to use the same variable as
much as possible—thus here, to use ‘z’ in symbolizing all three premises.

An analysis of the general strategy used in Example 2 shows the same

four-step development as in Example 1.

Step 1. Symbolize premises: lines (1)—(8).

Stee II.  Drop quantifiers: lines (4)—(6).

Step II1. Apply sentential methods: lines (7)-(11).
Step IV. Add quantifier: line (12).

It should be obvious that under the restriction of this section (only uni-
versal quantifiers standing in front) the exercise of logical acumen is almost
wholly concentrated in Step III, application of sentential methods. The
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general importance of a firm mastery of tautological implications can
scarcely be emphasized too much.

A final example for this section will be useful for illustrating inferences
involving proper names.

ExampLE 3. No Episcopalian or Presbyterian ts a Unitarian. John
Quincy Adams was a Unitarian. Therefore, he was not an Episcopalian.

{1} 1) @)[(Ez v Px) —» -Uz] P

{2} 2) Ua P

{1} 3) (Ba v Pa) — -Ua 1 U8
{1, 2} (4) —(Ea v Pa) 2,3T
{1, 2} (5) ~Ea & —Pa 4T
{1, 2} (6) -Ea 5T

We derive line (3) from (1) by US, replacing ‘=’ by the proper name ‘a’,
where a = John Quincy Adams. Notice the application of De Morgan’s
Laws in obtaining (5) from (4).

EXERCISES

Construct (if possible) a derivation corresponding to the following arguments.
The variables used to indicate the number of places of the predicates are not
necessarily the variables you should use in symbolizing the premises. Only
universal quantifiers standing in front are required to symbolize all sentences.

1. All scientists are rationalists. No British philosophers are rationalists,
Therefore, no British philosophers are scientists. (Sz, Rz, Bz)

2. No existentialist likes any positivist. All members of the Vienna Circle are
positivists. Therefore, no existentialist likes any member of the Vienna Circle.
(Ez, Lzy, Pz, Mz)

3. If one man is the father of a second, then the second is not father of the first.
Therefore, no man is his own father. (Fzy)

4, For every z and y either « is at least as heavy as y or y is at least as heavy
as z. Therefore, x is at least as heavy as itself. (Hzxy)

5. Adams is a boy who does not own a car. Mary dates only boys who own
cars. Therefore, Mary does not date Adams. (Bz, Oz, Dzy, a, m)

6. Every member of the City Council lives within the city limits. Mr. Fairman
does not live within the city limits. Therefore, Mr. Fairman is not a member of
the City Council. (Mz, Lz, f)

7. Every member of the policy committee is either a Democrat or a Republican.
Every Democratic member of the policy committee lives in California. Every
Republican member of the policy committee is & member of the tax committee.
Therefore, every member of the policy committee who is not also on the tax com-
mittee lives in California. (Pz, Dz, Rz, Lz, Tx)

8. Anyone who works in the factory is either a union man or in a managerial
position. Adams is not a union man, and he is not in & managerial position. There-
fore, Adams does not work in the factory. (Wz, Uz, Mz, a)
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9. Ptah is an Egyptian god, and he is the father of all Egyptian gods. There-
fore, he is the father of himself. (p, Gz, Fxy)

10. Given: (i) for any numbers z, ¥, and 2, if z > y and y > 2z then z > 2; (ii) for
any number z, it is not the case that + > z. Therefore, for any two numbers z
and y, if > y then it is not the case that y > 2. (Nz,z > y)

11. In the theory of rational behavior, which has applications in economics,
ethics and psychology, the notion of an individual preferring one object or state
of affairs to another is of importance, We may say that an individual weakly pre-
fers z to y if he does not strictly prefer y to x. We use the notion of weak prefer-
ence for formal convenience, for if we use strict preferences, we also need a notion
of tndifference. The point of the present exercise is to ask you to show that on the
basis of two simple postulated properties of weak preference and the appropriate
definitions of strict preference and indifference in terms of weak preference, we may
logically infer all the expected properties of strict preference and indifference. Let
us use ‘Q’ for weak preference, ‘P’ for strict preference and ‘I’ for indifference.
Our two postulates or premises on the predicate ‘Q’ just say that it is transitive
and that of any two objects in the domain of objects under consideration, one is
weakly preferred to the other. In symbols:

) (@)W)(2)(2Qy & yQz — 2Q2),
)] @()(=Qy v yQx).
As additional premises we introduce the two obvious definitions:
3 @) W)(ly & 2Qy & yQu),
@ @)W)(zPy & —yQr).

Derive the following conclusions from these four premises:

(a) (z)(xIz)

(b) @)y)zly — ylz)

(c) (@)W)()aly &ylz — zl2)

(d) (@)(w)(xPy — —yPx)

(e) (®)(W)(2)(=Py & yPz — zPz)

() @) zly > —(zPy v yPz))

(8) (=)y)(2)(zly & yPz — zP2)

(b) @)@)e)zly & 2Pz — 2Py)

12. E. V. Huntington gave a list of axioms for the “informal” part of White-
head and Russell’s Principia Mathematica, which depends on three primitive sym-
bols, a one-place relation symbol ‘C’, a binary operation symbol ‘+’, and a unary
operation symbol ‘V.* The main intended interpretation of the theory is that the
variables take as values elementary propositions (or sentences if you wish); a propo-
sition has the property C if it is true, z 4 y i8 the disjunction of the two proposi-
tions z and y; z! is the negation of the proposition z.f (Thus this postulate set is
closely connected with the logic of sentential connectives considered in Chapter 1.)
The five axioms are:

Al @)W)C(z + y) = Cly + 2)]
A2. (x)(®IC(z) — C(z + y)]
A3. (2)IC(z") — —C(2)]
Ad. (0)[ClxY) — C(z)]
A5. (2)®)[C(z + y) & C(z) = CH)]
* Bulletin of the American Mathemaiical Society, Vol. 40 (1934) pp. 127-136. Our
formalization reduces the number of axioms from eight to five.
1 Here the symbol ‘4’ has no connection with ordinary arithmetic.
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Construct derivations to show that the following theorems are logical consequences
of the axioms. Since some of the theorems are useful in proving others, one long
derivation for all parts is recommended. (Later we develop rules for inserting pre-
viously proved results in new derivations.) If one long derivation is given, indicate
at the end which line of the derivation corresponds to each theorem. Make sure
that no theorem depends on more than the five given axioms as premises.

TreoreM 1.  (2)[-C(z) — C(z")]

TreoreM 2. (2)[C(z) — —C(z")]

Treorem 3. (2)@W)[-Clz +y) — —Cly + 2)]
TreoreM 4. (2))[C(z + ¥) &—C(z) - C¥)]
TerorEM 5. @)W[-C( + y) — ~C(z) & -C[¥)]
TrxoreM 6.  (z)(»)[-C(x) &~C(y) — —C(z + y)]
TeeoreM 7. (@)[C(zYH) & C()]

TeroreM 8.  (2)(®)[C(@) & C(z' +y) — CW)]
TreoreM 9.  (2)C((z + 2)! + 2)

TazoreM 10. (@)H)CH' + (z +v))

TagoreM 11. (@)®)C(z + »)' + (¥ + 2))
TezoreMm 12. (@)@ @)CIE' + '+ [+ '+ &+ *

§ 4.2 Interpretations and Validity. At the beginning of Chapter 2
the notion of interpretation of a sentence or set of sentences was intro-
duced, and the more special notion of a sentential interpretation was ex-
plicitly defined. It was also pointed out in that chapter how sentential
interpretations may be used to prove that a truth-functional argument is
invalid or that a set of premises is consistent. Before proceeding to the
rules of inference for existential quantifiers, we want to define the general
notion of interpretation and use it to obtain general definitions of validity,
invalidity, and consistency. This discussion is interjected here because it
will prove useful to have the notion of an interpretation at hand in dis-
cussing the rules governing existential quantifiers.

In giving a particular interpretation of a formula or sentence we fix on a
domain of individuals, such as the set of all men, or the set of positive in-
tegers. Thus, given the sentence ‘(z)(Hz — Maz)’, which occurs in Exam-
ple 1 of this chapter, an interpretation of it in the domain of positive inte-
gers, which is often called an arithmetical interpretation, is:

@@z>3 —>z>2).

Here the predicate ‘H’ is replaced by the predicate ‘>3’ (meaning ‘is

* The last four theorems correspond to four of the five axioms used by Whitehead
and Russell (Principic Mathematica, first edition) in presenting their axiomatized form
of sentential logic. (The fifth axiom was later derived from these four by P. Bernays.)
Translated into the logical notation of Chapter 1 and using the fact that -Pv Q is
tautologically equivalent to P — Q, these four theorems become

Axtiom1l. PVP — P

AxioMm 2. P> PV Q

Axiom 3. PVQ — QvVP

AxioMm4. (P — Q) - [RVP = RV Q]
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greater than three’) and the predicate ‘M’ by ‘>2’ (meaning ‘is greater
than two’). For a second example, consider the two postulates * for weak
preference given in the next to last exercise of the preceding section:

@) () (2)(2Qy & yQz — 2Q2)
(@) ¥)(xQy Vv yQ2).

A simple arithmetical interpretation of the conjunction of these two pos-
tulates is to interpret the predicate ‘Q’ as ‘>’. Notice that if we demand
a true arithmetical interpretation we may not interpret ‘Q’ as ‘>, i.e., we
may not interpret weak preference as greater than, for given any two num-
bers 1t is not always the case that

¢)) T>YVvy >z

Obviously (1) does not hold when z and y are the same number.

The two examples considered are not intended to foster the idea that
interpretations should always be arithmetical in character. Consider this
sentence about strict preference, where as in the exercise just referred to,
zPy if and only if z is strictly preferred to y:

2 (z)()(=Py — —yPz).

If we interpret ‘P’ as ‘is father of’ we obtain a true interpretation of (2)
for the domain of human beings:

() (y)(x is father of y — —(y is father of z)).

An example of an interpretation of a formula having free variables also
needs to be considered. The technique of interpretation of such variables
is simple: all free occurrences of such a variable are replaced by the name
of some individual in the domain of individuals with respect to which the
interpretation is made. Thus, again drawing upon the theory of prefer-
ence, congsider:

3) zPy — (2)(xlz — zPy),
which says:

If z is preferred to y, then for all objects z if z and 2 are indifferent
in preference (i.e., equal in value) then z also is preferred to y.

A true arithmetical interpretation of (3) is easily found: Interpret the free
variable ‘¢’ as ‘2’, ‘y’ as ‘1, ‘P’ a8 ‘>’, ‘I’ a8 ‘=’, and we obtain the arith-
metical truth:

4) 2>1 -5 @2=2z—-2>1).

* Throughout this book we use the words ‘axiom’ and ‘postulate’ as synonyms. The
vague distinction which is sometimes made between axioms and postulates in elementary
geometry is abandoned here.
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To simplify the definition of interpretation we shall exclude definite de-
scriptions like ‘the husband of 2’ or ‘the smallest prime number greater
than . We then have as terms, variables, proper names, and expressions
built up from variables and names by use of operation symbols, that is,
expressions like ‘2 4 8, ‘z + ¢’, ‘@ + 5. To complete our list of intuitive
examples of interpretations we need to indicate how proper names and
operation symbols are interpreted.

For proper names the answer is simple, they are handled just like free
variables: all occurrences of a proper name in a formula are replaced by
the name of some individual in the domain of individuals with respect to
which the interpretation is made. Consider, for instance, the formula:

) z is a city & z is larger than San Francisco.

An arithmetical interpretation of (5) is easily found. Interpret ‘is a city’
as ‘s a positive integer’, the free variable ‘2’ as ‘1’, ‘is larger than’ as ‘>’
and the proper name ‘San Francisco’ as ‘2’. We then have as an inter-
pretation of (5):

(6) 1 is a positive integer & 1 > 2.

Sentence (6) is, of course, a false interpretation. If we existentially quan-~
tify the free variable ‘¢’ in (5), we have:

) (3z)(z is a city & z is larger than San Francisco).
As a true interpretation of (7), we then have:
8) (3 z)(z is a positive integer & > 2).
But it is also easy to find a false interpretation of (7), namely:
)] (3 z)(z is a positive integer &z < 1).

In (9) ‘San Francisco’ is replaced by ‘1’ rather than ‘2’ in the interpretation
and ‘s larger than’ by ‘<’ rather than ‘>’.

Operation symbols are handled like predicates: we substitute in the
interpretation an operation symbol defined for the individuals in the do-
main of interpretation. The operation symbols which occur most fre-
quently in ordinary language are probably those for arithmetical addition
and multiplication. In this chapter, we shall scarcely consider operation
gymbols, but in order to make the definition of interpretation complete, we
mention them cursorily now. As one example of an interpretation, we may
interpret the symbol for addition as the symbol for multiplication. In this
case the domain of individuals is the same for the formula and the inter-
pretation given. Thus, as an interpretation of:

@We+y=y+2)
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we have:

@) @) (zy = yz).
As an interpretation of:

(Ay)z +y > 2)

(3y)2y > 2).

In this last case the free variable ‘@’ is assigned the individual constant ‘2’
in the interpretation.*

Without going into exact detail it should be clear that a one-place predi-
cate is interpreted by a one-place predicate, a binary operation symbol like
‘+’ by a binary operation symbol, and so forth. However, there is some
flexibility in classifying predicates as one-place, two-place, ete. For in-
stance, we might replace the predicate ‘is human’ by the arithmetical
predicate ‘is greater than one’, which in ordinary notation looks like a
two-place predicate, or we might even replace ‘is human’ by ‘(3y)(... s
greater than y)’. It is not necessary for our purposes exactly to characterize
what predicates may be replaced by what others in an interpretation, but
the basic idea is obvious: the predicate of the interpretation should have
exactly the same number of places to fill with free variables as the predicate
being interpreted. (Not that in the interpretation these places are filled
with free variables. It is in fact a characteristic of an interpretation that
it has no free variables and is thus either true or false.)

The above remarks and examples should make the general definition of
an interpretation easy to comprehend.

we have:

Sentence P is an interpretation of formula Q with respect to the domain
of individuals D if and only if P can be obtained from Q by substituting
predicales and operation symbols defined for the individuals in the domain
D for the predicates and operation symbols respectively of Q and by sub-
stituting proper names of individuals tn D for proper names (i.e., indi-
vidual constants) and free variables of Q.1

Using this notion of interpretation we may now define universal validity,
logical consequence or logical implication, and consistency.

A formula is universally valid if and only if every interpretation of it in
every non-empty domain of individuals 1s true.

The intuitive idea behind this definition is that universally valid formulas
should be true in every possible world. If their truth hinges upon con-

* In mathematical contexts, proper names like ‘1’ and ‘2’ are usually called individual
constants, and predicates are called relation symbols.

t A completely precise definition requires the set-theoretical notions developed in
Part II of this book. This definition is slightly extended in § 4.3 to take care of the
technical device used for handling existential quantifiers.
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tingent facts about the actual world, they are not genuinely universally
valid.

A formula Q logically follows from a formula P if and only if in every
non-empty domain of individuals every interpretation which makes P true
atso makes Q true.

An equivalent definition is simply:

Q logically follows from P if and only if the conditional P — Q is uni-
versally valid.

A second intuitive idea behind these definitions is that one formula logically
follows from another just by virtue of their respective logical forms. By
considering all interpretations of a formula we effectively abstract from
everything but its bare logical structure. It should be remarked that in
making this abstraction we deny the universal validity of certain sentences
of ordinary language which would seem to be true in every possible world.
A typical example is ‘All bachelors are unmarried’. The logical analysis
of such sentences is a subtle and complicated matter which we shall avoid
in this book. Fortunately the systematic deductive development of any
branch of mathematics or theoretical science can proceed without explicit
recourse to sentences whose truth follows simply from the meanings of the
predicates used.*
The definition of consistency is easily anticipated from Chapter 2.

A formula is consistent if and only if it has at least one true interpreta-
tion in some non-empty domain of individuals.

(In dealing with a set of premises, we may take their conjunction to obtain
a single formula.)

In the three definitions just given, only non-empty domains of individuals
have been considered. Probably the strongest single argument for this re-
striction is that we want to consider the inference from:

(x)Hz
to:
(dz)Hz

as logically valid. And correspondingly, we want to have the formula:
(x)Hz & -(Ax)Hz

inconsistent. If the empty domain is included, neither of these wants will
be satisfied.

* Almost the whole of Chapter 12 is relevant to this point: only a meager theory of
meaning is needed to apply the axiomatic method in a given branch of science.
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For explicitness, it is also desirable to define the notion of an invalid
argumendt.

An argument 13 tnvalid if and only if there is an inlerpretation tn some
non-empty domain which makes its premises true and its conclusion false.

We may apply this definition to show explicitly that the flagging restrie-
tion on universal generalization, which was introduced in the last section,
is necessary. Qur notation for derivations is such that a line of a deriva-
tion should logically follow from the set of premises corresponding to the
set of numbers on the left of the line. Now given the premise ‘Hz’, sup-
pose we could derive ‘(z)Hz’. It is a simple matter to find an arithmetical
interpretation for which ‘Hz’ is true and ‘(z)Hz’ is false. Interpret the
free variable ‘2’ as ‘1’ and ‘H’ as the arithmetical predicate ‘is less than 2.
Obviously 1 is less than 2, whence the premise is true in this interpretation,
but certainly it is false that every positive integer is less than 2, whence
the conclusion is false in this interpretation, and the argument is invalid.
(No confusion should result from the fact that in this example the ‘¢’ in
the premise is free, whereas both occurrences of ‘2’ in the conclusion are
bound.)

To find an interpretation which shows that an argument is logically in-
valid is the same thing as finding a counierezample to the argument. The
ability to construct appropriate counterexamples for invalid arguments is
nearly as important as the ability to construet logical derivations for valid
arguments.

In Chapter 2 we saw that there was a mechanical method (by use of
truth tables) for testing the truth-functional validity or invalidity of an
argument. Such a mechanical method is often called a decision procedure.
In one sense the existence of a decision procedure for truth-functional argu-
ments trivializes the subject. Fortunately or unfortunately, no such trivi-
alization of the logic of quantification is possible. It was rigorously proved
in 1936 by the contemporary American logician Alonzo Church that there
is no decision procedure, that is, no mechanical test, for the validity of
arbitrary formulas in first-order predicate logic.* Since all of mathematics
may be formalized within first-order predicate logic,t the existence of such
a decision procedure would have startling consequences: a machine could
be built to answer any mathematical problem or to decide on the validity
or invalidity of any mathematical argument. But Church’s theorem ruins
at a stroke all such daydreams of students of logic and mathematics. Not

* First-order predicate logic is the logic of the sentential connectives and quantifiers
for individual variables, that is, the logic of the formulas defined in Chapter 3. “First-
order” refers to the fact that no quantification of predicates is permitted.

t The standard developments of axiomatic set theory have as one of their aims to
establish this fact in substantive detail.



70 GENERAL THEORY OF INFERENCE

only is there no known decision procedure: his theorem establishes that
there never will be any.*

On the other hand, it ¢an be shown that the rules of inference given in
this chapter together with those in Chapter 2 are complefe, meaning that
if Q logically follows from P then Q is derivable from P by means of our
rules of inference. The first completeness proof for a set of rules of infer-
ence for first-order predicate logic was given by Kurt Godel in 1930.

Although our basic logic is complete, most mathematical theories of any
complexity are not complete, in the sense that it is not possible to give &
list of axioms or postulates of the theory from which all other true asser-
tions of the theory may be derived. In particular, it was shown in 1931
by Gaodel that the elementary theory of positive integers, and a fortiori
any theory including elementary number theory, is incomplete in the sense
just stated. Godel’s theorem on the incompleteness of elementary number
theory is probably the most important theorem in the literature of modern
logic.

The last three paragraphs have attempted to indicate in a rough way
the kind of important notions and results which cluster around the concept
of logical validity. But these paragraphs are superficial and constitute a
digression from our main enterprise.}

Before returning to our rules of inference, one further useful application
of the method of interpretation should be mentioned, namely, its use to
show that one formula is logically independent of a set of other formulas.
The application is easy: by use of an interpretation it is shown that the
given formula is not a logical consequence of the given set of formulas.
The most common application of this method is to the problem of showing
that a set of axioms for some theory are mutually independent. The tech-
nique is to give for each axiom an interpretation such that the given axiom
is false in this interpretation and the remaining axioms are true in the
interpretation. If the given axiom could then be derived from the remain-
ing, a violation of our basic definition of logical consequence would result.

To illustrate this method of proving independence of axioms, we may
again consider the two axioms for weak preference:

L (@)®)(2)(=Qy & yQz — 2Q7)
. (2))(Qy v yQx).

* Decision procedures do exist for various special domains of mathematies. Probably
the most important positive result is Alfred Tarski’s decision procedure for the elemen-
tary algebra of real numbers, first published in 1948. Given any sentence about real
numbers built up from individual variables or individual constants denoting particular
real numbers, the relation ‘<’, the operation symbols of addition and multiplication,
the equality sign, the sentential connectives and quantifiers, Tarski provides a mechan-
ical test for deciding on the truth or falsity of the sentence. .

t Details concerning all of these theorems are to be found in 8. C. Kleene’s compre-
hensive treatise Inéroduction to Metamathematics, New York, 1952.



INTERPRETATIONS AND VALIDITY 71

Axiom I is proved independent by the following arithmetical interpretation:
zQy ifandonlyif z<y+ 1
For any two positive integers z and y, it is true that
z<y+1l or y<z+1,

and thus Axiom II is true in this interpretation; but Axiom I does not hold
for all integers z, y, and z, for although

3<2+1,

2<1+1,
it is false that
3<1+1.

That is, if in this interpretation of Axiom I we apply universal specifica-
tion, putting ‘3’ for ‘o’, 2’ for ‘y’, and ‘1’ for ‘', we obtain a false sentence.
The arithmetical interpretation which establishes the independence of
Axiom II has already been mentioned: interpret the predicate ‘Q’ as ‘is
greater than’.

Because the method of interpretation provides the only general method
of proving arguments invalid, premises consistent, or postulates independ-
ent, & list of explicit rules for giving interpretations will be useful. No
ideas not already mentioned are put forth in these rules; their aim is to
call attention to the most common mistakes in applying the method of
interpretation.

The first rule merely suggests a standard format to use in applieations.

Ruie 1. In applying the method of interpretation always clearly:
(i) state what set of objects is the domain of interpretation;
(i) state in the form of equivalences or tdentities the inlerpretation of
predicates, proper names, operation symbols, and free variables;
(iii) write down the interpretation of each original sentence and stale if
the tnterpretation of the sentence ts true or false.

Thus consider the argument:

Some men are liars.
Adams is a man.
Therefore, Adams is a liar.

‘We may symbolize this:
(Az)(Mz & Lz)
Ma

La
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We show this argument is invalid by giving the following interpretation.

(i) Domain of interpretation = set of positive integers.
(ii) Interpretation of predicates and proper name:

Mz < z is a positive integer
Lz < z is an even integer
=1

(iii) Interpretation of original sentences:

T (1) (32)(z is a positive integer &  is an even integer)
T (2) 1 is a positive integer
F (3) Therefore, 1 is an even integer.

From the most familiar facts of arithmetic we see at once that (1) and (2)
are true while (3) is false, which establishes that the argument is invalid.

RuLe 1. Bound variables of the original sentence must remain untouched
in the interpretation of the sentence. In particular, all quantifiers are
unchanged.

To illustrate violation of this rule consider the argument:

There are liars.
Therefore, there are thieves.
We symbeolize this:
(Jz)(Lx)
(32)(Tx)
We use the following interpretation to establish the obvious invalidity of
this argument.

(i) Domain of interpretation = {1, 3}.
(ii) Interpretation of predicates:

Lrtoz=1
Ty o z=2

(iii) Interpretation of original sentences:
T (1) (3z)=z=1)

F @ @d@=2

Clearly, for the domain {1, 3} sentence (1) is true and (2) is false. Per-
haps because the domain is a finite set many students initially try to offer
something like:

1)1e=1
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as an interpretation of (1), for instance. But (1’) flatly violates Rule II
for (1) does not contain an existential quantifier using the variable ‘z’ as
the original sentence does. It would also be a mistake to offer as an inter-

pretation:
1ez=1

@) z=2

Here the quantifiers are incorrectly omitted. Furthermore, it has already
been noted that an interpretation should contain no free variables since it
must be a sentence which is either true or false. This last point may be
stated as the next rule.

Ruie III. An interpretation of a sentence or formula must contain no
free variables.

The second and third rules have as a consequence that it is improper to
universally or existentially specify in giving an interpretation. Specifica-
tion should never be confused with interpretation. However, in establish-
ing the falsity of an interpreted sentence having a universal quantifier,
application of universal specification may be useful, and in establishing the
truth of an interpreted sentence having an existential quantifier the most
direct method may be to exhibit an object (in the domain of interpreta-
tion) which satisfies the existentially quantified formula. Thus to show
that sentence (1) above (i.e., ‘(3z)(x = 1)’) is true, it is sufficient to find
one object in the domain satisfying the formula ‘ = 1’. We may indicate
this selection by a formula like (1’). Correspondingly, suppose that we
have as the interpretation of the conclusion of an invalid argument the
sentence:

3) @z>1—>z>3)

where the domain of interpretation is the set of positive integers. In order
for (3) to be true it must hold for any specified instance of a positive inte-
ger, whence to show it is false we need exhibit only one positive integer
for which it does not hold. In this case we take x = 2, that is, we specify
2’ for ‘z’ and obtain the false sentence:

(€] 2>1-2>3.

It needs to be emphasized again in the case of both (1”) and (4) that they
are not interpretations, but are merely auxiliary sentences for establishing
the truth or falsity, as the case may be, of the interpretations (1) and (3)
respectively.
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The fourth and fifth rules are concerned with the kind of predicates
which may be used as interpretations of a given predicate.

Rure IV. An interpretation of a predicate must use the same number
of distinct variables as the original predicate.

Suppose, for instance, that we wanted to show the following premises are

consistent:
(32)(y) (=Qy)
(@) () (zQy — yQx)
(@) () () (xQy & yQz — zQz).

In order to show that these three premises are consistent, we need to find
an interpretation for which they are all true. (Although these premises
use the predicate ‘Q’ of weak preference we analyze their consistency inde-
pendent of the two axioms for preference previously given.) An interpreta-
tion with a single element in its domain is appropriate here.

(i) Domain of interpretation = {1}.
(ii) Interpretation of predicate:

Qy <> z=y.
(iii) Interpretation of original sentences:
T (1) (32)@)(==1v)

T @ @OWE=y—>y=2
T @ @WEe=y&y=2—z=2).

For the domain {1} the only universal specification instances of (2) and
(3) are, respectively:

@ =1=>1=1
%) l=1&1=1>1=1

which are obviously true. In the case of (1) we must take z = 1, and
obtain:

@) QA =y),

which is true for the only possible specification of ‘4’. (We note once again
‘that (2"), (3') and (4’) are not themselves interpretations of the given
premises.)

It would have been a violation of Rule IV to take as an interpretation
of ‘Q':

(5) Qy < z =z,

for the formula ‘z = 2’ only uses one variable, whereas ‘zQy’ uses two.
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Naturally the interpretation of the premises obtained from (5) would be
such that the resulting three interpretations would all be true, but the form
of the interpretations would be incorrect.*

RurLe V. An interpretation of & predicate is the same tn all occurrences
regardless of what variables are used with the predicate.

Thus, given the premise:
(Az)(Hz & (y)(Hy — Lay))
it would be a mistake to interpret:

Hro z>1
Hy & y>3.

By violating Rule V it is easy to give a spurious demonstration that a valid
argument is invalid. For instance, consider the valid argument:

(Azx)Fz

(Iy)Fy
Let the set of positive integers be the domain and interpret (incorrectly): t

Fx o> z=1
Fy o y#=y.

Since the sentence ‘(3 z)(x = 1)’ is true and the sentence ‘(I y)(y # y)’
is false we would wrongly conclude on the basis of this mistaken interpreta-
tion that the argument is invalid.

Furthermore, in giving an interpretation of a predicate, we do not have
to write down equivalences for all the different variables which occur with
this predicate. One instance is sufficient to indicate the interpretation of
the predicate; appropriate substitution of variables is then made in inter-
preting the given formulas. Thus in showing that the three premises fol-
lowing Rule IV are consistent we gave as the single interpretation of ‘Q’:

Qy &z =1,

* Actually Rule IV may be weakened to: An interpretation of a predicate must use
no more distinet variables than does the original predicate (see related discussion for
definitions, p. 157). On the other hand, when the interpretation of a predicate uses
bound variables, as for instance: zQy < (32)(z > z &z > ), then Rule IV must be
modified to say that an interpretation of a predicate must use no more distinct free vari-
ables than does the original predicate. Furthermore, a restriction on the bound variables
of the interpretation must be adhered to—namely, a quantifier of the interpretation must
not capture variables in the original formula. However, none of the applications con-
sidered in the sequel require bound variables in the interpretation of a predicate.

+ The predicate ‘7’ is read ‘not identical with’. We could symbolize ‘y # y’ by
~(y =y).
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and then in interpreting premises (2) and (3) as (2’) and (3’) respectively
we made the obvious changes of variables called for; that is, we replaced

(nyf by ly = z!

‘szl by ly . z’

‘2Qz by ‘z = 2.
RuLe VI. The interpretation of proper names and free variables must
designate objects in the domain of interpretation.

Consider, for example, three possible postulates of preference where ‘a’ is
the name used for some object, say, an original first edition of Kant’s
Critique of Pure Reason:

(1) (37)(xPa)
(2) (2)(y)(zPy — —(yPz))
3) (z) () (2)(zPy & yPz — zPz).

We want to show by the method of interpretation that Postulate (1) is in-
dependent of the other two postulates. As has been previously explained,
to establish such independence amounts to the same thing as showing that
(1) is not a logical consequence of (2) and (3). Consequently we want to
find an interpretation for which (1) is false, and (2) and (3) are true. Sup-
pose we take as the domain of interpretation the set of positive integers.
Then it is a violation of Rule VI to interpret ‘a’ as some object, say, —2,
which is not in this domain. A correct interpretation is the following:

(i) Domain of interpretation = set of positive integers
(ii) Interpretation of predicate and proper name:

2Py oz <y
a=1
(iii) Interpretation of postulates:

F (1) (3x)x <))
T @) @y)E=<y— -y <2)
T @) @WERE<y&y<z—z<2).

Since the interpretation of ‘a’ as ‘—2’ also yields a false interpretation of
(1) for this domain:
1" ()= < -2),

it might be thought that the restriction expressed by Rule VI is really not
necessary. However, violation of it can lead to a fallacious demonstration
that a valid argument is invalid, or that a dependent postulate is inde-
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pendent. For example, consider the two postulates:
Fa
(x)Fz.

It is clear that the first can immediately be derived from the second by uni-
versal specification. However, if we take as our domain of interpretation
the set of positive integers, interpret ‘F’ by:

Frez2>1

and interpret ‘¢’ as ‘—3’, then we obtain the fallacious result that the first
postulate is independent of the second, since ‘—3 > 1’ is false whereas
‘(z)(z > 1)’ is true for the domain selected.

Closely connected with Rule VI is a corresponding rule for operation
symbols, which will mainly be of use in subsequent chapters.

RuLe VIL. The interpretation of operation symbols must be such that
the interpretation of any term using the operation symbol refers to an ele-
ment in the domain of interprelation.

Thus, given the sentence:
@WE+y=y+2)

it would be a mistake to fix upon the set {1} as the domain of interpreta-
tion and to interpret the operation symbol ‘+’ as arithmetical addition,
for then the term ‘1 + 1’ designates an object not in the domain of inter-
pretation. A technical way of describing the requirement laid down by
Rule VII is that the interpretation of an operation symbol must have the
closure property with respect to the domain of interpretation.

For a second example, suppose we are given the following two postulates
on a binary operation symbol ‘0’:

1 (@) (y)(zoy =yox)
2) (A)@)yoz =1y),

and we want to prove that the first postulate is independent of the second.
A common error in connection with an example of this sort is to take as a
domain of interpretation the set {1, 2} and interpret the operation symbol
as division:

3) zoy = z/y.
Then (2) seems true since we may take = 1 and for any number y

y/1 = y.
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And (1) seems false since universally specifying ‘1’ for ‘z’ and ‘2’ for ‘y’ we

obtain the obvious falsehood:
9

i=1
However, the specification made in (1) shows that the domain {1, 2} and
the interpretation (3) together violate Rule VII, for the number 1/2 is not
in the set {1, 2}. To indicate why the restriction imposed by Rule VII is
not capricious, but essential, we need to anticipate some of the ideas ex-
pounded at the beginning of the next chapter. There we take as a truth
of logic depending on no premises the identity t = t where t is any term.
Thus in the present context if we admit ‘1/2’ a8 a term, then the sentence:

@ 31=13%
is true, but from (4) we may immediately derive the sentence:
(32)(3 = 2)

which is obviously false when {1, 2} is the domain of interpretation.

In connection with a number of exercises in subsequent sections it may
be useful to exhibit two different interpretations, one with a finite domain
and one with an infinite domain of interpretation, which will prove (1)
independent of (2). If we fix upon division as our interpretation of the
operation symbol ‘0’, we need an infinite domain: the set of positive rational
numbers. (A positive rational number is a number which is the ratio of
two positive integers.) For this domain and interpretation of ‘o’ Rule VII
is satisfied; moreover, the resulting interpretation of (1) is false and that
of (2) is true. As a second interpretation, let the domain of interpretation
be the set {1, 2}, and interpret ‘o’ by the means of the identity:

(6)) zoy = .

When the domain is finite, an interpretation like (5) is sometimes given by
means of a table or mairiz rather than by an identity. Thus we could re-
place (5) by the matrix:

o|ll 2
1({1 1
212 2

This table or matrix is used in the following manner. To find what element
102 is, say, we look at the entry occurring in the first row and second

column and find:
1lo02=1.

We note, on the other hand, that
201 =2
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Thus under this interpretation Postulate (1) is false, since the specification
of 1’ for ‘2’ and ‘2’ for ‘y’ yields the absurdity that 1 = 2. Yet Postulate
(2) is, as desired, true in this interpretation as may be seen by taking
z = 1, since the sentence:

ol =y
is true here.
In concluding this section we may summarize again the three most im-
portant applications of the method of interpretation:

Prove arguments invalid
Prove premises consistent
Prove axioms independent.

EXERCISES

1. Give arithmetical interpretations to prove that the following formulas are
not universally valid.

(8) (x)(Hx & Ax — Mzx)
() (3x)Hz

(¢) (Az)(Hz v -Az)

(d) (z)(Hz & -Mz)

2. Give interpretations (arithmetical or other) to prove that the following argu-
ments are invalid. (Notice that all conclusions are true but not valid.)

(a) All men are animals. All men are mortal. Therefore, all animals are
mortal. (Az, Hx, Mx) .

{b) New York is north of Washington. Boston is north of New York. There-
fore, Boston is north of Washington. (Nzy, n, w, b)

(c¢) Some sailors are ignorant. Some Americans are ignorant, Therefore,
some sailors are American. (Az, Iz, Sz)

(d) All men are animals. Some animals are short-lived. Therefore, some
men are short-lived. (Sz)

3. Give interpretations to prove that the following sets of premises are con-
sistent. The first three examples deal with the theory of preference, but are inde-
pendent of previous assumptions about preference and indifference.*

(8) (32)(y)(=Qy)
(@) A2)(2Qz & 2Qy)
(b) ()(y)zPy — ~yPx)
(z)(y)=ly)
(¢} (x)(3y)(yPx)
(z)(y)(xPy — —yPx)
(z)W)(2)(xPy & yPz — zP2)
(d) All unicorns are animals. No unicorns are animals. (Uz)

* The order properties dealt with in these exercises on the theory of preference are of
importance in many domains of science. There is an extensive discussion of ordering
relations in Chapter 10.
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4. Prove by the method of interpretation that the postulates are mutually inde-
pendent in each of the following. Hint: in using arithmetical interpretations it is
often convenient to restrict the domain of individuals to some finite set of integers
like the first two or first ten. The examples are again drawn from the theory of
preference.

(8) @(y)xPy — —yPz)
(2)(y)(2)(zPy & yPz — xPz)
(b) @)W)(e)zly & ylz — zl2)
(£)y)2)(xzPy & yPz — zP2)
(©) (x)(3y)(zPy)
(®)(W)(2)(zPy & yPz — xzPz)
@) @))=xly — ylz)
(@)y)(zPy — —(zly v yPx))

5. Give interpretations to prove that the following sets of postulates dealing with
a binary operation symbol ‘o’ are consistent. Be careful not to violate Rule VII.

(8) @y)(roy =youz)
(I2))(zoy =2)

®) @)(Iy)(zoy =1)
(@)(3z2)(xo0z = 0)
@(3w)zol = w)

(¢) (Iz)(Iy(zoy #~ youx)
(@)(3y)(xoy = 0)
(z)(3z)(z0z = 0)

§ 4.3 Restricted Inferences with Existential Quantifiers.* In con-
sidering how to formulate the rules of inference governing existential quan-
tifiers, probably the most natural idea is to proceed as we did for universal
quantifiers and introduce a rule of exristential specification permitting us
simply to drop an existential quantifier. Thus from:

1) (32)Hz
we would infer:
@) Hz.

However, a little reflection shows that this rule, if used without restriction,
will produce invalid inferences. For example, if we interpret ‘H’ as ‘greater
than 1’ and substitute the name ‘1’ for the free variable ‘¢’ in (2), in this
arithmetical interpretation from the truth that there is a number greater
than 1, we infer the false sentence that 1 is greater than 1. Moreover, if
we universally generalize on (2), we are able to infer ‘(z)Hz’ from ‘(3 z)Hz’,
which is clearly invalid.

* The restriction imposed in this section is that existentially quantified formulas must
contain just one individual variable.
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Several methods for avoiding such invalid inferences have been devel-
oped.* The technical device used here, although apparently new in the
literature of first-order predicate logic, is close to an approach that is used
continuously in intuitive proofs in mathematics. The device is to replace
an existential quantifier by a “temporary” constant; that is, some symbol
is introduced as a name for the purposes immediately at hand. The justi-
fication is that the existential quantifier guarantees that some individual
can be taken to be represented by the new individual constant. For exam-
ple, suppose we want to derive ‘There is a mortal’, i.e., ‘{(z)Mz’ from
the premises ‘(z)(Hr — Mz)’ and ‘(3z)Hz’. We might proceed as fol-
lows:

{1} 1) (z)(Hx —» Mzx) P
{2} 2) (3z)Hz P
{2} (3) Hiohn Doe Ambiguous name

from (2) by exist-
ential specifica-

tion
{1 (4) Hjyohn Doe — Miohnpoe 1 US
{1; 2} (5) MJohn Doe 3; 4T
{1, 2} 6) (z)M=x Eliminate ambigu-

ous name from
(5) by existential
generalization

The use of the ambiguous name ‘John Doe’ in the above derivation per-
mits us to eliminate the existential quantifier and apply sentential methods
in the standard way. The ambiguous name ‘John Doe’ is appropriate in
arguments concerning human beings. In mathematical contexts, an am-
biguous name is often introduced by adding a star to a variable: thus,
‘2% or z*. Naturally we have no definite individual in mind when we
use ‘John Doe’, and it may properly be claimed that ‘John Doe’ is not a
genuine proper name; that is why we use the terminology ‘ambiguous
name’. The existential premise ‘(3 x)Hz’ guarantees there is some individ-
ual to whom we may attach the name ‘John Doe’.

To fix on a uniform practice regarding ambiguous names, we use lower
case Greek letters for this purpose:

@, B, v. 8, au, B1, 71, 01, - ..
As the rough derivation above indicates, we have two rules governing

* See, for example. W. V. Quine, Methods of Logic, New York, 1950; and I. Copi,
Symbolic Logic, New York, 1954. In this connection it should be noted that the notion
of flagging in Quine's system is quite different from that developed here in the first sec-
tion of this chapter
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existential quantifiers and ambiguous names:

ExisTENTIAL SPECIFICATION (ES). The assertion that there is some-
thing satisfying a given condition implies the assertion that this given
condition is satisfied by some namable individual.

Ex1STENTIAL GENERALIZATION (EG). The assertion that a condition is
satisfied by a named individual implies the assertion that this condition
18 satisfied by some individual.

Using a Greek letter for an ambiguous name and introducing the abbrevi-
ations ES and EG, we may rewrite the above derivation:

ExaMpLE 4.
{1} 1) (@)(Hzx — Mz) P
{2} 2) (3z)Hx P
{2} (3) Ha 2 ES
{1} 4) Hx » Ma 1US
{1, 2} 5) Ma 3,4T
{1, 2} 6) (Ax)M=z 5 EG

Before formally stating the rules of existential specification and generali-
zation, it should be pointed out why a certain restriction has to be imposed.
Given the true premises ‘(3 z)Hz' and ‘(3 z)~-Hz’, we may derive the false
conclusion ‘(3z)(Hr & -Hz)’ if the use of ambiguous names is not re-
stricted:

{1} (1) (Ax)Hz P

{2} (2) (3x)-Hz P

{1} (8) Ha 1ES

{2} 4) -Ha 2 ES (fallaciously)
{1, 2} (5) Ha &-Ha 3,4T

{1, 2} 6) (3z)(Hz &~Hz) b5 EQ

The difficulty arises from the fact that ambiguous names, like all names,
cannot be used indiscriminately. The person who calls a loved one by the
name of a former loved one is quickly made aware of this. Having in line
(8) chosen ‘e’ as the name of some human being postulated in line (1), we
cannot in line (4) also use ‘@’ as the name of something which is not human
as postulated in line (2). Such a happy-go-lucky naming process is bound
to lead to error, just as we could infer a false conclusion from true facts
about two individuals named ‘Fred Smith’ if we did not somehow devise a
notational device for distinguishing which Fred Smith was being referred
to in any given statement. The restriction which we impose to stop such
invalid arguments is to require that when we introduce by existential
specification an ambiguous name in a derivation, that name has not pre-
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viously been used in the derivation. This is the simplest, though not the
weakest, restriction we could state. It does require immediate application
of existential specification before universal specification. Thus in Example
4 above it is necessary for line (3) to precede line (4). If line (4) had been
first, ‘@’ would have been already introduced and it could not then be
brought in by existential specification.

The formal statement of the two rules is:

RULE oF EXISTENTIAL SPECIFICATION: ES. If a formula S results from
a formula R by substituting for every free occurrence of a variable v in R
an ambiguous name which has not previously been used in the derivation,
then S is derivable from (I v)R.

RuLe oF EXISTENTIAL GENERALIZATION: EG. If a formula S results
from a formula R by substituting a variable v for every occurrence in R of
some ambiguous (or proper) name, then (3 v)S is derivable from R,

Another example of applying these two rules is given by the following
syllogism.

ExamrLE 5. All mammals are animals. Some mammals are two-legged.
Therefore, some animals are two-legged.

{1} 1) (@)(Mz — Azx) P

{2} @) (Az)(Mz & Tx) P

{2} B) Ma & Ta 2 ES

{1} 4 Ma — Aa 1US

{1, 2} ) Aa & Ta 3,4T
{1, 2} 6) (Ax)(Az & T2z) 5 EG

Following up the remarks just made, notice that it is necessary to have
line (3) before line (4). If line (4) had been written down first, then ac-
cording to ES some other ambiguous name would be needed for line (3).
The appropriate strategy is: whenever possible, drop existential quantifiers
before universal quantifiers.

The next example illustrates how quantifiers inside a formula are handled.

ExampLE 6. Al of Aristotle’s followers like all of Aquinas’ followers.
None of Aristotle’s followers like any philosophical idealist. Moreover,
Aristotle does have followers. Therefore, none of Aquinas’ followers are
philosophical idealists.

{1} (1) @4z = )@y — Lay)) P
{2} @) @Az - @Iz - -Lzz)) P
{3} @) (32)(4z) P
13} 4) Aa 3ES

{1} (6) de — ) (Qy — Leay) 1US
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{2} 6) Aa — (®(Iz —» ~Laz) 2US
{1, 2} () )@Qy — Lay) 4,5T
{2, 3} (8) @)z — -Laz) 4,6T
{1, 8} 9) @y — Lay 7US
{2, 3} (10) Iy — -Lay 8 US
{1, 2,3} (11) Qy — Iy 9,10 T
{1,2,3} (12) @)@y — -Iy) 11 UG

Line (2) is deliberately written using ‘2’ instead of ‘y’ in order to provide
another illustration of how US is used to change variables. The most im-
portant remark to be made in connection with this last example is: a
quantifier may only be dropped when it stands at the beginning of a for-
mula and its scope is the whole formula. It is a major error to apply either
U8 or ES when this condition is not satisfied. Thus in Example 6 it would
have been a mistake to apply US to line (5) in order to drop the quantifier
‘(y)’, for this quantifier does not stand at the beginning of the formula.
A similar mistake would have been made by applying US to line (6) to
eliminate the quantifier ‘(z)’. In the context of the present example such
an application of US would not have yielded a false conclusion, but in
other contexts it would, which is why it must be avoided.*

It needs to be remarked that although the rule of existential generaliza-
tion is primarily used to eliminate ambiguous names in favor of existential
quantifiers, it is occasionally necessary to be able to apply an existential
quantifier to a free variable. The intuitive justification of this latter ap-
plication is that an assertion about an arbitrary thing implies an assertion
about some thing. Formally, such an application of EG is justified if we
consider an ambiguous name which does not occur at all in the formula in
question. For example, ‘(3 z)Fz’ is derivable from ‘Fz’ by EG. We sub-
stitute ‘z’ for every occurrence of ‘o’, say, in ‘Fz’. Since there are no occur-
rences of ‘e’ in ‘Fz’, the substitution just results in what we started with.
Some applications of this gambit are given in the section on theorems of
logic in Chapter 5.

If we interpret ambiguous names in the same way that we interpret
proper names and free variables, then not every line of a derivation is a
logical consequence of the conjunction of the premises on which it de-
pends. For example, from the premise ‘(3 z)Fz’ we derive by existential
specification ‘Fo’, but obviously if ‘e’ is interpreted just like a proper
name then ‘Fa’ is not a logical consequence of ‘(3x)Fz’. Yet this inter-
pretation is the most natural one, and the simplest procedure is to weaken
the requirement that every line of a derivation be a logical consequence of
the premises on which it depends. What we may prove is that if a formula
in a derivation contains no ambiguous names and neither do its premises,

* See Exercises 6 and 7 of § 4.6.



RESTRICTED INFERENCES WITH EXISTENTIAL QUANTIFIERS 85

then it is a logical consequence of its premises. And this state of affairs is
in fact intuitively satisfactory, for in a valid argument of use in any dis-
cipline we begin with premises and end with a conclusion which contains
no ambiguous names. The point of ambiguous names is to provide a
smooth-running method for inferring conclusions, and the real test of their
adequacy is the soundness of the conclusion derived, not the status of the
intermediate lines.

Moreover, the logical status of the relation between premises and con-
clusion, at least one of which contains an ambiguous name, may be char-
acterized in a rather simple way, in terms of what we shall call the unam-
biguous closure of a formula. The idea is to eliminate ambiguous names
by existential quantifiers but only in a certain order in relation to universal
quantifiers as determined by the subscripts on the ambiguous names.* For
example, the unambiguous closure, or for brevity the U-closure, of ‘Hax’
is ‘(3y)(z)Hyz'. The U-closure of ‘Ha,z’ is ‘(Ay)Hyz'. Roughly speak-
ing, the U-closure of a formula $ is the formula obtained from $ in accord-
ance with the following prescription: if $ has no ambiguous names it is its
own U-closure; if S has at least one ambiguous name, first universally
quantify all free variables of S which do not appear as subscripts, then re-
place the ambiguous name with the most subscripts by an appropriate
existentially quantified variable (if there are two or more ambiguous names
with the maximum number of subscripts, replace the one which has the
earliest occurrence in S); repeat this procedure until all ambiguous names
have been eliminated.t

The following result may then be established concerning the logical re-
lation between premises and derived conclusion: the U-closure of the im-
plication whose antecedent is the conjunction of the premises and whose
consequent is the conclusion is universally valid. Put another way, every
line of a derivation is a consequence in the following sense of the premises
corresponding to the set of numbers on the left: the U-closure of the im-
plication consisting of the conjunction of the premises as antecedent and
given line as consequent is universally valid, and thus true in every inter-
pretation in a non-empty domain of individuals.

* The intuitive interpretation of subscripts, which are used to indicate dependency
relationships, is explained at the beginning of ¥ 4.5 on p. 89.

t Appropriate conventions on alphabetical ordering of variables are easily given in
order to make the U-closure of a formula unique.
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EXERCISES

Construct (if possible) a derivation corresponding to the following arguments.
If a conclusion does not follow, give an arithmetical interpretation which will
prove that it does not.

1. Some foolish people drink whiskey. Some students do not drink whiskey.
Therefore, some students are not foolish. (Fz, Wz, Sz)

2. All boxers are strong. Some policemen are strong. Therefore, some police-
men are boxers. (Bz, Sz, Pz)

3. Some scientific subjects are not interesting, but all scientific subjects are
edifying. Therefore, some edifying things are not interesting. (Sz, Iz, Ex)

4. No intelligent person who drinks to excess also eats to excess. Some prudent
persons eat to excess. Therefore, some prudent persons are not intelligent. (Iz,
Dz, Ezx, Px)

5. No red-haired women use hair tonic, but some red-haired women use per-
fume. Therefore, some women use perfume and not hair tonic. (Rz, Wz, Hx, Px)

6. Some soldiers are heroes. Some soldiers are not brave. Therefore, some
heroes are not brave. (Sz, Hz, Bz)

7. No nominee lives in California. Some people who live in California are eli-
gible candidates. Therefore, some eligible candidates are not nominees. (Nz, Lz, Cx)

8. Every member of the policy committee is a Republican. Some members of
the tax committee are not Republicans. Therefore, some members of the tax
committee are not members of the policy committee. (Pz, Rz, Tx)

9. Some members of the tax committee are on the policy committee. Some
members of the policy committee are Democrats. Therefore, some members of the
tax committee are Democrats. (Tz, Pz, Dz)

10. Every member of the policy committee is either a Democrat or a Repub-
lican. Some members of the policy committee are wealthy. Adams is not a Demo-
crat, but he is wealthy. Therefore, if Adams is a member of the policy committee,
he is a Republican. (Pz, Dz, Rz, Wz, a)

11. If anyone likes Aquinas, then he does not like Kant. Everyone either likes
Kant or likes Russell. Someone does not like Russell. Therefore, someone does
not like Aquinas. (Az, Kz, Rx)

12. All Texans speak to anyone whom they know intimately. No Texan speaks
to anyone who is not a Southerner, Therefore, Texans know only Southerners
intimately. (T'z, Sxy, Kzy, Uz)

13. Anyone who is guilty of larceny is not guilty of obtaining by false pretenses,
Each prisoner in the line-up is guilty of either larceny or obtaining by false pre-
tenses. Some prisoners in the line-up are guilty of obtaining by false pretenses.
Therefore, some prisoners in the line-up are not guilty of larceny. (Lz, Oz, Pz)

14. Some persons who buy goods in good faith get a good title. No person who
buys goods for a trifling sum gets a good title. Therefore, no person who buys
goods for a trifling sum is a person who buys goods in good faith. (Bz, Txz, Sz)

15. In the psychology of perception and in epistemology as well, a relation be-
tween objects of being alike in color is often discussed. Thus two shades of red
are alike; however, as ordinarily conceived, this relation of being alike is not transi-
tive, that is, color a is like b, b is like ¢, but a is not like ¢. 8o the problem naturally
arises of defining a transitive relation of being exactly alike between colors. Let ‘L’
be the predicate standing for the first relation of being alike, and let ‘E’ be the
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predicate ‘is exactly alike’.  We then introduce the definition:
(@))(zBy <> (2)(zLz <> yLz) & zLy & yLz).

Using this definition as a single premise, prove that ‘E’ is symmetric and transitive,
that is, prove:

() (@)y)zEy — yEx)
(b) (@)(y)(2)(zEy & yEz — zEz2).*

16. With reference to the preceding exercise, give an interpretation of ‘L’ and
‘E’ to prove that the sentence (z)(zEz)’ is not a logical consequence of the equiva-
lence defining ‘E’ in terms of ‘L’.

§ 4.4 Interchange of Quantifiers. From considerations of ordinary
usage it is clear that the sentence:

4] Every mathematician admires Archimedes
is equivalent to:

2) It is not the case that there is a mathematician who does not
admire Archimedes.

Yet (1) uses a universal quantifier and (2) uses an existential quantifier,
Symbolization of (1) yields:

@ (x)(Mz — Az),
and symbolization of (2) yields:
4) —~(3z)(Mz & -Axz).

Moreover, since ‘Mz & -Az’ is tautologically equivalent to ~(Mz — Az)’,
(4) is equivalent to:

® -(3zx)~(Mz — Az).
The close relation between (3) and (5) suggests the rule:

Ql. If v is any variable and if formula S resulis from R by replacing at
least one occurrence of the universal quantifier (v) by —(3v)—, then S s
derivable from R, and conversely.

In the above example, v is, of course, the variable ‘z’. Using the methods
of § 5.3 below, we may derive Rule Q1 from the previous rules given, but
for our present purposes we may accept it as sufficiently well-grounded in-
tuitively to need no further justification. To assert something of every z
is just the same thing as to deny there is an = not satisfying this assertion.

* This exercise was suggested by Leo Simons. For an application of these notions in
epistemology, see Hilary Putnam, “Reds, Greens and Logical Analysis,” Philosophical
Review, Vol. 65 (1956) pp. 206-217.
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A similar rule is suggested by the following example. Clearly the sen-
tence:

(6) There is a two-headed calf
is equivalent to:

)] It is not the case that no calves are two-headed.
We may symbolize (6) by:

)] (32)(Cz & T=x),
and (7) by:

9) ~(x)(Cz — -Tz).

Since ‘Cx — ~Tz’ is tautologically equivalent to ‘~(Cz & Tz)’, (9) is
equivalent to:

(10) ~(z)-(Cz & Tz).
The relation between (8) and (10) suggests the rule:

Q2. If v is any variable and if formula S results from R by replacing at
least one occurrence of the existential quantifier (3v) by —(v)-, then S is
derivable from R, and conversely.

The meaning of Q2 is that to assert there is an z having some property is
equivalent to asserting that not every z is without this property.

In the discussion of Q1 and Q2 we have made use of certain tautological
equivalences in an intuitively unobjectionable manner. A rule of inference
justifying this use is the following.

RuLe ror TavuroroaicaL EquivaLences: T.E. If formula P occurs
as part of formula R, if formula Q is tautologically equivalent to P, and
if formula S results from R by replacing at least one occurrence of P in R
by Q, then S is derivable from R, and conversely.

Thus Q1 and T.E. formally justify the inference of (4) from (3); and Q2
and T.E. together countenance the inference of (9) from (8). The three
rules introduced are used in the following inference.

ExamrLe 7. If there is a federal court which will sustain the decision
then every member of the bar is wrong. However, some members of the
bar are not wrong. Therefore, no federal court will sustain the decision.

{1} 1) (Az)(Fr & Sx) —
WMy — Wy) P
{2} 2 Ay)yMy&-wy) P

{2} @) -w)-My &-Wy) 2Q2
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{2} @ -@)(My — Wy) 3TE.
{1, 2} (6) <(z)(Fz & Sz) 1,4T
{1, 2} (6) ——(z)-(Fz & Sz) 5Q2
{1, 2} (7 @)-(Fz & Sx) 6T
{1, 2} 8) (x)(Fz — -8z) 7 T.E.

In obtaining line (6) from (5), the existential quantifier ‘(3x)’ was re-
placed by ‘~(z)-, although the existential quantifier did not stand at the
beginning of the formula in (5). Such contextual interchange is permitted
by Q1 and Q2. This differentiates them from US and ES, which apply
only when the quantifier stands in front of the whole formula.

A number of further rules concerning quantifiers are stated in § 5.3.

EXERCISES

1. If every member of the bar is wrong, then there is a federal court which will
sustain the decision. However, no federal court will sustain the decision. There-
fore, some members of the bar are not wrong. (Mz, Wz, Fz, Sz)

2. If every witness is telling the truth, then Bluenose will be found guilty or a
hung jury will result. But a hung jury will not result. Therefore, either Bluenose
will be found guilty or some witness is not telling the truth. (Wz, Tz, B, H)

3. If Bluenose is guilty then no witness is lying unless he is fearful. There is a
witness who is fearful. Therefore, Bluenose is not guilty. (B, Wz, Lz, Fr)

§ 4.5 General Inferences. By limiting the kind of inferences consid-
ered, we were able to hold the number of restrictions on the rules govern-
ing quantifiers to two: one on UG (flagging restriction) and one on ES
(introduce & new ambiguous name with each application). To extend our
rules to general inferences and not violate Criterion I, that is, not permit
the inference of a false conclusion from true premises, we must add five
further restrictions: one on US, a second one on UG, and three on EG.
Also the statement and use of ES must be complicated slightly further.

These five restrictions involve but one notational innovation. We intro-
duce the use of variables as subscripts on ambiguous names to keep ES
from leading us to a contradiction. A simple example will illustrate the
difficulty and our particular way of resolving it. It is a truth of arithmetic
that there is no largest number, that is,

® ' @Ay <y.
We apply US and derive:
@) (Ay)z <y).

If we apply ES as stated in § 4.3, we next derive:
3) z < a
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and then by EG we obtain the false assertion that
“4) () < 2).

We block this fallacious inference by requiring that when an ambiguous
name is introduced by ES it include as subscripts all the free variables
occurring in the original formula. Thus in (2), ‘¢’ is a free variable. Hence
we now derive not (3) but:

3) r < ag.
Finally we restrict the use of EG.

First NEw REstricTION ON EG. We may not apply an existential
quantifier to a given formula using a variable which occurs as a subscript
in the formula.

Hence we cannot infer (4) from (3’), since ‘=’ occurs as a subscript in (3).

It should be emphasized that this use of subscripts is not an arbitrary
technical device, but is very close to ordinary mathematical methods. In
(3) the determination of « depends on the number z. We make this de-
pendence of « explicit in (3’) by writing ‘e,’. Since a, specifically depends
on z, the variable 2’ cannot be quantified as long as ambiguous names on
which it occurs as a subscript are on the scene.

We repeat in capsule form the procedure for applying subsecripts.

When an ambiguous name is introduced by ES it must include as sub-
scripts all the free variables occurring in the formula to which ES 1is
applied.*
It should be remarked that if we have a line like (3'), we may apply an
existential quantifier using any variable other than ‘z’. Thus it is perfectly
correct to derive from (3'):

(A2)(x < 2).

The restriction on EG must also be extended to UG, as the following
line of inference shows. Let us go back to (1), which asserts that there is
no largest number. As before, we derive (2) by US:

Az <y),

and we now apply the newly modified rule of existential specification to
obtain (3'):
z < ag.
So far so good, but to this last result, we now apply universal generalization:
®) @)z < az),

* It should be explicitly noted that any occurrence of a variable as a subscript is a
free occurrence. Thus from ‘( Iy)(a: < y)’ we derive ‘ay < 82, Dot ‘az < g'.
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and to this we apply EG to obtain the false sentence:

(6) Ay @@= <y).

This fallacious argument is blocked by prohibiting the inference of (5)
from (3’). That is, we restrict UG like EG.

New ResTtrIcTION ON UG. We may not apply a universal quantifier to
a given formula using a variable which occurs as a subscript in the formula.

This last example justifying the restriction on UG may be written as a
fallacious derivation to make explicit how the new restriction operates in
a derivation.

Farraciovs EXAMPLE FOR SUBSCRIPT RESTRICTION oN UG

{1} 1) @3y <y) P

{1} 2) (A= <y) 1US

{1} (3) r < ay 2 ES

{1} 4) @@ < ar) 3 UQ (fallaciously)
{1} 6G) (A (@) <y) 4 EG

The variable ‘z’ occurs as a subscript in line (3), and it is therefore incor-
rect to apply UG to derive (4).

The justification of the new restriction on universal specification is sim-
ple to illustrate. Again we begin with the true premise that there is no

largest number:
@A <y),

and we apply US, replacing ‘z’ by ‘¢’ to obtain the false sentence:
(A <)

The fallacious derivation is as follows:

{1} D @AY <y P
{1} @ Ay <y 1 US (fallaciously)

The kind of restriction on US which is required is obvious from this exam-
ple: do not substitute a variable which becomes bound. Thus in line (2)
above ‘y’ replaces ‘o’ and becomes bound, which is the source of the invalid
inference.

New RestricTioN oN US. Do not substitute a term containing a vari-
able which becomes bound by a quantifier in the original formula.

The restriction is stated for terms, since not only substitution of a variable
might lead to trouble, but also substitution of a term which is not & vari-
able. For example, it would also have been fallacious above to substitute
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the term ‘z 4 3’ for ‘z’, since ‘4’ becomes bound in (2) whether it is part
of a term or standing by itself. We would have obtained:

(A +y <y).
Universally generalizing on this, we get:

@(AYE +y <y),
and by universal specification we then derive the false sentence:

(3O +y <y).

Our next restriction, the second new one on existential generalization, is
just like the new restriction on universal specification: Do not substitute
a variable which is captured by a quantifier already present in the formula.
The following example shows the necessity of this restriction on EG. We
begin with the true sentence of arithmetic:

(1) (3 +y=1y).

To see that (1) is true, take ‘z’ as ‘0’. We apply existential specification to
obtain:

(2) W)(e+y=y).
To (2) we apply EG and get into trouble:

3 AWy +y =1y).
Finally to (3) we apply ES and get the false sentence:

@ Wy +y=y).

Since in line (2) ‘@’ occurs within the scope of the quantifier ‘(y)’, it is a
mistake to replace ‘a’ by ‘4’ and add the existential quantifier ‘(dy) in
line (3). Notice that we obtain line (4) from (3) by ES trivially, since
there are no free variables in ‘(y)(y < y)’ to replace by an ambiguous
name. Formulas like (3) satisfy the definition of formulas given in Chap-
ter 3, but the rules of inference are so framed that the outside quantifier
is essentially redundant. When an occurrence of a variable falls within
the scope of two quantifiers, the inside quantifier always governs. Sum-
marizing, we have:

Seconp NEw ResTRICTION ON EGQ. Do not replace an ambiguous name
by a variable which becomes bound by a quantifier in the original formula.

Our final restriction is the third one on EG. It is concerned with existen-
tially generalizing on a flagged variable and an ambiguous (or proper) name
simultaneously. For difficulties to arise, the name must actually occur at
least once in the formula being generalized on. An arithmetical example
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using only the predicate ‘0’, where ‘Oz’ means that z is an odd integer,
will illustrate the difficulty.

{1} (1) (32)-0z P

{2} 2) Oz 2P

{1} (8) O« 1ES

{1, 2} 4) Oz & -Oa z2,3T

{1, 2} (6) (32)(0z & -02) 4 EQ (fallaciously)

Line (1) is a truth of arithmetic, and if we interpret the free variable ‘2’ in
(2) as ‘1’, then (2) is true, but (5) is patently false. Line (4) should not
have been existentially generalized in terms of ‘2’ to yield (5), since ‘e’ and
flagged ‘c’ occur together. This final restriction is not often violated in
practice.* Its formal statement is:

Tump NEw REsTRICTION oN EG: Do not use a variable flagged tn a
formula to eliminate an actual occurrence of a name from the formula.

There is no harm in existentially generalizing on a flagged variable in a
formula when this generalization does not actually eliminate some occur-
rence of a name. Thus, from the premise ‘Fz’ we may infer ‘(3 z)Fz’ even
though ‘z’ is flagged in the premise. If we think of eliminating ‘e’ in this
generalization, ‘e’ does not actually occur in ‘Fz’. Its elimination is vacu-
ous and there is no difficulty.

We conclude this section with several examples illustrating the use of the
rules in final form, that is, with subscripts when necessary on ambiguous
names and with the five new restrictions satisfied.

The nineteenth-century British logician De Morgan maintained that the
classical syllogistic logic was too weak to derive that all heads of horses are
heads of animals from the premise that all horses are animals. The de-
sired derivation illustrates the use of subscripts. We use ‘H’ for ‘is a
head of’ and ‘P’ for ‘is a horse’, and we then translate the desired conclu-
sion thus:

@[(3y)(Py & Hzy) — (Iy)(4y & Hzy)].

ExampLE 8. AU horses are antmals., Therefore, all heads of horses are
heads of animals.

{1} (1) )Pz — Azx) P

{2} ) (3y)(Py & Hzy) zP

{2} 3) Pa, & Hzo, 22 ES
{1} 4) Pa, — Aa, 1US
{1, 2} (5) Aay & Hzay 23,4 T
{1, 2} (6) (3y)(Ay & Hay) z5 EG

* Strictly speaking, this restriction was needed in § 4.3.
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{1} (") (3y)(Py & Hzy) —

(3y)(Ay & Hzy) 2,6 C.P.
{1} ®) @(Iy)(Py & Hry) —

(Fy)(Ay & Hzy)) 7 UG

In line (2) we introduce the antecedent of the conclusion as a working
premise. Note that ‘¢’ is free in this premise. In line (3) we use ES to
introduce the ambiguous name ‘e,’. Intuitively, a, is the horse of which
z is the head, the subscript ‘=’ being used to indicate the dependence.

The following example deals with the fourteenth-century nominalistic
philosopher William of Ockham and the great seventeenth-century philos-
opher Thomas Hobbes.

ExaMprLE 9. None of Ockham’s followers like any realist. Any of Ock-
ham’s followers likes at least one of Hobbes’ followers. Moreover, Ockham
does have followers. Therefore, some of Hobbes’ followers are not realists.

{1} (1) @)(O0x - )Ry — -Lay)) P

{2} (2) @O0z —» (Ay)Hy & Lzy)) P

{3} ) (32)(0x) P
{3} (4) Oc 3 ES
{1} (5) Oa = (¥)(Ry — -Lay) 1U8
{2} (6) Oa — (Iy)(Hy & Lay) 2 US
{2, 3} (7) (y)(Hy & Lay) 4,6T
{2, 3} (8) HB & Lo 7 ES
{1, 3} 9 )(Ry — -Lay) 4,5T
{1, 3} (10) R8 — ~LaB 9 US
{1, 2, 3} (11) -RB 8,10T
{1, 2, 3} (12) HB & -RB 8, 11T
{1, 2, 3} (13) (3z)(Hz & -Rz) 12 EG

Although two ambiguous names are needed in this example, neither re-
quires subscripts, since there are no free variables in either line (3) or line
™).

The following simple derivation shows that there is no difficulty in
handling ambiguous names with more than one subscript. The example
deals with points on a line: zPy when z precedes y on the line; B(z, y, 2)
when y is between z and 2. The facts stated in the premises are obvious,
as is the conclusion.

ExampLE 10. For every x and y if x precedes y then it is not the case
that y precedes x. For every z, y, and 2, if x precedes y and y precedes z
then = precedes z. For every x and y if x precedes y then x is not equal
toy. For every z, y, and z if y is between x and z then either z precedes
y and y precedes z or z precedes y and y precedes x. For every x and z if
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z 5 2 then there ts a y such that y is between x and z. Therefore, for
every z and z if x precedes z then there is a y such that x precedes y and

y precedes 2.
{1} (1) @)(y)(@=Py - —yPz) P
{2} (2) @@)(2)(aPy &yPz —
zPz) P
{3} () @)@)aPy > z%y) P
{4} @) @WEBE,y,2 —
(zPy & yP?)
v (zPy & yPx)) P
{5} (6) @@ *2z —
(3y)B(z, y, 2)) P
{6} (6) zPz z,2P
{3} (7) 2Pz — z # 2 3US z/z, 2/y
{5} B z*2z—>
(Ay)B(z, y, 2) 5U8 z/x, 2/2
{3, 5, 6} 9 (3y)B(z, y, 2) z,26,7,8T
{3, 5, 6} (10) B(z, oz, 2) z,29 ES
{4} (11) B(x) Cxzy Z) -
(zPay; & 0;,P2)

V (zPay, & azPz) 4 US z/z, az/y, 2/2
{3, 4, 5, 6} (12) (xPa,. & a,.P2)
V (2Poy, & az.Pz) 2,210, 11T

{1} (13) 2Pz — —2Px 1US z/z, 2/y

{1, 6} (14) -zPz 26,13 T

{2} (15) 2P, & az.Pxr — 2Px 2 US 2/z, az./y, /2
{1, 2, 6} (16) ~(2Pats; & zsP) 214,15 T
(1,2,3,4,5,6} (17) 2Po, & anPz 2,212, 16 T
{1,2,3,4,5,6} (18) (3y)(zPy & yP2) z,2 17 EG
{1,2,38,4,5} (19) 2Pz —

(3y)(xPy & yPz) 6, 18 C.P.
{1,2,3,4,5} (20) ®(@)(@Pz —
(3y)(xPy & yPz) 19 U@

Since ‘2’ and ‘2’ are both free in line (9), they occur as subscripts in line
(10) and subsequently. In lines (7), (8), (11), (13) and (15) some new
notation is introduced at the right to indicate a multiple use of US. For
example, in deriving (7) from (3) both universal quantifiers in (3) were
dropped. According to a strict reading of US such a double application
is not permitted, but it is clear that a derived rule permitting such infer-
ences can easily be established. The new notation used at the right is
self-explanatory. In line (11), for instance, ‘z/x, os./y, 2/2’ indicates that
in applying US to line (4), ‘2’ and ‘2’ were trivially substituted for them-
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selves, and ‘a,,’ was substituted for 4’. Whenever we make such a multi-
ple application of US the substitution will be indicated at the right.

Since line (6) is a premise, variables ‘2’ and ‘2’ are flagged in this line,
and in every subsequent line depending on this premise. The fact that in
line (10) these two variables appear both as flagged and as subscripts is a
logical accident. There is no direct systematic connection between the
two, except that both operations apply to free variables.

When derivations run to as many lines as Example 10, a useful working
strategy is to sketch out on scratch paper a line of inference that seems to
be sound before attempting to write down a detailed formal derivation.
Ways of shortening or eliminating the routine steps in a derivation are dis-
cussed in Chapter 5 and in Chapter 7 in extenso.

EXERCISES

Construct (if possible) a derivation corresponding to the arguments in Exer-
cises 1-8. If the argument is invalid, prove it by the method of interpretation.

1. Some of Aristotle’s followers like all of Aquinas’ followers. None of Aris-
totle’s followers like any idealist. Therefore, none of Aquinas’ followers are idealists.
(Az, Lzy, Q, Iz)

2. If the team wins, then someone in the backfield is a good tailback. Adams
is a good tailback. Therefore, if Adams is in the backfield, the team wins. (W,
Bz, Tz, a)

3. None of the paintings is valuable, except the battle pieces. All the battle
pieces are painted in oils. Some of the paintings are not painted in oil. Some
paintings are not framed. Therefore, none of the paintings not painted in oils is
valuable. (Pz, Vz, Bz, Oz, Fx)

4. Some psychologists admire Freud. Some psychologists like no one who ad-
mires Freud. Therefore, some psychologists are not liked by all psychologists.
(Pz, Fz, Lxy)

5. If Round Robin won the race, then some people who were at the track were
happy. If everyone who bet on the race lost money, then none who were at the
track were happy. Therefore, if Round Robin won the race, then someone who
bet on the race did not lose money. (R, Tz, Hz, Bz, Lx)

6. Kilroy was here. Therefore, someone was here. (Hz, k)

7. All good critics like every poet mentioned in the lecture. No good eritic
likes Edgar Guest, although Edgar Guest is a poet. Therefore, Edgar Guest was
not mentioned in the lecture. (Cz, Lxy, Mz, Pz, g)

8. Every philosophical empiricist admires Hume. Some philosophical idealists
like no one who admires Hume. Therefore, some philosophical idealists like no
philosophical empiricist. (Ez, Hz, Iz, Lry)

9. The theory of empirical measurements affords some of the simplest examples
of non-trivial scientific theories. This exercise deals with a set of axioms concerned
with the measurement of mass. Intuitively the domain of individuals is a large
set of physical objects which we may place on one of the two pans of an equal-arm
balance. As in the case of the theory of preference, ‘Q’ is a two-place predicate
with properties like ‘<’. If two objects stand in the relation @, that is, if zQy,
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then the balance is either in horizontal equilibrium (the objects are equal in mass)
or the pan on which z is, is higher than y’s pan (z has less mass than y). Thus by
a qualitative observation we can always decide if two physical objects are in the
relation @ when each is placed on a pan of the balance. We also have an operation
» for combining objects to form new objects. Thus if z « y @ 2 then z and y are on
one pan of the balance, z on the other; and the experimenter observes—

/\ o

%7 D) D)

that is, the combination of z and y is equal to or less in mass than z. From a
logical standpoint, ‘+’ is an operation symbol which we use to form terms, like ‘z « ¢
‘2 »2’. It is important to realize that {(z = y) » 2’ is not the same as ‘z * (y *x2z);
in other words it is logically possible that the order of grouping or combining, as
indicated by the parentheses, might make a difference in mass. (It is a consequence
of the axioms that it does not, but this has to be proved.)

We want to state five axioms which we might expect to be satisfied, and then
to state eight theorems which may be derived from these axioms by the rules of
inference we have developed. To continue this list of theorems in order finally to
prove that we may properly introduce numbers to measure mass, one additional
axiom (a so-called Archimedean axiom) is needed. We do not give this last axiom
here because of its more advanced mathematical character.*

The five axioms are:

0)) (@)WY =Qy & yQz — zQ2)

2) @@z *y) »2Qz « (y »2)]

(3) @)W @)(=Qy — z+2Q2xy)

C)) @)W)(—2Qy — (F2)(xQyx2 &y +2Q7))
(5) @)W (= xyQ2)

The first axiom says that the relation of equal to or less than in mass is transitive.
The second axiom countenances rearrangements of objects. The third axiom
asserts that if z is equal to or less than y in mass then combining x with z and 2
with y will not change the inequality. The fourth axiom says that if z is strictly
heavier than y then an object z can be found which combined with y exactly bal-
ances z. The fifth axiom says every object has positive mass; that is, combine
any object = with any object y and the combination is heavier than . Treating
the five axioms as premises, formally derive the following eight theorems as con-
clusions.

(To avoid one long derivation, it is suggested that in the derivation of all but
the first theorem, you insert when needed a previous theorem, justifying it on the
right by the theorem number and listing on the left the axioms on which it depends.
For example, you will want to use Theorem 1 in proving Theorem 2. The insertion

* The full set of axioms is to be found in my article, “A Set of Independent Axioms
for Extensive Quantities,” Portugaliae Mathematica, Vol. 10 (1951) pp. 163-172.
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in a derivation of such previously established results is discussed systematically in
the next chapter.)

TreorEM 1. (z)(2Qz)

THEOREM 2. (2)()(x+yQy *x).

TaEOREM 3. (2)()(4)()(2Qy & uQv — z+u QY »v)
TreoREM 4. (@)[W)(@) [z *x (¥ +2) @ (x +xy) + 2]

(This derivation is long.)
TrEorREM 5. (2)(y)(=Qy v ¥@2)

(Hint: Use an indirect proof and Axiom (4).)
TeEOREM 6. (@)W)(R)(z+2Qy 2z — zQy)

TeEOREM 7. (@)@W)@ W)y +2Qu&2Qy — zx2Qu)
TaEOREM 8. (D)@ (@) (W) (uQzrx2&2Qy — uQyx2)

10. Consider the five axioms given in the preceding exercise. The following
arithmetical interpretation proves that Axiom (1) is independent of the remaining
four:

(i) The domain of individuals is the set of positive integers.
i) 2Qy e z <y 1.
() zry=2z4+y+2
It is easily verified that Axiom (1) is false under this interpretation and the re-
maining four axioms are true. Find arithmetical interpretations which prove that
the other four axioms are also each independent. As a hint in constructing an
appropriate interpretation, a satisfactory domain of individuals is given for each

axiom:
For Axiom (2): The set of all positive rational numbers (a rational number is the

ratio of two integers; finding the proper interpretation for this axiom is a little
difficult).

For Axiom (3): The set of all positive rational numbers.
For Axiom (4): The set of positive integers with the exception of one.
For Axiom (5): The set consisting of just the number one.

§ 4.6 Summary of Rules of Inference. The point of this section is
to summarize in tabular form the seven basic rules of inference which have
been introduced in Chapter 2 and the present chapter.

Rather than repeat the complex substitution phraseology used in the
initial statement of the rules, we use a convenient abbreviated notation.
If S{v) is any formula in which the variable v is free, then S(1) is the formula
which results from S$(v) by substituting the term t for every free occurrence
of vin S. Thus if vis ‘@', S(v) is ‘Fz’, and t is ‘y’, then S(t) is ‘Fy’. Asa
second example, if

(o)

v=7
SV =A@ +2=0&y+2>242
t=‘2c+y

then
S =(3F2)ec+2=0&y+@+y >@E+y) +2.



Similarly, if S(v) is any formula in which the ambiguous name v occurs,
then S(v) is obtained by substitution from S(v) if and only if every occur-

SUMMARY OF RULES OF INFERENCE

rence of v in S(v) is replaced by the variable v. Thus, if

then

ABBRE-
VIATION

C.P.
Us

va

ES

EQ@

FraceIiNG: A variable free in a premise is flagged and remains flagged in any

b

V="«

Sv)=‘at+z=8&a>0

v="‘2

Syy=2+z=8&z>0.

BASIC RULES OF INFERENCE

Ruwe
Introduction of premises
Use of tautologies
Conditional Proof

Universal Specification:
From (v)S derive S(1)

Universal Generalization:
From S derive (v)S

Existential Specification:
From ( 3v)S(v) derive
S(v)

Existential Generalization:

From S(v) derive
(3v)S(v)

REsTRICTION
None

None
None

No free occurrence of v within
scope of quantifier using
variable of t,

(1) v not flagged
(2) v not a subscript

Ambiguous name v not previ-
ously used

(1) v not a subscript

(2) No occurrence of name v
within scope of quantifier
using v

(3) v not flagged if v actually
occurs in S(v)

line in which it is free and which depends on the premise.

Susscriprs: When an ambiguous name is introduced by existential specifica-
tion it must have as subscripts all the free variables occurring in the formula

to which ES is applied.

EXERCISES

What error is committed at what point in the fallacious derivations 1-5?

1. Given any thing there exists another thing distinet from it. Therefore, there
exists something which is distinct from itself.

{1}
{1}

(1) @(Ay)x # y)
@) (I #w
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2. Someone has red hair. Someone has brown hair. Therefore, someone has
ved hair and brown hair.

{1} (1) (32)Rz
{2} (2) (32)Bz
{1} (3) Ra
{2} (4) Ba
{1, 2} (5) Ra & Ba
{1, 2} (6) (3z)(Rx & Br)
3. Some men are over six feet tall. Therefore, all men are over six feet tall.
{1} 1) (32)0z
{1} . (2) O
{1} @ )0z

4. Every man is just as tall as himself. Therefore, there is a man who is just
as tall as every man,

{1} 1) (2)Tzz

{1} 2 Taz

{1} (3) @)Taz

{1} @ (3YE)Tyz

5. Everything is identical with itself. Therefore, everything is identical with
everything else.

{1} (1) @)z = 2)
{1} @ z=y

{1} ) W)z =1y)
{1} @) @)= =1y)

6. Construct a fallacious derivation which violates the restriction that a universal
quantifier may be dropped by US only when the quantifier stands in front of the
formula and its scope is the whole formula.

7. Construct a fallacious derivation which violates the restriction that an existen-
tial quantifier may be dropped by ES only when the quantifier stands in front of
the formula and its scope is the whole formula.



CHAPTER 5

FURTHER RULES OF INFERENCE

§ 5.1 Logic of Identity. In everyday language we often put a form of
the verb ‘to be’ between two terms in order to indicate that they designate
the same entity. Thus we write:

¢))] Elizabeth II is the present Queen of England,

to mean that Elizabeth IT is the same person as the present Queen of Eng-
land. Or (here using the past tense) we write:

2) James Madison was the fourth President of the United States,

to mean that James Madison and the fourth President of the United States
are one and the same person.

Everyday language puts the verb ‘to be’ to a great many other uses,
however. For example, we sometimes use this verb to indicate that a
certain entity has a certain property. For instance, when we write:

®3) Salt is white,

we certainly do not mean that salt is the same thing as white—this doesn’t
make sense—or even that salt is the same thing as whiteness—which is
false—but that salt possesses the property of being white.

Although we may contrive to muddle through somehow with the am-
biguous verb ‘to be’ in everyday English, in philosophical discussions the
ambiguity of this word can lead to obscurity and endless confusion. Thus
in more exact discourse it is convenient to divide up the various meanings
of ‘6o be’ among various words and symbols which are specially introduced
for this purpose. In particular, we use the words ‘is identical with’, or the
symbol ‘=", for the first meaning mentioned above. (In Chapter 9 we shall
introduce other words and symbols for other meanings of ‘to be’.) Instead
of (1) we write:

Elizabeth II is identical with the present Queen of England,
101
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or simply :
Elizabeth II = the present Queen of England.
And instead of (2) we write:

James Madison is identical with the fourth President of the
United States,

or simply:
C)) James Madison = the fourth President of the United States.

But we do not replace the ‘is’ of (3) by ‘is identical with’ or ‘= ’; since the
‘i’ in (3), as we remarked above, has quite a different meaning from the
‘is’ in (1), or the ‘was’ in (2).

We shall sometimes read the symbol ‘=’ also as ‘equals’. But it should
be emphasized that some people use ‘equals’ in a somewhat broader sense:
thus in elementary geometry two line segments A B and CD are sometimes
called ‘equal’ if they have the same length. We shall never speak in this
way, however. If we were to write:

AB = (D,

or to say that AB equals CD, we should mean that the segment AB and
the segment CD are one and the same. We could, of course, express the
fact that AB and CD have the same length by writing:

The length of AB = the length of CD.

It is clear from the meaning given to ‘=’ that everything is identical
with itself: i.e., if z is anything whatsoever, then z = z. This principle is
sometimes called the law of identity.

Moreover, for any z and y, if # = y, then y = z. This fact is some-
times expressed by saying that the relation of identity is symmetric.

We notice also that if z = y and y = 2, then z = z. This fact is ex-
pressed by saying that the relation of identity is transitive.

If z = y, then whatever is true of z is also true of y, and whatever is
true of y is also true of z. Thus from (4), together with the fact that
James Madison was born in Port Conway, Virginia, one can conclude that
the fourth President of the United States was born in Port Conway, Vir-
ginia. This principle, often called the principle of extensionality, is some-
times expressed by saying that equals may be substituted for equals.*

* This is not literally true, for there also exist so-called non-extensional contexts into

which substitutions cannot be made. Consider, for example, the following three state-
ments:

(5) The morning star is identical with the evening star;
(6) John Smith knows that the morning star is the same as Venus;
) John Smith knows that the evening star is the same as Venus.
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If every property of z is also a property of y, then z = y; for z has the
property of being identical with z, and hence if every property of z is a
property of y, then y has the property of being identical with z, so that
y = z, and hence z = y. This principle is sometimes called Letbniz’s law,
or the principle of the identity of indiscernibles.

We have not as yet introduced any special rules which permit us to draw
logical inferences involving identities. We could, of course, take the view
that the relation of identity has no more special status than any other re-
lation, and that when derivations involve identities, special premises, such
as the principle of extensionality, shall be introduced as needed. It is
more convenient, however, because of the ubiquitous character of identi-
ties—we use them in every systematic domain of investigation—to intro-
duce a special rule of inference for them.

The rule is divided into two parts. The first part simply converts the
principle of extensionality into a principle of inference. As the example
concerning James Madison suggests, we want the rule to apply not just to
variables, but to terms in general. An algebraic example will further em-
phasize this point. Suppose we have as a line of a derivation:

(1) rt+y=2
and we know that
2) z=y+3.

We want to be able to substitute the term ‘y + 8’ for the variable ‘=’ in
equation (1). Without a rule permitting such substitution it would be
difficult to solve the simplest algebraic problems.

To avoid lengthy restrictions regarding the presence of quantifiers we
restrict applicability of the rule to open formulas, that is, formulas which
have no quantifiers. The following fallacious inference shows the need for
restriction in some direction.

{1} Dz=y z,y P

{2} 2 (32)- =1y) yP

{1, 2} 3) (Az)-(xz =2) 1, 2 (fallacious unre-
stricted rule for iden-
tities)

Here (5) is true, and (7) results from (6) by substituting ‘evening star’ for ‘morning
star’; but it can very well happen that John Smith’s knowledge of astronomy happens
to be such that (6) is true, while (7) is false. However, in mathematics and its applica-
tions to the empirical sciences, we do not need to make use of non-extensional contexts,
just as we do not need non-truth-functional sentential connectives. The point is that
by rejecting non-extensional contexts and non-truth-functional connectives we can keep
our basic logic relatively simple and yet not give up any capacity for expression which
is essential to the vast superstructure of mathematics.



104 FURTHER RULES OF INFERENCE

Line (3) is false, and it is easy to find an interpretation such that (1) and
(2) are true: Let the free variable ‘2’ be ‘James Madison’ and ‘Y’ be ‘the
fourth President of the United States’. The source of the difficulty here
is that when ‘2’ is substituted in (2) for ‘4’ on the basis of (1), ‘z’ is cap-
tured by the existential quantifier already present in (2).

The second part of the rule for identities simply asserts that the law of
identity is independent of any premises, that is, for any term t, the assertion
t = t is derivable from the empty set of premises. In a derivation we indi-
cate that a line depends on no premises by writing a capital Greek lambda,
‘A’, at the left. (This letter is often used to designate the empty set, that
is, the set which has no members.) The formal statement of the rule fol-
lows.

RuLe GoverNING IDENTITIES: 1. If S 48 an open formula, from S and
ty =13, or from S and t; = t; we may derive T, provided that T results
from S by replacing one or more occurrences of t, in S by t;. Moreover,
the identity t = t {8 derivable from the empty set of premises.

The first part of the rule, which is more widely used in logical inference
than the second part, is applied in the following example.

ExampLe 1. The man who committed the crime was in the apartment.
Now if anyone was in the apartment, he was in town. If anyone was in
Mezxico he was not in town. In point of fact, Barnes was in Mexico.
Therefore, Barnes ts not the man who committed the crime.

{1} (1) Ac P

{2} (2) @) 4z — Tz) P

{3} 3) )Mz — ~Tx) P

{4} 4) Mb P

{3} (5) Mb — -Tb 3US

{3, 4} (6) -Tb 4,5T

{2} (7) Ab - Tb 2US8

{2, 3, 4} (8) —-4b 6,7T

{9} @b=c P

{2, 8, 4, 9} (10) -Ac¢ 8, 9 I (rule governing
identities)

{1, 2,3, 4, 9} (11) Ac & -Ac ,10T

{1, 2, 3, 4} (12) b=e¢ 9,11 RAAA.

Use of the newly introduced rule for identities is exemplified in line (10).
This derivation illustrates a method of attack which is usually sound: if we
want to establish the negation of an identity, it is natural to use an indirect
proof. Note that the application of the rule governing identities usually
involves two previous lines ((8) and (9) in the example), namely, the line
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asserting an identity and the line asserting a formula in which a replace-
ment of a term is made by use of the identity. The resulting line naturally
depends on any premises on which these two lines depended. Thus line
(10) depends on the premises introduced in lines (2), (3), (4), and (9).

In mathematical contexts identities most commonly occur in conjunc-
tion with operation symbols. Formulas like:

@@ (32 +y =2)
z>0— (A +y=0)

are typical. The binary operation symbols of addition and multiplication
are most familiar, but the binary operation symbol of subtraction and the
unary operation symbol for finding the negative of a number also occur
frequently and have meanings familiar to all readers of this book:

z—y=1,
z+4+ (—z) =0.

To illustrate how the rules of inferences for identities are used in connec-
tion with operation symbols, we may derive some consequences of one of
the simplest but one of the more important sets of axioms in modern mathe-
matics, namely, the axioms for a group. The axioms use three non-logical
symbols: the binary operation symbol ‘o’ the unary operation symbol ‘Y,
and the individual constant ‘¢’. The most familiar interpretation is to take
as the domain of interpretation the set of integers (positive, negative, and
zero), to interpret ‘o’ as ‘+’, to interpret =1’ a5 the operation symbol for
negating a number, and to interpret ‘¢’ as the name of zero. The three
axioms for a group are:

Axiom (1). (@)@)(@) (o (yoz) = (zoy)o2).
AxioM (2). (z)(zoe = 2).
Axiom (3). ()(zoz! =¢).

Thus in the arithmetical interpretation just given, the three axioms have
as interpretations the following three true sentences:

1) @@+ +2)=>c+y +2.
@) (@@+0=n=2).
@) @+ (-2)=0.

In usual mathematical terminology, Axiom (1) says that the operation o
is associative; Axiom (2) says that e is a right-hand identity element with
respect to the operation o; and Axiom (3) says that each element of the
group has an snverse element with respect to the operation o. Thus zero is
the identity element for addition of integers, and the negative of a number
is its inverse with respect to addition.
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We now want to derive from the axioms what is known as the right-hand
cancellation law: (z)(y)(z)(xoz=yoz — z =y). Note that all three
axioms are used in the derivation.-

{1} (1) @) (zoyo2)

= (zoy)o2) P (Ax. (1)
{2} (2) (@)(zoe=12) P (Ax. (2))
{3} @B) @(@oz™" =¢) P (Ax. 3))
A 4) oz)oz™?

= (roz)oz™! I
{5} (B) zoz=yoz z,y,2P
{5} (6) (xoz)oz™?

= (yoz)oz™! z,9 24,51
{1} (M) zo(zoz™)

= (zoz)oz™! 1US z/x, 2/y, 27} /2
{1} (8) yo(zoz™)

= (yoz)oz! 1US y/x, 2/y, 27 /2
{1, 5} 9) zo(zoz™)

= (yoz)oz7! z,y,26,71
{1, 5} (10) zo (zoz™Y)

=yo(zoz™}) z,9,28,91
{3} (11) zoz ' =e 3US
{1, 3, 5} (12) zoe=yoe z,y 10,111
{2} (13) z0e =12 2US
{1, 2, 3, 5} (14) z =yoe z,y12,13 1
{2} (15) yoe=y 2US
{1, 2,3, 5} (16) z =y 2,y 14,151
{1, 2, 3} (17) zoz=yoz —

r=1y 5, 16 C.P,
{1, 2, 8} (18) W) () (zoz

=yoz—z=y 17UG

The use of the rule governing identities seven times in this derivation indi-
cates how often it is appealed to in dealing with operation symbols. In
Chapter 7 methods for reducing the length of derivations are developed,
but until then all derivations should be written out in full. The above
example makes obvious the need for distinguishing the routine from the
non-routine steps. Probably the crucial step in deriving the right-hand
cancellation law is realizing what substitution in Axiom (1) is appropriate
(line (7)). For with this insight goes the perception that zoz™! = e by
virtue of Axiom (3). The rest of the derivation is just a matter of elim-
inating the identity element by use of Axiom (2).
We return to the axioms for groups in § 5.2.*

* For a clear and detailed but elementary discusslon of various sets of axloms for
groups, see Alfred Tarski, Iniroduction to Logic, New York, 1941,
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Since we have made the logic of identity part of our basic first-order
predicate logic (often called with this extension: first-order predicate logic
with identity), we need to remark on the extension of the notion of inter-
pretation to formulas involving identities. The extension is simple: the
identity predicate like the other logical constants and unlike all other
predicates is held fixed in its original meaning in all interpretations. Thus,
given the formula:

¢))] z2=0&y=0-o2z+y=0,

it would be a mistake to interpret ‘=’ as, say, ‘is greater than’, just as it
would be a mistake to interpret ‘—’ as ‘&@’. This means that in formulas
like (1) the identity sign is treated as a universal logical symbol and not
like ‘+’ as a symbol of arithmetic only.*

On the other hand, in giving interpretations of non-logical predicates it
is sometimes convenient to interpret a predicate as the logical predicate of
identity. In fact, this was already done in one interpretation for the
predicate ‘I’ of indifference given in Chapter 4.

EXERCISES

1. The verb ‘to be’ is used in the sense of identity in which of the following sen-
tences?

(a) Women are wonderful.

(b) Washington was an American.

(¢) Washington was the first President of the United States.
(d) Washington was the last husband of Martha Washington.
(e) Jefferson was not the second President of the United States.
(f) Men are not angels.

(g) Simone de Beauvoir is not a great writer.

(h) Stephen Dedalus was not a lover of Molly Bloom.

() Stendhal was not the author of NORTHANGER ABBEY.

2. Some members of the swimming team have not lost a race. Jones is on the
swimming team; furthermore he is the fastest man on the team. Therefore, Jones
has not lost a race. (Mz, Lz, 4, f)

3. Is the following set of premises consistent? Adams is the man who signed
the contract, and the man who signed the contract is liable. However, Adams is
bankrupt, and if anyone is bankrupt then he is not liable. (Lz, Bz, a, ¢)

4. Ts the following set of premises consistent? Horatio is the bravest man in
the county, but not the strongest. Yet none but the brave are strong. (h, b, 8,
Bz, Sz)

5. This exercise is related to the axioms for a group but not directly dependent
on them. Given that the operation o is commutative and satisfies the right can-

* The standard reference on the logic of identity is D. Hilbert and P. Bernays, Grund-
lagen der Mathematik, Vol. 1, pp. 164-209. It may be shown that first-order predicate
logic with identity is complete in the sense defined in §4.2.
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cellation law, prove that it satisfies the left cancellation law, that is, from:

n (@)y)(zoy =youz),
) @WE)xoz=yoz - z=y),
derive:

@)@ (zox =20y — z=1y).

6. Given the following three axioms on a binary operation o, either prove that
the axioms are inconsistent or give an interpretation to show that they are con-
sistent. (This exercise in no way depends on the axioms for groups.)

AxioMm 1. (@)@)(zoy =you).
Axiom 2. (D)) (zoy = y).
Axiom 3. (2)(Iy)z 5 y).

7. Prove by the method of interpretation that the first axiom for groups is inde-
pendent of the other two. (Warning: do not violate Rule VII, §4.2.)

8. Prove by the method of interpretation that the third axiom for groups is in-
dependent of the first two. (Warning: do not violate Rule VII, §4.2.)

§ 5.2 Theorems of Logic. So far we have mainly been concerned with
the derivation of conclusions from given premises. We want now to give
some brief consideration to formulas which are derivable from the empty
set of premises. Such formulas are called theorems of logic, since they are
true independent of the truth or falsity of any particular factual premises.
Referring to the notions of § 4.2 it may be shown that a formula is a theo-
rem of logic if and only if it is universally valid. Since a theorem of logic
depends on no premises, the strategy of proof is slightly different from
that for deriving conclusions from given premises. If the formula we are
attempting to establish as a theorem is an implication, the natural thing is
to assume the antecedent of the implication as an initial premise. In
many cases a second premise may be obtained by assuming the negation
of the consequent of the implication and embarking upon an indirect proof.
This approach may be illustrated by proving the theorem ‘(3z)Fz —
-(z)~Fz'.

{1} (1) (32)Fz P

{2} (2) (@)-Fz P

{1} 3) Fa 1ES8

{2} 4) -Fa 2US

{1, 2} (5) Fa & -Fa 3,4T

{1} 6) —(z)-Fx 2,5 RAA.
A (7) (3z)Fx — ~(z)-Fx 1,6 C.P.

As the first premise we assume the antecedent ‘(3z)Fz’, and as the second
premise ‘(z)-Fz’ which is the negation of the consequent. The theorem is
established by showing in line (7) that it depends on the empty set of
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premises, in other words, on no premise at all.* Thus, (7) is true regard-
less of what interpretations we give the predicate ‘F’.

It is sometimes necessary to adopt a more subtle strategy, as in the
proof that ‘~(z)-Fz — (3z)Fz’ is a theorem.

{1} (1) Fzx z P

{1} (2) (Ax)Fx 1 EG

A 38) Fr —» (Jz)F=z 1,2 C.P.
{4} @) —(A2)Fz P

{4} (5) ~Fz 3,4T
{4} (6) (z)-Fz 5 UG

A (") -(3z)Fr — (z)-Fz 4,6C.P.
A 8) -(x)-Fx — (3z)Fz 7T

In this case it would not work to assume the antecedent ‘~(z)-Fz’ since
the beginning negation sign prevents us from doing anything with the
formula. In line (4) we assume as a premise the negation of the conclu-
sion, but in this case not for the purposes of an indirect proof. The main
trick in this proof is to apply EG to ‘Fz’ to obtain (2). As already re-
marked, such applications of EG, where no ambiguous names occur, are
infrequent but occasionally crucial.

The two theorems just proved are closely related to Rule Q2 introduced
in § 4.4; the interesting thing to note is that Q2 is not used in their proofs.
These two theorems are in fact the basis for showing that Q2 may be de-
rived from the sentential rules and the four rules introduced in Chapter 4.

Since a theorem of logic already established may be useful in proving a
new theorem, it is desirable to have a derived rule which permits us to
use the previously established theorem directly in the derivation establish-~
ing the new theorem. Since the use of previously established results need
not be restricted to theorems of logic, we state the derived rule in a gen-
eral form.

As might be expected, a restriction regarding ambiguous names is re-
quired, for the intended referent of an ambiguous name changes from
derivation to derivation. Thus consider the derivation:

{1} ' 1) (J2)Fz P
{1} (2) Fa 1ES8
A 3) (Az)Fx — Fa 1,2C.P.

Since line (3) is a theorem of logic we may feel we can introduce it at any
point in some other derivation without creating difficulties. But the fal-

* It was explained in the previous section that in this book the symbol ‘A’ designates
the empty set. Note its use in line (7).
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lacious inference from ‘(3z)Fz’ to ‘(z)Fz’ is easily constructed by using
line (3) above and a similar derivation concerning “~Fz’.

{1} (1) (A2)-F=x P

{1} 2) ~Fa 1E8

A 3) (32)-Fzr —» -Fa 1,2C.P.

A 4) Fa » —(3x)-Fx 3T

A (5) (3x)Fr — Fa Previous theorem
(fallaciously)

A (6) (2)Fx — —(3zx)-Fz 4,5T

A (7) (Az)Fxr » (x)Fx 6 Q1

The difficulty comes from the appearance of the ambiguous name ‘@’ in
line (5) by virtue of introducing the preceding theorem. If the two deriva-
tions had been combined into one, line (7) could not have been reached,
for in line (2) of the second derivation ‘6’ or some other ambiguous name
other than ‘e’ would have had to be introduced, and the derivation of (6)
would be blocked. It was pointed out when ambiguous names were first
discussed that they were for immediate contextual use. This example
shows in particular that they cannot be carried from derivation to deriva-
tion.

Derivep RuLe ror INTRODUCING PrEVIOUS RESULts. If formula S
1s derivable from formula T and a set of premises P, and if T 13 derivable
Jrom P, then S is derivable from 9P abone, provided T contains no am-
biguous names.

If S is a theorem of logic then, of course, ¥ = A. We shall not give a
detailed proof of this derived rule but it is obvious how it goes. By hypo-
thesis S is derivable from T and & and T is derivable from &#. To show
that S is derivable from & alone, we simply construct a new derivation
for S such that the first part of the new derivation is just a derivation of
T from &

To illustrate the labor-saving nature of this derived rule, let us derive
the theorem ‘(Jz)Fz < ~(z)~Fz’.

A (1) (3z)Fx — —(z)-Fz  Previous theorem of
logic

A (2) =(x)~Fx —» (Jz)Fz  Previous theorem of
logic

A @) (I2)Fx & —(x)-Fz 1,2T

Without the rule, derivations of (1) and (2) would have had to be included,
which would have greatly increased the number of lines. The proof of this
theorem illustrates a typical and standard strategy when proving a theorem
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whose main sentential connective is ‘if and only if’; we break the proof
into the derivation of two implications.

The theorems of logic whose proofs are given as exercises all exemplify
useful logical principles, some of which will be discussed in the next section.

The use of this derived rule for introducing previous results which are
not theorems of logic may be illustrated by returning to the axioms for
groups given in the previous section. There we proved that the axioms
for groups imply the right-hand cancellation law, which we may label:

TagoreM 1 oF Grour TEEORY. (2)(H)(R)(x0z=yo02z D> T = y).

And we may use this first theorem in proving a second theorem concerning
the commutativity of the identity element.

TraroreM 2 oF Grour THEORY. (z)(z0e = e0x).

DERIVATION

{1} (1) @@ E)(zoyo2) P (Ax. 1)
= (zoy)o2)

(2} @) @@oe= 1) P (Ax. 2)

{3} () @)(zoz™t=¢) P (Ax. 3)

{1} (4) eo(xoz™) 1 US e/z, z/y,
= (¢eozx)oz! z71/z

{3} (5) zozt=c¢ 3US

{1, 3} (6) eoe = (eox)oz? 4,51

{2} (7) ece=e 2US

{1, 2, 3} (8) ¢ = (eoz)oz™? 6,71

{1, 2, 3} ) zoz™ = (eoz)oz? 5,81

{1, 2, 3} (10) @ @) () (o2 Th. 1
=yoz—>z=1Y) .

{1, 2, 8} (1) zoz™! 10 US z/z,
= (eoz)oz™ ! — (eoz)/y, x /2
=¢0Z

{1, 2, 3} (12) x = eox 9,11T

{2} (13) z0e==z 2US

{1, 2, 3} (14) zoe =eox 12,131

{1, 2, 8} @15) (z)(zxoe =eo0x) 14 UG

Note that Theorem 1 is used to justify the introduction of line (10). Ob-
viously it would have been tedious and useless to rederive Theorem 1 at
this point. The rule for introducing previous results permits its introduc-
tion without such repetition. Some of the exercises are concerned with
further elementary theorems of group theory and repeated applications of
the rule for introducing previous results. In working these exercises, &
rough line of attack should be sketched on scratch paper before a formal
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derivation is attempted. In a first try at getting a line of argument going,
it is best not to be too concerned with logical rigor but to experiment
freely with a variety of applications of the axioms and the theorems already
proved. In the derivation of Theorem 2 the two crucial insights are con-
cerned with what substitution to make in Axiom (1), line (4), and how to
make use of Theorem 1, line (11).

EXERCISES

1. Prove that the following formulas are theorems. You may use preceding
formulas in the derivation of later ones.

(8) (x)Fz — —(3z)~Fz (Do not use Q1 in proof)
(b) «(32)~Fz — (2)Fz (Do not use Q1 in proof)
() (@)(y)Gzy — (y)(z)Gzy

(d) (32)(3y)Gzy — (3y)(A2)Gay

() (32)(y)Gzy — (y)( Iz)Gay

(f) ()(Fz & Hz) > (z)Fz & (z)H=z

®) (@)Fz & (x)Hz — (z)(Fz & Hz)

(b) (@)Fz v (z)Hz — (z)(Fz v Hz)

(i) (®Fz — Hz) - [(3z)Fz — (3z)Hz]

() (32)(Fz & Hz) — (31)Fz & (3z)Hz

(k) Hy & (32)Fz — (Jz)(Hy & Fz)

() (32)(Fzv Hz) & (3x)Fz v (3z)Hz

(m) (z)(Hy v Fz) & Hy v (x)Fz

(n) (3z)(Hy v Fz) & Hy v (3Ax)Fz

(o) (z)(Hy & Fz) & Hy & (x)Fz

(p) (3z)(Hy & Fz) & Hy & (3Ax)Fx

(@) (x)(Hy — Fz) & [Hy — (2)F2]

() (32)(Hy — Fz) & [Hy — (32)F4]

(8) @)(Fz — Hy) < [(3z)Fz — Hy]

(t) (32)(Fz — Hy) < [(z)Fz — Hy]

2. For each of the following formulas prove by a derivation or an interpretation,
a8 the case may be, if the formula is (1) a theorem of logic, (2) the negation of a
theorem of logic, or (3) neither (1) nor (2).

(8) @)@ (Fzy & Fyz) — Fzz)

(b) (@W)(Fz v -Fy)

(¢) (2)(Iy)(Fz & Gy) — (Iy)(z)(Fz & Gy)
(d) (z)(Fz & =Fz) — (3y)Fy

(e) (z2)(Iy)(Fz & ~Fzx & ~Fy)

O (3x)(Fzv~Fz)

(8) (@)Fz v (3y)-Fy

3. Prove that the following five formulas concerning the relation of identity are
theorems of logic.

®) @Y=y —>y=1)

b)) @Rz =y&y=2) > z=4
(0 @DWR(z=2&y=2) > z=4y]
(d) @(Iy)z=1)

(&) (2)[Fz & (3y)(z = y & Fy)]



DERIVED RULES OF INFERENCE 113

4. This exercise deals with elementary group theory. Using the axioms for
groups and the two theorems already established, provide formal derivations for
the following theorems.

TrEOREM 3 (UNIQUENESS OF IDENTITY).

W@ zoy =2) > y = ¢
TeEOREM 4 (COMMUTATIVITY OF INVERSES).

(zzozt=z"lox)
THEOREM 5 (LEFT-HAND CANCELLATION Law).
@)Y)e)(zoz =20y — 2z =1)

TaporeM 6 (UNIQUENESS OF INVERSE).

@)y zoy =€ -y =2z
TaROREM 7. (2)(z~H)! =1x)
TeEOREM 8. (2)(¥)(32)(xz = yo32)
TaeoreM 9. ()X Iy)z =yo2)

5. The last two theorems of the preceding exercise may be combined with the
associativity axiom to give a new set of axioms for group theory based only on the
single non-logical symbol ‘o’; that is, in this formulation the axioms are:

Axiom 1. (@) ()(E)(xo(yoz) = (xoy)o?)
AxioM 2. (2)y)(32)(z =yo2)
AxioM 3. (@)@E)(Iy)(xz =yo2)

To indicate how the development goes, prove the following four theorems on the
basis of these three new axioms:

TaroreM 1 (Existence oF RigaT-HanD IDENTITY ELEMENT).
(3y)a)zoy = 2)
TagoreM 2 (ExisteNcE oF LEFr-Haxp IpENTITY ELEMENT).
(Y@ yoz =2)
TaeoreM 3 (UNiquENEss oF RigET-HAND IDENTITY ELEMENT).
W@N@)zoy =z&zoz=12) > y=12]
TaeoreM 4 (UNIQUENEsS OF LEFT-HAND IDENTITY ELEMENT).
W)@} yoz =z&z0z=12) > y =1

§ 5.3 Derived Rules of Inference. In § 2.4 we introduced a derived
rule for indirect proofs; it was remarked that the three rules of § 4.4 could
be derived; and a derived rule concerning the use of theorems was stated
in the last section. We now want to examine in a more general way the
character of such rules. We may approach this problem by asking how
derived rules of inference differ from original rules such as the rule for uni-
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versal specification or the rule of conditional proof. There are at least
three essential points of difference.

(i) Derived rules of inference are dispensable; from the theoretical stand-
point they are a mere convenience. Any inference which uses a derived
rule can always be replaced by one which does not. In the case of the
derived rule for indirect proofs, for instance, it is clear from the discussion
in § 2.4 that it is a trivial and simple matter to eliminate its use.

(i) Derived rules of inference must be proved by appeal to the original
rules. In this context a proof primarily consists of giving an explicit set
of directions for eliminating the use of the rule on any particular occasion.
The attitude is that a derived rule may be used in inference if one ean
write down for a doubting Thomas a set of explicit directions for a formal
derivation which does not use the derived rule and yet is able to come to
the same conclusion. The proof of Rule R.A.A. gave such a set of direc-
tions. In that proof the essential idea is that we can eliminate appeal to
the rule by making use of the Law of Absurdity.

(iii) The original rules are used to characterize in an effective or finitistic
manner the intuitive notion of logical inference. As we saw in §4.2 the
notion of a valid argument or a universally valid sentence is defined in
terms of the notion of a true interpretation of a formula and independent
of any rules of inference. However, it is ordinarily impractical to prove
that an argument is valid by showing that every interpretation which
makes the premises true also makes the conclusion true. Since there is an
infinite number of interpretations of any argument, it is impossible literally
to examine each interpretation and determine its truth or falsity for the
premises and conclusions. Thus we are naturally led to the ides of de-
veloping a finite number of rules of inference which we can use to establish
the validity of arguments. The important two properties the original
rules should have are those of soundness and completeness (already dis-
cussed in Chapters 2 and 4). The derived rules, being theoretically re-
dundant, do not enter directly into a proof of the soundness or complete-
ness of the basic rules of inference, although the proof of a new derived
rule should show that the new rule cannot convert a sound system of infer-
ence into an unsound one.

So much for the difference between original and derived rules of infer-
ence. To every theorem of logic there is a corresponding derived rule.
Since there is an unlimited number of theorems, there is an unlimited
number of derived rules of inference. However, the number of such rules
which are used repeatedly in inference is relatively small. We shall limit
the remainder of this section to the consideration of some further rules
governing the manipulation of quantifiers, and an extension of the rule
concerning tautological equivalences (which was stated in §4.4) to a rule
for interchanging logically equivalent formulaa.
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If we wanted to establish Q1 as a derived rule, it would be reasonable
to begin by proving:

(A) From (v)S we may derive —(3v)-S.

prooF: Introducing (v)S(v) and (3v)-S(v) as premises, we derive a
contradiction by (i) using ES to obtain ~S(v) from (3v)-S(v), where v is
an appropriate ambiguous name, and (i) using US to obtain S(v) from
(v)S(v). The contradiction S(v) & -S(v) establishes the rule by indirect
proof.

We may use Rule (A) to give a two-line derivation of ‘~(3z)-(z + 0 = z)’
from ‘(z)(x + 0 = z)’.

{1 (1) @)= +0=2) P
{1} @) =(32)~(z + 0 = z) 1, (A)

If challenged on the validity of this derivation, we may use the proof of
Rule (A) to tell us how to eliminate the appeal to (A) in line (2); we get
then in terms of the original rules the longer derivation:

{1} (1) @z+0=2) P

{2} ) (z)~(z + 0 = 2) P

{2} 3 -(c+0=a 2 ES

{1} 4 a+0=a 1US8

{1, 2} 5) @a+0=a)&~(x+0=0a) 3,4T

{1} 6) -(3z)-(z+0 =2) 2, 5 R.AA.

The function of derived rules is primarily to eliminate unnecessary repeti-
tion of recurring patterns of inference. Once the general method of attack
is clear, there is no point in duplicating the argument corresponding to
lines (2)—(5) when we want to pass from a universal statement to the
negation of an existential one.

The most important properties of quantifiers are summarized in the fol-
lowing rule; the first balf of Part la is what has just been discussed as
Rule (A).

Derivep RuLE GOVERNING QUANTIFIERS: Q
(1) IF S is any formula, then:

(a) from (v)S we may derive ~(I v)~S, and conversely;
(b) from (v)-S we may derive —(3v)S, and conversely;
(¢) from (3v)S we may derive —(v)=S, and conversely;
(d) from (3 v)-S we may derive —(v)S, and conversely;
(e) from (v)(w)S we may derive (w)(v)S;

@) from (Av)(Iw)S we may derive (Aw)(3V)S;

(&) from (3v)(w)S we may derive (w)(3v)S.
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(2) If S and T are any formulas, then:

(a) from (v)(S & T) we may derive (v)$ & (v)T, and conversely;

(b) from (3v)(S v T) we may derive (3v)S v (I V)T, and conversely;
(¢) from (v)(S — T) we may derive (Av)S — (IV)T;

(d) from (3v)(S & T) we may derive (Iv)S & (AV)T;

(&) from (v)S v (V)T we may derive (v)(S v T).

() If S and T are any formulas and v is not free in S, then:

(a) from (v)(S v T) we may derive S v (v)T, and conversely;

(b) from (3v)(S v T) we may derive S v (3 V)T, and conversely;
(c) from (v)(S & T) we may derive S & (v)T, and conversely;

(d) from (3v)(S & T) we may derive S & (I V)T, and conversely;
(e) from (v)(S — T) we may derive S — (v)T, and conversely;

®) from (3v)(S — T) we may derive S — (A v)T, and conversely;
(g) from (v)(T — S) we may derive (Av)T — S, and conversely;
() from (Iv)(T — S) we may derive (v)T — S, and conversely.

The proof of the first half of Part 1a was given above. The remainder of
the proof of the various parts of this rule is left to the student. The proof
of nearly every part parallels the derivation of some one or two theorems
in Exercise 1 of the previous section. For example, (1a) of the rule corre-
sponds to (a) and (b) of the Exercise; (3a) of the rule corresponds to (m)
of the Exercise. The proof of (1b) and (1d) is trivial once (1a) and (1c)
respectively are established.

You will scarcely absorb at once all parts of the above rule, but you will
find it useful to have in one place for ready reference a rule as complete as
this one. Since students occasionally have difficulty in correctly inter-
preting the restriction in Part (3) of the rule that v not be free in S, it
may be useful to consider one or two examples. Given the formula
‘@)(Mz — Az)’ may we use (3e) to derive ‘Mz — (z)Az’? No; since
‘e’ is free in ‘M2’ the restriction is not satisfied. In this example, S is
‘Mz’ and T is ‘Az’. The fact that 2’ is bound in the whole formula
‘(z)(Mz — Ax)’ is irrelevant; the question is always: Is 2’ free in S con-
sidered by itself? As another example, suppose we are given ‘(3 y)[ (=) (M=z
— Az) v Ay]'. May we use (3b) to derive ‘(x)(Mz — Az) v (Ay)Ay’?
Yes; for here S is ‘(z)(Mz — Agz)’, v is the variable %, and clearly ‘y’ is
not free in ‘(z)(Mz — Az)’. In this example, T is, of course, ‘Ay.

The uses of the derived rule governing quantifiers are widened by ex-
tending the rule permitting replacement of a formula by a tautologically
equivalent one to replacement by a logically equivalent formula. We have
not yet precisely characterized the notion of logical equivalence, but the
appropriate definition should be obvious from §4.2. Two formulas are
logically equivalent if and only if each logically implies the other. And
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'this is the same as saying that the biconditional formed from them is uni-
versally valid. From the soundness and completeness of the basic rules
of inference it follows that two formulas are logically equivalent if and
only if each is derivable from the other by the rules of inference. Or, put
another way, if and only if the biconditional formed from them is a theorem
of logic.

Suppose, for instance, we wanted to show that the formula:

1 @)(3y)(=Qy — (W) ¥Qz — Q)
implies and is implied by:

@ )(3y)(2)(2Qy & yQz — (Iw)(uQx)).
We first observe that it follows from Rule Q3¢ above that the formula:

@3 2Qy — ()(Iw)(@Qz — uQz)
is logically equivalent to:

#) (@) (=Qy — (Jw)(¥Qz — u@z)).
Moreover, from Q3f we observe that the formula:

(5) (w)¥Qz — wQz)
is logically equivalent to:

® yQz — (I u)(uQz).

Replacing then (5) by (6) in (4), we obtain as logically equivalent to (4)
and thus as logically equivalent to (3):

@ (@)(@Qy — ¥Qz — (Iu)uQx)),
but the formula:
2Qy — ¥Qz — (Iu)uQr)
is tautologically equivalent (by ¥mportation of ‘yQz’) to:

8) 2Qy & yQz — (Juw)uQz,
whence (7), and thus (3), is logically equivalent to:
€)) (@)(=Qy & yQz — (Fu)uQz).

Replacing (3) by (9) in (1) we immediately obtain (2) as desired. Note
that Q3¢ and Q3f could not be applied directly to (1), since the quantifiers
to which we applied them are not standing in front of the formula. The
rule permitting mutual replacement of logically equivalent formulas was
needed. Naturally, the equivalence of (1) and (2) could have been shown
by a derivation making no use of derived rules, but this involves the
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tedious operations of dropping and re-adding all quantifiers—the sort of
thing derived rules are designed to help avoid.

The rule for mutual replacement of logically equivalent formulas must,
like the rule for introducing previous results, be restricted with respect to
ambiguous names. The construction of a fallacious inference justifying
the restriction is left as an exercise. -

Ruie ror Logicairy EQuIvALENT ForMuLas: LE. Let P and Q be
logically equivalent formulas which contain no ambiguous names. If P
occurs as part of formula R and if formula S results from R by replacing
at least one occurrence of P in R by Q, then S is derivable from R, and
conversely; that i3, R and S are logically equivalent.

The intuitive soundness of the rule should be obvious. Since a precise
proof of this rule involves use of the principle of mathematical induction
on the length of R, details are omitted here, but the intuitive idea may be
stated. If R is simply P, the proof is trivial, for the logical equivalence of
R and S is the same thing as the logical equivalence of P and Q. We now
suppose the theorem holds for formulas of length not greater than n, and
show that it holds for any formula R of length n 4+ 1. This latter argu-
ment breaks down into cases. R must be of the form: ~R;, Ry & Ry, Ry V Ry,
Ri — Rg, Ry « Ry, (V)Ry, or (3v)R;, where Ry and R; are both of length
less than n 4 1. The problem is then to show that for each of the cases
the theorem holds for R on the inductive hypothesis that it holds for R,
and R;; the proof for each case is straightforward and simple. Suppose, for
instance, R is Ry & Ro. Let S; be the result of replacing any number of
occurrences of P in R, by Q, and let S; result in a similar way from R,.
Then by the inductive hypothesis, we have as logically equivalent, and
thus as theorems of logic,

1) Ry & S
2 Ry & S,
and (1) and (2) tautologically imply
Ri &Ry & $; & S;;

that is, R and S are logically equivalent as desired, since R is R; & Ry, and
Sis $; &S..

With respect to the remarks made in § 4.4 about the derived character
of Rules Q1, Q2, and T.E., it is now clear that all three of them follow at
once from the rule for quantifiers stated in this section and the rule of re-
placement for logically equivalent formulas.

We have now completed our development of the rules of logical infer-
ence. It is characteristic of the elementary treatment contained in Chap-
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ters 1-5 that we have proved nothing elaborate or sophisticated about logic.
The aim of these chapters has been to teach you how to use exact and
explicit rules of inferences. The remaining chapters (with the exception
of the one immediately to follow) are concerned with applying the concepts
and methods of logic already introduced to the broader context of mathe-
matics. In other words, we shall be concerned with applying our logical
tools to improving our understanding of mathematics and the character of
theoretical science in general.

EXERCISES

1. In each of the following cases, construct a fallacious derivation to show how
the adoption of the particular rule in question would lead from true premises to a
false conclusion.

(a) From (v)( 3w)S we may derive ( 3w)(v)S.

(b) From (v)(S — T) we may derive (3v)S — (V)T.

(¢) From ( 3v)S & ( 3v)T we may derive (3v)}(S & T).

(d) From S & (3v)T we may derive (3v)(S & T). (Hint: Consider the case
where v is free in S).

(e) From (v)(S v T) we may derive (v)S v (V)T.

(f) From (v)(S — T) we may derive (3v)S — T.

(g) From (v)S — (v)T we may derive (v)}(S — T).

2. Prove the following theorems of logic.

(a) (x)(Fz v ~Fz)

(b) Gy — (=)(Gy v Fz)

(¢) 0)(Fz & Q1) — ()Fz <> (2)Gx)
(d) «=)(y) I2)Fzyz «> (z)( Ay)(z)~Fayz

3. Prove the various parts of the derived rule governing quantifiers.

4. In which of the following is a correct application made of the indicated part
of the rule governing quantifiers? Note that usually the crucial question is deciding
if restrictions on free variables have been satisfied.

(a) By (3a) from ‘Fy v (x)Fx’ we may derive (z)(Fy v Fz)’.

(b) By (8b) from ‘Hzy v ( 3y)Fy’ we may derive { 3y)(Hzy v Fy).

(c¢) By (3¢) from ‘(x)( Ay)(Fy & Hzy)’ we may derive ‘( 3y)(Fy & (x)Hzy)'.

(d) By (3d) from { 3z)((z)Fz & Hzy)’ we may derive ‘(z)Fz & (3z)Hzy' .

(e) By (3e) from “(z)(y % 0 — (z £ 0 — z-y # 0)’ we may derive ‘y # 0 —
@)z=0—> zy7#0).

(f) By 38f) from {(3A(z>1&y>1 — z-y > 1) wemayderive (x> 1&
y>1) = (3y)zy>1.

(@) By (3g)from ‘@)z + 2=y + 2z > z = y)’ wemay derive (32)(x + 2z =

+2)—z=y

Y .
(h) By (3h) from ‘(3y)(y > 0 — z > 0) wemay derive ‘(y)(y > 0) — z> @

5. In each of the following inferences, use is made of the rule for replacing
logically equivalent forraulas (L.E.). In each case, state the particular logical
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equivalence being used. The formula on the right is derived from the one on the
left, and conversely.

(&) @WN(ANE>y > z2>2&2> )
@WE>y — (I2)z>2&z2 > y))
® APy =0-—y>2) (32)y)y >z vy > 0))
(© (A)y)~(y > =) (30« 3y)(y > 2)
@ (AP >0->y—-1<2) (Ja)(3Y(z>0&~(y—1<2)

6. Prove the following derived rule (SussTiTUTION FOR FREE VARIABLES): From
S(v) we may derive S(1), provided (i) v 18 not flagged, (ii) v is not a subscript, and (iii) no
JSree occurrence of v i3 within the scope of a quantifier using a variable of t.

7. Construct a fallacious inference which will justify the restriction concerning
ambiguous names in the rule for replacing logically equivalent formulas.



CHAPTER 6

POSTSCRIPT ON USE AND MENTION *

§ 6.1 Names and Things Named. Ordinarily in using language there
is no possibility of confusing a thing and its name. We use names to talk
about things; and, so it would seem, only an idiot could mix up William
Shakespeare, say, and his name. However, when we want to meniion
names or expressions in general, and not merely use them, we do not have
to be idiots to become confused. That is, certain special problems arise
when the things named are themselves linguistic expressions. The stand-
ard method of naming expressions is to use single or double quotation
marks; in previous chapters we have used single quotes.

Consider the following sentences:

1 California is a state.

@) California has ten letters.

&) ‘California’ is a state.

4) ‘California’ has ten letters.

5) ‘California’ is a name of California.

(6) “California” is a name of a name of California.
On the basis of the remarks in the first paragraph it should be clear that
sentences (1), (4), (5), and (6) are true, while (2) and (3) are false. In
sentences (3), (4), and (5) the word ‘California’ is being mentioned rather

than used. In such cases it is somewhat clarifying to read the phrase ‘the
word’ before the mention of the word. Thus rephrased, (3) would read:

3) The word ‘California’ is a state.

A more subtle test of our understanding of these matters may be obtained
by baptizing the word ‘California’ with a personal name. Let

) Jeremiah = ‘California’.

* This chapter may be omitted without any loss of continuity.
121
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On the basis of (7) let us see which of the following are true:

®) Jeremiah is a name.

()] Jeremiah has ten letters.
(10) Jeremiah has eight letters.
(11 ‘Jeremiah’ has eight letters.
(12) ‘Jeremiah’ is a name of a state.

It should be evident that (8), (9), and (11) are true, while (10) and (12)
are false. If in (12) the word ‘Jeremiah’ had been used rather than men-
tioned, a true sentence would have been obtained:

12) Jeremiah is a name of s state.

Sentence (12) could also have been rendered true by inserting another
‘name of’ clause:

(12" ‘Jeremiah’ is a name of a name of a state.

The view accepted by most philosophers is that not every expression of
a language names something. An extreme example is the left-parenthesis,
Nearly everyone would agree that this expression is the name of no object.
More perplexing problems arise when predicates are considered. For ex-
ample, what kind of entity, if any, does the predicate ‘is a President of the
United States in the nineteenth century’ name? We shall not enter into
this controversy here, nor are any controversial assumptions concerning
such questions necessary for our subsequent developments. The distinc-
tion of serious concern in this book is that between expressions and their
names. The left-parenthesis has a name even though it designates nothing
itself.

EXERCISES

1. Which of the following sentences are true?

(a) Kant was a German philosopher.

(b) ‘Kant’ has four letters.

(¢) Kant is a name of Kant.

(d) Kant is a name of ‘Kant’.

(e) Newton has a longer last name than Xant.
(f) Newton is a longer name than Kant.

2. If, baptizing, we let
Mary = ‘Marilyn’,
which of the following sentences are true?
(a) Mary is a longer name than ‘Mary’.
(b) ‘Mary’ has seven letters.
(c) Mary is a common girl’s name.
(d) ‘Mary’ is a common girl’s name.
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(e) There is no person named Mary.
(f) Mary is a name of Marilyn.

(2) ‘Mary’ is a name of Marilyn.
(h) Mary is a name of ‘Marilyn’.

(1) ‘Mary’ is a name of ‘Marilyn’,

§ 6.2 Problems of Sentential Variables. In Chapter 1 we were faced
with the problem of using variables for which sentences or names of sen-
tences may be substituted. For several reasons the latter alternative was
chosen: for the letters ‘P, ‘Q’, ‘R’, ete. of Chapter 1 we substitute names of
sentences. When one has in mind substituting sentences rather than names
of sentences for the variables, it is customary to use lower-case letters ‘p’,
‘¢, 7, etc. On the basis of the conventions stated, it is appropriate to
call the letters ‘P’, ‘Q’, and ‘R’ sentential variables, and the letters ‘p’, ‘¢,
and 0 propositional variables. Now the word ‘proposition’ has a tarnished
history in recent philosophy. We understand here that a proposition is
an entity named by a sentence. If you do not believe or want to believe
that sentences name anything, do not use propositional variables.

The remarks just made about propositional variables would be regarded
as suspect in some philosophical strongholds, but the basis of them seems
sound to the author and may be explained by an appeal to the previous
discussions of variables and terms in general in Chapters 3 and 4. The
standard viewpoint of formal logic is:

(I) When a variable is replaced by a term which itself contains no vari-
ables, then the substituted term must name some eniily.

This thesis, i.e., (I), is so fundamental to the development of a sound,
smooth-running logic of inference that it is to be abridged only for very
profound reasons. (A specific application of this thesis is to be found in
Chapter 8 in the discussion of what to do about the arithmetical problem
of dividing by zero.) Given the true sentence of arithmetic:

@DWeE+y=y+2),
if we infer by universal specification:
3+5=543,

we are then committed by (I) to the view that ‘3 + 5’ and ‘5 + 3’ are
terms designating a certain number. The letters ‘2’ and ‘y’ are called
numerical variables because they may be replaced by terms designating
numbers. Similarly, from the truth of logic that for any propositions p
and ¢
p— (Ve
we may infer: ‘
l=l1—> (1=1v2=3).
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Since the variable ‘p’ is replaced by the sentence ‘1 = 1’, according to (I),
this sentence must be the name of some entity. Thus the need for proposi-
tions when variables are used for which we substitute sentences and not
names of sentences.*

Skepticism about the existence of such entities as propositions aside,
variables which are replaced by names of sentences rather than sentences
have certain technical advantages. The simple assertion:

) Every sentence P is either true or false
is not easy to state using propositional rather than sentential variables.
We might begin by trying:

@ Every proposition p is either true or false.
But if we apply universal specification to (2), replacing ‘p’ by ‘Geronimo

is dead’, we obtain a grammatically meaningless expression—namely, a
sentence which appears to have two main verbs:

3) Geronimo is dead is either true or false.
As a second try we might rephrase (2):
) For every proposition p, ‘p’ is either true or false.

If we did not balk at substituting for ‘p’ when it is inside quotes, we could
obtain from (4) the sensible sentence:

5) ‘Geronimo is dead’ is either true or false.
However, there are good reasons for balking at this substitution. Con-
sider, for instance, the sentence:

6) For every p, the letter ‘p’ is the sixteenth letter of the alphabet.

This sentence would, I believe, ordinarily be said to be true, and the
quantifier ‘For every p’ would be regarded as redundant and not binding
the occurrence of ‘p’ inside the quotes. If we regard (6) as true and con-
sider the quantifier as binding the occurrence of ‘p’ in quotes, we obtain
by the substitution used-in obtaining (5) from (4) the false assertion:

)] ‘Geronimo is dead’ is the sixteenth letter of the alphabet.
The rule blocking (7) may be summarized as follows:
(II) Quantifiers standing outside of quotes cannot bind variables occur-
ring instde quotes.
Rule (IT), like (I), is to be abandoned only for profound reasons.
* It is perhaps worth remarking that in Quine’s Methods of Logic the letters ‘p’, ‘¢,
‘r’ are not used but mentioned. Hence they are not used as variables by Quine and

what has been said above does not entail that he has tacitly committed himself to
propositions.
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Without claiming to have exhausted all alternatives in translating (1)
into a sentence using propositional variables, I believe we may rightly
claim that the alternatives considered do argue for sentential as opposed to
propositional variables.

EXERCISES

1. In each of the following sentences, decide if the letters ‘A’, ‘B’, and ‘C" should
be propositional or sentential variables.

(a) For every A and B, A implies the disjunction of A and B.

(b) For every 4, B, and C, if A only if B and B only if C then A only if C.

(c) For every A and B the implication whose antecedent is the conjunction
of A and B and whose consequent is the disjunction of A and B is a tau-
tology.

2. Point out the confusion between propositional and sentential variables in the
following sentence:

If p implies ¢ and ¢ implies p, then p if and only if ¢.
§ 6.3 Juxtaposition of Names. In the preceding section we defended

the choice of sentential variables. But we did not mention a certain diffi-
culty which arises in their use. Consider the sentence:

1) For all sentences P and Q, P — (P v Q) is true.

Applying universal specification to (1) by replacing the sentential variables
by names of some sentences, we obtain:

)] ‘Geronimo is dead’ — (‘Geronimo is dead’ v ‘Crazy Horse was

two-faced’) is true.

The problem is that the subject of (2) is not a sentence; in fact, as it stands
(2) is not meaningful since it has no proper grammatical subject. We
would expect to find the name of a sentence preceding the phrase ‘is true’,
but instead we find ‘is true’ preceded by a conglomeration of names of
sentences, signs for sentential connectives, and parentheses.

To remedy this situation, we need to introduce two conventions, which
are fundamental to the usage in this book.

ConventION (I). The following logical signs are used as names of them-
selves: -, &, v, =, <, (), 3; =.

Convention (I) countenances such unusual appearing identities as:
& -_ 4 &)’
— = ),
Using (I), we may replace (2) by (3):

®3) ‘Geronimo is dead’ ‘—’ ‘(’ ‘Geronimo is dead’ ‘v’ ‘Crazy Horse
was two-faced’ ¢)’ is true.
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The second convention will permit the conversion of (3) into & proper sen-
tence.

ConventioN (II). PrINcIPLE OF JUXTAPOSITION. If Nj 1s a name of
the expression E, and Ny 13 a name of the expression Eg, then the expression
consisting of Ny followed immediately by Ny 18 a name of the expression
consisting of E, followed by E..

The following identities exemplify the principle:

‘Fz' ‘—' = ‘Fz —,
€)) ‘’ ¢’ ‘Geronimo is dead’ ¢)’ = ‘~(’ ‘Geronimo is dead)’
= ‘=(Geronimo is dead)’.

Or using (I), we could write in place of (4):
‘Fr’ — = ‘Fx —’
—(‘Geronimo is dead’) = ‘~(Geronimo is dead)’.
Using (II), we may rectify (3) to obtain the true sentence:

®) ‘Geronimo is dead — (Geronimo is dead v Crazy Horse was
two-faced)’ is true.

The extension of (II) to the juxtaposition of more than two names is obvi-
ous and has been used in the above examples.*

Conventions (I) and (IT) have been tacitly used throughout the previous
chapters.t Their use has not been restricted to sentential variables; it is
also required to make exact, literal sense of the statements concerning in-
ferences with quantifiers in Chapters 4 and 5. For example, consider the
statement of the rule of universal generalization:

From S we may derive (v)S, provided v is not flagged in S and
does not occur as a subseript in S.

Here ‘S’ is a variable which we replace by the name of a formuls, i.e., ‘'
is a sentential variable—with the notion of sentence extended to the more
general one of formula. The letter ‘v’, on the other hand, is a variable

* In mathematical language juxtaposition of names of expressions is used to denote a
binary operation on expressions, just as juxtaposition of numerical variables is used to
denote the binary operation of multiplication. Sometimes it is convenient to have a
symbol for multiplication, and similarly we could if desired introduce Tarski’s symbol
‘~? of concatenation to denote the appropriate operation on pairs of expressions. We
would then write, for instance,

Fr ' = Pz —

+ We have also used the convention of printing in boldface all variables which are re-
placed by names of expressions.
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which we replace by names of individual variables such as ‘2’ and ‘.
Thus, as an instance of UG we have:

6) From ‘(z + z > z)’ we may derive (‘2")‘(z + z > z)’.
Using (I) and (II) we rectify (6) into the sound statement:
@ From ‘z + z > 2’ we may derive ‘(z)(z + z > z)’.

Certain minor inconsistencies or extensions of usage, which are not cov-
ered by (I) and (II), have been permitted in the preceding chapters. Ex-
plicit attention to some of the violations is directed by the exercises given
below. In this connection it perhaps needs to be said that in Chapters 4
and 5 we used neither variables which are replaced by predicates nor vari-
ables which are replaced by names of predicates. When such variables are
wanted, a choice similar to that between sentential and propositional vari-
ables needs to be made. It is customary to say that a variable which is
replaced by a predicate takes as its values propositional functions, that is,
predicates denote propositional functions; a variable which is replaced by
a name of a predicate takes as its values, sentential functions, but sentential
functions are of course nothing but predicates. Many philosophers find it
even harder to believe that there are entities like propositional functions
than that there are propositions. No commitment to either propositions
or propositional functions has been made in this book. The letters ‘#”,
‘@, ‘H’, and the like used in Chapters 4 and 5 are not variables but predi-
cate constants. If we want to be explicit about their introduction, we may
provide equivalences for each one:

Hz < zis human,
and so on.

EXERCISES

1. Exactly what extension of Convention (I) is required to cover the use of sen-
tential variables in displayed formulas in § 1.3 giving idiomatic equivalents of
‘if ... then ...”: P only if Q, etc.

2. What is the difference concerning use and mention of formulas between the
way derivations are written in Chapter 2 and in Chapter 4?

3. Since juxtaposition of names denotes a binary operation on expressions, we
may ask:

(a) Is the operation denoted by juxtaposition of names associative?

(b) Does this operation satisfy the right-hand and left-hand cancellation laws?
(For explanation of this terminology see the discussion and exercises on
group theory in the preceding chapter.)

(¢) Does this operation satisfy the second or third axioms for groups intro-
duced in Chapter 5?



CHAPTER 7

TRANSITION FROM FORMAL TO INFORMAL
PROOFS

§7.1 General Considerations. It is not customary in mathematics
and the empirical sciences to present derivations of conclusions from prem-
ises in a manner as formal as that developed in Chapters 4 and 5. On the
other hand, beginning students of the sciences are often puzzled by the
criteria which govern the acceptance and rejection of proposed mathe-
matical proofs when the proofs are set forth in an informal style. For
example, if in an informal proof a student makes a mistake in substituting
variables it is often hard to convince him that he is wrong—unless a well-
defined body of formal rules is at hand to clarify the mistake.

The purpose of this chapter is to help you make the transition from
formal derivations to informal proofs in the usual mathematical sense.
You will no doubt experience some uneasiness in passing from the neat,
precise domain of formal logic, where there is a rule for everything, to the
more complicated, less precise world of ordinary mathematics and the em-
pirical sciences.

In an informal proof enough of the argument is stated to permit anyone
conversant with the subject to follow the line of thought with a relatively
high degree of clarity and ease. It is presumably intuitively transparent
how to fill in the logical lacunae in the proof. In many respects the stand-
ards of intelligibility for informal proofs are similar to those for informal
conversation. Thus if someone asks if you are driving home today, sup-
pose you answer, “No, because my car is in the garage being repaired.”
You do not then proceed to state all the other obvious premises which,
together with the assertion that your car is in the garage, will logically
imply the conclusion that you are not driving home today. Analogously,
in giving an informal proof, we try to cover the essential, unfamiliar, un-
obvious steps and omit the trivial and routine inferences. However, it is
a commonplace of exact philosophy that the concepts of being essential,
being unfamiliar, or being trivial are not precise and are not easily made
precise. The very vagueness of the criteria governing informal proofs is a
primary justification for a precise definition of a formal proof. In cases of

128
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controversy or doubt concerning the validity of an informal proof it is ex-
ceedingly useful to have available a clear, exact standard to which appeal
may be made.

Qur approach to this problem of transition shall be to introduce a num-
ber of axioms which express basic facts about numbers, and then to derive
both formally and informally some intuitively familiar conclusions. Logical
inferences connected with the subject matter of arithmetic have been se-
lected for three reasons to illustrate methods of informal proof. In the
first place, the material is intuitively familiar to everyone from childhood.
In the second place, examples of inferences in this domain have a genuine
mathematical content in the sense that the inferences are not intuitively
trivial. Many of the exercises in Chapter 4 do not have mathematical
content in this sense, for it is often intuitively obvious that the conclusions
logically follow from the premises given in the exercises. In comparison,
it is by no means obvious that the full arithmetic of addition, multiplica-
tion, and subtraction can be derived from the fifteen basic axioms intro-
duced in the next section. In the third place, only a few more axioms need
to be added to the ones to be introduced to provide a systematic basis for
the logical development of the differential and integral caleulus, the branch
of mathematics which has to date been the most important in the em-
pirical sciences.

§ 7.2 Basic Number Axioms. We hope you will recognize immediately
each of the following axioms as a familiar truth of arithmetic. In addition
to the general apparatus of logic, the axioms use only the individual con-
stants ‘0’ and ‘1’, the familiar operation symbols ‘+’ and ‘-’ denoting the
operations of addition and multiplication respectively, and the relation
symbol ‘<’ denoting the relation less than.*

1) @e+y=y+2)

2 @Wey=y2

B @WEeE+y+z=24+ @+ 2)]

@ @Oy z=z(y2)]

6G) @WEE-Y+2 =1y + @2)]

6 (@e@+0=2

™M (@)(z1=2)

@ @APE@E+y=0

9 @Wy>#0—-> 32)=y2)
(1) @Wkr<y— -y <2)
(11) @WEIE<y&y<z) - 2<7]
(12) @Wk#*y—> <yvy<a)]
(13) @OWEl<z- @+y<z+2)
(14) @WERI0<z&y<2) — zy <z-2
(15) 01
* The axioms are essentially those given by Tarski in his I'ntroduction to Logie.
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Since many of these axioms have familiar verbal deseriptions, it is desirable
to examine them individually, Axioms 1 and 2 assert that addition and
multiplication are both commutative operations, that is, if we add or mul-
tiply two numbers, it does not matter in what order we consider them.
For example, 2 4+ 3 =3 + 2,and 4-3 = 3-4. Axioms 3 and 4 assert that
addition and multiplication are both associative operations, that is, the re-
sult of adding or multiplying three numbers is independent of the way in
which they are grouped. Axiom 5 says that multiplication is distributive
with respect to addition; it is this distributive property which permits us
to “multiply out.” Axiom 6 says that the addition of zero to any number
simply yields that number again. More technically, the content of this
axiom is that zero is a right-hand identity element for addition. (In general,
an element e is a right-hand identity element for an operation o if for
every
zoe=uz.

A left-hand identity element is defined similarly. An element which is
both a right-hand and a left-hand identity element is called simply an
identity element.) Axiom 7 says that 1 is a right-hand identity element for
multiplication. We shall shortly prove that both 0 and 1 are in fact
unique identity elements. Axiom 8 says that for every number z there
exists & number y such that z + y = 0. We shall later show (what we in-
tuitively know) that it follows from our axioms that y is unique. The
element y is the inverse element of x (with respect to addition). Axiom 9
says that if x is & number and y is a number not equal to 0 then we can
find a number z such that y-z2 = 2. As in the case of Axiom 8, it is not
difficult to show that this z is unique. The intuitive content of this axiom
is that division except by zero is always possible. Axioms 10-12 assert
familiar ordering properties of the relation <. Axiom 13 asserts that add-
ing the same number to two given numbers preserves the inequality be-
tween the given numbers, and Axiom 14 asserts that multiplying two
members of an inequality by a positive number leaves the inequality un-
changed. The final axiom, Axiom 15, provides that ‘0’ and ‘1’ designate
distinct elements.

The axioms we have been discussing are satisfied by the set of all rational
numbers (a rational number is a number equal to the ratio of two integers),
and also by the set of all real numbers. For the present, we may charac-
terize the set of real numbers as the set of all unlimited decimals. For
example, 4/2 is a real number but not a rational number, since it is not
equal to the ratio of two integers; on the other hand, every rational num-
ber is a real number. The rational number 44, for example, is identical
with the unlimited decimal 1.3333 .... In other words, we may pick as
our domain of individuals either the set of rational numbers or the more
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inclusive set of real numbers. As we shall see, Axioms 1-15 are adequate
to develop the arithmetic of the fundamental operations of addition, multi-
plication, and subtraction.

EXERCISES

1. Which of the Axioms 1-15 are not satisfied by

(a) the positive integers?
(b) the integers?
(c) the non-negative rational numbers?

2. An operation o is commutative if for every z and y
zoy=youx.
Axioms 1 and 2 say that addition and multiplication are commutative operations,

(a) Is subtraction commutative?
(b) Is division commutative?

3. An operation o is assoctative if for every z, y, and 2,
(zoy)oz==zo(yo2).
Axioms 3 and 4 say that addition and multiplication are associative operations.

(a) Is subtraction associative? If not, give an explicit counterexample.
(b) Is division associative? If not, give an explicit counterexample.

4. An operation « is distributive with respect to an operation o if for every z, y,
and 2
zx(yoz) = (z+y)o(zx2).

Axiom 5 says that multiplication is distributive with respect to addition. When
the answer to any of the following questions is negative, give an explicit counter-
example.

(a) Is addition distributive with respect to multiplication?
(b) Is subtraction distributive with respeet to multiplication?
(¢) Is multiplication distributive with respect to subtraction?
(d) Is subtraction distributive with respect to division?

5. Is there a left-hand or right-hand identity element for the operation of
subtraction?

6. Give an interpretation which proves that Axiom 15 is independent of the
other fourteen. (Warning: do not violate Rule VII of §4.2.)

7. Give an interpretation which proves that Axiom 8 is independent of the
other fourteen. (Warning: do not violate Rule VII of §4.2.)

8. Give an interpretation which proves that Axiom 9 is independent of the
other fourteen. (Warning: do not violate Rule VII of §4.2.)

§ 7.3 Comparative Examples of Formal Derivations and Informal
Proofs. We turn now to the main business of this chapter: the introduc-
tion of informal proofs. We shall use the fifteen axioms introduced in the
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previous section as our basic premises. The formal derivations will thus
begin with line (16), following the rules laid down in previous chapters.
Our only condensation will be to make multiple applications of the rule
governing identities. In Chapter 5, any formula derivable from the empty
set of premises was called a theorem of logic. Here we term any formula
derivable from our basic axioms a theorem of arithmetic.

It is important to realize that there is an enormous difference between
the relatively trivial task of recognizing the truth of the theorems we shall
state and the much more difficult enterprise of showing that they are in
fact logical consequences of the fifteen axioms stated in the previous section.
You should not be thrown intellectually off balance by the seemingly
trivial content of some of the theorems. You may in such cases be inclined
to say to yourself, “This is so obvious it is silly to ask me to prove it.”
But if you say this you are confusing the obviousness of the truth of the
theorem with the obviousness of the proof that the theorem is a logical
consequence of the axioms.

Our first theorem states that zero is the unique right-hand identity ele-
ment for addition. In the formal derivation references to US are omitted,
since the actual substitutions made are indicated, and the substitution
notation itself signifies an application of US.

TeeorEM 1. @)Wy +2z=y) - z=0]

FORMAL DERIVATION

{16} (16) Ny +z=1y) zP

{16} 17 04+=2z=0 z 16 0/y

{6} (18) 2+0==2 6 z/z

{1} (19 24+0=0+= 1z/z,0/y
{1, 6, 16} (20) z =0 ‘ z17,18,191
{1, 6} @) Wy+z=y) 22z=0 16, 20 C.P.
{1, 6} 22 @WIYy+z=9) oz=0 210G

INFORMAL PROOF. By hypothesis of the theorem, for every y, ¥y + = = .
Hence, (putting ‘0’ for ‘¢’) we obtain:

04+2z=0.

But Axiom 6 asserts that z 4+ 0 = 2. Since by virtue of Axiom 1 addition
is commutative, that is, z 4+ 0 = 0 4 z, we infer immediately that z = 0.
Q.ED.

As is to be expected from what has been said before, the informal proof
mentions explicitly none of the uses of logical rules of inference; only spe-
cific axioms are mentioned by name. In other words, the formal rules of
derivation are taken for granted. The parenthetical expression in the sec-
ond sentence of the informal proof is a concession to explicitness not ordi-
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narily made. The particular substitutions made in axioms or previous
theorems are not described unless they are complicated or unobvious. Ex-
cept when an informal proof is unusually long, there is no “summing up”
in the routine manner of lines (21) and (22) of the formal derivation. The
obvious task set by Theorem 1 is to show that ‘2 = 0’ follows from the
hypothesis of the theorem. When this is done, the informal proof is satis-
factorily completed. The ‘Q.E.D. at the end, standing for quod erat
demonstrandum, is a traditional way of signifying that the proof is finished.

The working rule followed in the informal proofs given in this chapter
and recommended for the exercises is:

In an informal proof exrplicitly indicate EVERY use of an aziom or
previous theorem of arithmetic. Ordinarily suppress mention of the logical
rules of inference used.

Since the proof of the second theorem, stating that 1 is the unique right-
hand identity element for multiplication, is very similar to that of Theorem
1, we leave it as an exercise.

TaEOREM 2. (2)[(Y)Yy-z=19) > z = 1).

The next theorem asserts the cancellation law for addition. Its proof
should be compared with the corresponding proof for arbitrary groups in
Chapter 5. The basic difference is that we have not defined the notion of
an inverse element (with respect to addition) and thus cannot follow com-
pletely the strategy of the earlier proof. In the proof of the cancellation
law for addition an extension of the rule governing identities is conveniently
used. This extension we abbreviate: 12,

AppiTIONAL RULE FOR IDENTITIES: I2. If ty, t3 and t3 are any terms
and o is any operation symbol then from t; = t; we may derive t; oty =
totzandty oty = 30t
Proor: We have as a truth of logic
¢y ot =t ot
Assuming now that the formula t, = t; holds, we apply the original rule
for identities and substitute t3 for the second occurrence of t, in (1) and
obtain

tiots =t oty

By a similar argument we easily obtain t; ot; = t3 0 #;.
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As a special case of this rule we obtain for addition and multiplication
as theorems of logic:

(1 @Ry =2—>z+y=2+2),
2) @)WY =2 > 2y ==z-2).

It is not uncommon to see sentences like (1) and (2) given as axioms of
some special domain of mathematics like arithmetic, but this practice rests
on a confusion, for these two sentences are truths of logic and it is re-
dundant to add them as new subject matter axioms. The third theorem

is for obvious reasons called the cancellation law for addition.

TeeorEM 3. @)W+ y=z+ 2 — y =2).

FORMAL DERIVATION

{8} (16) (3y@@+y =0) 8z/x

{8} (D zt+az=0 16 ES

{1} 8) z+oaz=0ar+=z 1 z/z, azfy

{1, 8} (19) az +2 =0 17,181

{1} (20)0+4+y=y+0 10/z,y/y

{6} @) y+0=y 6y/z

{1, 6, 8} 23) (az+2)+y=y9 19,221

{3} (24) (a:¢:+x) +y 3“::/‘”; x/yy y/z
= a; + (:'C + 1/)

{6} (25) z+0=2z 62/

{1} 26) 0+2=2+0 10/z, 2/y

{1, 6, 8} @D (ezt2)+2z=2 19, 25,26 1

{3} (28) (az +2) +2 3 az/z, 2y, 2/2
= o, + (x + z)

{29} @) z+y=z+2 z,9,2P

{29} (30) oz + (z + y) z,9,229 12
= oy + (x+z)

{1:3; 6:8’29} (31) y==2 Y, 2, 23, 24, 27’ 28)

301

{1, 3, 6, 8} B z+y=2z+2z—y 29,31CP.
=2z

{1,3,6,8} (33) @WEE+y 32U@

=z42z—>y=2)

INFORMAL PROOF. By Axiom 8 there is a number, say u, such that
z + u = 0, and hence by the commutative law for addition:

€Y

u-42z=0.
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Using Axiom 6, and the commutative and associative laws for addition,
we obtain the following series of identities:

y=y+0 (Axiom 6)
=04y (Commutative law)
=@u+2z)+y By (1))
=u+4(z+y) (Associative law)
=u+ (@42 (Hypothesis of theorem)
=(u+z)+2 (Associative law)
=042 By (1))
=z40 (Commutative law)
=2z (Axiom 6) Q.E.D.

The notation at the right in the informal proof should be self-explanatory:
for instance, the first identity follows from Axiom 6, and the second iden-
tity: y = 0 + y follows from the first by the commutative law for addition
(and the logical rule governing identities). In several respects the struc-
ture of the informal proof is clearer than the formal derivation; in particu-
lar, the main line of the argument is presented without encumbering
nuisances such as lines (18), (22), (25)-(28) of the formal derivation—not
to mention the redundant summing up in (32) and (33). The notation
used at the right exemplifies a general tendency of informal proofs: stand-
ard properties, such as commutativity of addition are referred to by name
rather than by reference to the appropriate axiom or theorem. Notice
that in the informal proof ‘w’ plays the role of an ambiguous name; it
corresponds to ‘a;’ in the formal derivation. The phrase ‘say u’ at the
beginning of the informal proof is often used by mathematicians to indicate
that a letter which is ordinarily used as a variable is being used for imme-
diate purposes as an ambiguous name.

It is not intended to give the impression that there is exactly one correct
style to be employed in writing informal proofs in the sense that an Eliza-
bethan sonnet must be fourteen lines of iambic pentameter grouped into
three quatrains and a couplet. Some mathematicians would eriticize the
informal proof of Theorem 3 for being insufficiently literary because each
indicated step of the proof is not expressed in a complete, well-formed sen-
tence, but rather a barbarous notation of incomplete phrases in parentheses
is used. Still more mathematicians would criticize the undue length of
both the informal proofs so far considered, but this latter criticism may
perhaps be rejected on the ground that when we first begin to do informal
proofs it is better to be clear and somewhat too prolix than brief but
confused.

The fourth theorem states the familiar fact that the multiplication of
any number by zero yields zero as the result.
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TaEOREM 4. (z)(z-0 = 0).

FORMAL DERIVATION

{6} (16) z+ 0=z 6z/x
{6} a7 2)+0=2z=z 6 (z-2)/x
{6} (18) (z-z)+0 16,171
=z-(x+0)
{5} (19) z-(z + 0) 5 z/z, z/y, 0/2
= (z-z) + (z-0)
{5, 6} (20) (z-z) + (z-0) 18,191
= (z-2) +0
{1,3,6,8} @1) (z-2) + (z-0) Th. 3 (z-7)/z, (z-0)/y,
= (zz) +0 0/z
— (z:0) =0
{1,8,5,6,8) (220 20=0 20,21 T
{1,3,5,6,8} (23) (z)(z:0 =0) 22 UG
INFORMAL PROOF 1. We have the following identities:
(z-z) + (-0)=2z-(z+0) (Distributive law)
=z-z (Axiom 6)
= (zz) +0 (Axiom 6 again)

Hence, putting ‘z-2’ for ‘¢’, ‘z-0’ for ¢’ and ‘0’ for 2’ in Theorem 3, we
obtain at once the desired result: z-0 = 0. Q.E.D.

Since many mathematicians would consider the listing of the substitu-
tions made in Theorem 3 as rather inelegant, we may rewrite this informal
proof and eliminate this usage. Notice that Theorem 3 is now referred to
by the name of the property it expresses.

INFORMAL PROOF 2. Since by the distribution law and Axiom 6,
@) + @0) = 5@z +0) = 23 = (&-3) +0,

we may use the cancellation law for addition to obtain: -0 = 0. Q.E.D.

The remarks about informal proofs in this section have been almost en-
tirely stylistic in character. Without any doubt stylistic problems are
serious ones for those just beginning to acquire a firm notion of mathe-
matical proof. But perhaps still more important are those problems arising
from efforts to develop an efficient strategy for finding proofs. There are,
of course, no sure-fire methods for developing a good strategy, but we shall
try to give some useful hints along the way. In the proof of Theorem 4,
for example, the natural thing is to begin by scanning the axioms to pick
out those involving zero. Axiom 6 appears the most promising. In view
of the methods used to prove the preceding theorem, the next step is to
consider whether any application of the commutative, associative, and
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distributive laws can be made. By the time the distributive law is singled
out, some sort of a proof is beginning to shape up. These remarks are
after the fact, so to speak; it is an important element of good strategy to
be willing to try a number of different approaches. If the approach just
described had not worked, then something else should have been tried, in-
volving perhaps some of the axioms not yet used.

Certain general structures recur rather often in proofs, and it is desirable
to be explicitly aware of them. One such structure is exemplified in the
proofs of Theorems 3 and 4: the proofs primarily consist of a string of
identities. A second kind of structure is exemplified by the proof of Theo-
rem 6 of §7.5: the proof consists mainly of a series of implications. A
third sort of structure is provided by the familiar method of indirect proof,
which we first use in this chapter in the proof of Theorem 14 of §7.5.

Theorem 4 is the last theorem for which we give a formal derivation.
Consequently in the subsequent statement of theorems (or axioms) we
shall usually omit the initial universal quantifiers whose scopes extend over
the remainder of the formula—a practice customary in mathematics. In
formal derivations we have no rule permitting us to substitute for free
variables such as occur in theorems when universal quantifiers are omitted,
but we need to apply these theorems to situations involving other vari-
ables than those which occur in the initial formulations of the theorems.
As might be expected the practice in informal proofs is to substitute for
free variables in axioms and theorems whenever necessary. On the other
hand, if in the proof of a theorem based on the axioms, we introduce the
antecedent of the theorem as a premise (see, for example, Theorem 3) we
treat the free variables in this premise as flagged and do not substitute for
them.* The intuitive reason for this is obvious. Suppose the antecedent
involves free variables ‘z’, ', and ‘2. Clearly it will not do merely to
prove the theorem for the special case of z = y = z; that is, we would not
establish the theorem in its full generality if we substituted ‘z’ for %’ and
‘7. The next section is devoted to consideration of such fallacious methods,
Further clarification of the use of free variables is also provided there.

EXERCISES

1. Prove both formally and informally Theorem 2.
2. Give formal derivations and corresponding informal proofs for the following:

(a) @)~z < 2)

b @z=y = ~z<yvy<z))
(© @WY)ez<y——z=yvy<z)
@ @DWEeE+y<z+z—o y<a)

* For an exact statement of a derived rule governing substitution for free variables
see Exercise 6 of § 5.3.
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8. Given the additional premise:
(16) @<y (z=yvz<y),
prove both formally and informally that
(8) (@)(z < 2)
®) @z <y&y<z) —>z=Yy
(¢) @@z <y&y < —z<7
d) @Mz <yvy <L2)
4. Given the additional premises:

-

(16) 2=141
an 3=2+4+1
(18) 4=3+1,

prove both formally and informally that 2-2 = 4.

§ 7.4 Examples of Fallacious Informal Proofs. In Chapters 4 and 5
a number of fallacious formal derivations were presented to justify various
restrictions on the formal rules of inference and to exemplify some of the
more common errors. The purpose of this section is to point out some of
the more frequent mistakes committed in informal proofs. Asis to be ex-
pected, mistakes in informal proofs have their analogues in formal deriva-
tions. Unfortunately, however, you may find yourself making mistakes in
informal proofs that you would not make in formal derivations. Some of
the reasons for such a discrepancy are not hard to find. Once explicit and
exact adherence to the formal rules of inference is given up, there is a
natural tendency to think that now anything is permissible. There is also
a feeling of bewilderment concerning exactly what is and what is not now
considered an appropriate statement of a piece of reasoning. As some psy-
chologists would put it, in order to make the transition from formal deriva~
tions to informal proofs we must develop a tolerance for ambiguity.

There are positive ways to think about this ambiguity. The main rule
of thumb is to regard an informal proof as an abbreviation of a formal
derivation. There should be no single step in an informal proof which
cannot be expanded into a reasonable number of formal steps. It cannot
be emphasized too often that whenever you have any doubt about a par-
ticular step in an informal proof, the thing to do is to try to expand the
step in question into a fragment of a formal derivation. If you cannot
make this expansion, if you cannot become fully clear in a formal manner
about the validity of the step, then there is good reason to doubt its logical
correctness.

Probsbly the most frequent type of error made in informal proofs is
illustrated by the following proof.

TuEorEM. Foreveryz,y,ond z, ifz+y <z +ztheny <z.
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FALLACIOUS PROOF. By the hypothesis of the theorem,

)] z+y<z+ez
Putting ‘0’ for ‘2’ in (1) we obtain:
2) 0+y<0+a
From Axioms 1 and 6, we have:
@) O+y=y+0=y
and
)] 0+2=2z+0=2.
Hence using the identities (3) and (4), we infer from (2) that
y<z Q.E.D.

The mistake is made in inferring (2) from (1). No substitutions may be
made for the variables ‘2’, ‘y’, and ‘2’ in (1). Why? Well, from a logical
standpoint these variables are flagged, so we cannot universally generalize
(1) and then apply universal specification to make the appropriate substi-
tution. Thus if we turn our logical microscope on the proposed inference
of (2) from (1), we obtain the following fallacious derivation:

{1} Dzt+y<z+z z,92P
{1} 2) @)z+y <z+2) 1UQG (fallaciously)
{1} @o0+y<0+4-2 2US

Since the error committed in this proof is so common, some further reflec-
tions on it will not be amiss. Ordinarily when we want to substitute for
free variables in an informal proof, we do not think of universally gen-
eralizing and then universally specifying. As was remarked in the last
section, a derived rule permitting direct substitution may be used. This
rule is given as Exercise 6 in § 5.3, and it reads as follows:

From S(v) we may derive S(t) provided (i) v is not flagged, (ii) v i3 not @
subscript, and (iii) no free occurrence of v i8 within the scope of a quan-
tifier using a variable of t.

Since the rule simply collapses an application of UG followed by an appli-
cation of US into one step, the restrictions on it are just the restrictions
on UG and US. For use in informal proofs, we may restate the rule to
take account of almost every case of such substitution that is needed.

InForMAL RULE FOR SuBSTITUTING FOR FREE VamiaBrEs. (i) You
‘may substitute terms for free variables occurring in axioms or previously
proved theorems. (i) Any case not covered by (i) should be referred to
the formal rule; in particular you cannot substitule for free variables in
the hypothesis of the theorem you are lrying to prove.
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As remarked in the last section we shall henceforth omit universal quanti-
fiers standing at the beginning of theorems. The above informal rule is
explicitly framed to permit substitution in these theorems. For instance,
following the convention now in force regarding universal quantifiers, we
would state Theorem 3 as:

TaeoreM 3. Ifz+y=z+ztheny =2

We would then be permitted to substitute for the variables ‘z’, ‘4’ and ?’
in applications of Theorem 3, as sanctioned by the above informal rule.

In the above example of a fallacious proof we considered a genuine
theorem for which a correct proof exists (see Exercise 2d of the previous
section). The next example is a fallacious theorem for which no correct
proof exists.

Farracious THEOREM. z = 1.

(Thus this fallacious theorem asserts that every number is equal to one.
The variable ‘z’ has been left free in accordance with the convention just
stated.)

FALLACIOUS PROOF. Let z be an arbitrary number. By Axiom 2 and
Theorem 4, we have:

1) 0-z=2z0=0.
Hence letting y = 0 in Theorem 2 we infer from (1) that
z=1 Q.E.D.

In logical terms the mistake committed in this proof is in applying uni-
versal specification to the quantifier using ‘9’ in Theorem 2, for the scope
of this quantifier is not the whole formula. This kind of error was strenu-
ously warned against in Chapter 4, but it is of the sort you might make
in an informal proof without making it in a formal derivation. In order
to make use of Theorem 2, one would have to establish that for all y, not
just 0, z has the property that

yz=y.

The use of the phrase ‘letting ¥ = 0 in Theorem 2 we infer ...’ should
not throw you off guard in analyzing the fallacious proof. This phrase is
mathematical lingo for: applying US to Theorem 2 by substituting ‘0’ for
‘%’ we infer .... Mathematicians often use the identity sign to indicate
an application of US. You must learn to distinguish such cases from those
which represent a genuine application of the rule governing identities. The
context of application usually makes such differentiation rather simple.
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Further examples of fallacious informal proofs are given in the exercises
below.

EXERCISES

In each of the following fallacious proofs, find the error and state what logical
blunder has been committed. Fallacious proofs of both true and false state-
ments are given.

1. TagoreM 3. Ifz +y=2x+ 2theny = 2.

FALLACIOUS PROOF. By the hypothesis of the theorem,

¢)) zt+y=z+z
Letting z = 0 in (1) we have:
2 04+y=0+42

From Axioms 1 and 6, we have the identities:
O+y=y+0=y
0+z=24+0=2
Whence, using these identities, we obtain from (2) that
y=2a Q.E.D.
2. FaLracious TuroreM. Foreveryz andy, sf -y = L thenz = 1.

and

FALLACIOUS PROOF. By hypothesis

1) zy=1
Letting y = 1 we have then:
(2 z-1=1.
But by Axiom 7
3) 21l =2
It follows at once from (2) and (3) that
z=1 QE.D.

3. Faruacrous THEOREM. If there ts a y such thatz-y = 1 thenz = 1.

FALLACIOUS PROOF. By hypothesis there is a y such that

zy=1
Letting ¥ = 1 we have then:

z-1=1,
But by Axiom 7

z:1 =z,
Hence

e=1, Q.E.D.
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4. Farractous TueorEM. There i3 an x such that for every y,z + y = 2.

FALLACIOUS PROOF. By Axiom 6

z+4+0=uz
Let y = 0; we then have immediately:
zt+y=2 Q.E.D.

§ 7.5 Further Examples of Informal Proofs. A continuation of the
systematic development of the arithmetic of the rational and real numbers
will afford an opportunity for considering more informal proofs. In this
section we shall also define the negative operation and the operation of
subtraction. From a formal standpoint a definition is simply an additional
premise. The logical character of definitions and the logical problems they
generate are examined in detail in the next chapter. The only essential
point needed for this section is that a definition introducing a new opera-
tion symbol needs to be preceded by a theorem guaranteeing that the
definition introduces a uniquely defined operation. The first theorem of
this section justifies in this sense the introduction of the negative operation.
Note that the variable 2’ is free in accordance with the stipulation previ-
ously laid down.

TaEoREM 5. There i3 ezactly one y such that z + y = 0.
PROOF. By Axiom 8 there is af least one y such that
0)) z+y=0.

Thus to prove the theorem we need to show there is al most one such .
Let ' be a number such that

@) z4+y =0.
Then
®3) z+y=z+y
and by the cancellation law
(€Y y=y. Q.E.D.

This proof exemplifies the typical way we break up the proof that there
is exactly one entity satisfying some condition. First, we prove there is at
least one, and then that there is at most one, for to say there is exactly
one is just to say there is at least one and at most one. Notice that from
(1) and (2) we get (3) by such an obvious application of the rule governing
identities that no justification of any sort is given. Also, having inferred
(4), we do not add the redundant phrase, ‘and thus there is at most one ¥,
gince we started by considering an arbitrary y’ with z 4y’ = 0. To say
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there is at most one y such that z 4 y = 0 is just to say that for every y’
if z 4y =0theny =y. In aformal derivation this would have to be
spelled out but it is not needed in an informal proof.

DerinmtioN 1. —z =y ifandonlyifz+y =0.

The negative of z is, of course, —=z.
To be clear about the use of definitions in proofs, we need only observe
that in a formal derivation Definition 1 would be treated as the sixteenth

premise:
(16) @Dy)(—z=y o z+y=0).

As the deductive development of arithmetic (by informal proofs) is con-
tinued we use the new operations introduced without explicit reference to
their definitions.

We now prove five theorems asserting familiar facts about the negative

operation.
THEOREM 6. —(—2) = 2.

PROOF. By virtue of Theorem 5 there are numbers y and z such that

m z+y=0
and

@ (—z)+2=0.
Hence, using Definition 1, we have:

®3) —z=y

@ —(-2) =2
From (2) and (3) we get:

6) y+z=0.

Using the commutative law for addition we infer from (1) and (5) that
yt+tz=y+z2
and hence by the cancellation law for addition

z =z
that is, in view of (4),
—(—2) ==z. Q.E.D.

The strategy used in this proof is to treat z and its negative in symmetric
fashion. The results are then successfully combined in (5). The proof of
this theorem poses a problem that is not always easy to solve. There is
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no hypothesis stated in the theorem, so there is no obvious initial assump-
tion. Further, no string of identities suggests itself, as is the case with
Theorem 8. Consequently, we are forced to fall back on the definition
of the negative operation and the theorem justifying the definition (i.e.,
Theorem 5). Our tactical problem is to find our way from this terra firma
to the desired conclusion. The point here is that in the absence of the
other two possibilities mentioned, Theorem 5 and Definition 1 constitute
the most reasonable basis for a proof.

TeEOREM 7. 2z + (—z) = 0.
PROOF. It is a truth of logic that
—z = -7,
whence by virtue of Definition 1,
24+ (—x2) =0. Q.E.D.

This proof violates the general rule of not referring to principles of logic.
Since it involves a somewhat subtle application of the rule governing iden-
tities, the violation is justified. It is worth noting that Axioms 3 and 6,
together with Theorem 7, are just the three axioms for a group given in
Chapter 5, where addition is the group operation and zero is the group
identity element.

THEOREM 8. (—2)-y = —(z-¥).
PROOF. We have the following identities:

0=y0 (Theorem 4)
=y-(z+ (—2)) (Theorem 7)
= (y-2) + (¥ (—=)) (Distributive law)
= (z-9) + (—2)-¥) (Commutative law)

And thus by Definition 1,
(—2)-y = —(y). QED.
As already remarked, the proof of this theorem follows a familiar pattern.
Given a theorem which asserts an identity, the most natural approach is
to prove it by a string of identities. Note that the proof consists of a
little more than the identities. The last line is needed to apply the result
of the chain of identities.
TaEOoREM 9. —y < —2 if and only if x < y.
PROOF. First, let us assume that z < y. Applying Axiom 13, we obtain:

—z+z< -2+,
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and thus by Theorem 7 and the commutative law for addition
@ 0<—-z+4y.
Using again Axiom 13, we obtain from (1):
“¥+0<-~y+(-z+)
whence by Axiom 6
@) —y<-y+(—z+y).

Applying now the commutative and associative laws to the right-hand side
of (2), we conclude:
-y < -z+(-y+9);

and since —y + y = 0, we get the desired result:
-y < -z

Assuming now that —y < —z, we infer by an argument exactly similar
that x <y. QE.D.

Theorem 9 is the first one which has been in the form of an equivalence.
As already observed in Chapter 5, we first prove that one member of the
equivalence implies the other, and then establish the implication in the
opposite direction. In this connection we are often able to take liberties
in an informal proof that would not be permitted in a formal derivation.
Thus in the proof of Theorem 9 we essentially prove only one of the two
implications and then simply remark that the proof of the second implica-
tion is similar, Naturally if the proof of the second implication involved
an argument not used in proving the first, such a remark would not be
permissible.

In the proof of the next theorem, which is also an equivalence, rather
than dismiss the second implication with a remark, we sketch the proof
without justifying the development of the argument.

TaEOREM 10. 0 < —z if and only ¢f x < 0.
prooF. If z < 0, then by Axiom 13,

—z4+z< —z40,

and hence applying Axiom 6 to the right-hand side, and Theorem 7 and
the commutative law to the left-hand side, we infer:

0< ~2z.
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Similarly, if 0 < —z, then
z+0<z+(—2)
z <0. QE.D.

In connection with the statement of Theorems 9 and 10, there is another
style with which you should be familiar. Theorem 9 could be worded:

and thus

In order to have —y < —z, it is necessary and sufficient to have z < y.

The phrase ‘necessary and sufficient’ plays the same role that ‘if and only
if’ plays in the original statement. ‘If z <y’ is the sufficient condition,
and ‘only if z < ' is the necessary condition. (This idiom was discussed
in §1.3.)

The next theorem justifies the operation of subtraction.

_THEOREM 11. There is exactly one number z such that x = y + 2.

PROOF. We first show there is at least one z satisfying the theorem. By
virtue of Theorem 7

1) v+ (-y) =0,

whence
W+ () +z=0+u2,

and thus by the commutative law and Axiom 6
@ z=@+(-y)+=
Applying the associative law to (2) we obtain:

z=y+ ((—y) +2),

and clearly (—y) + z is a satisfactory 2.
The proof that there is at most one z is exactly like the similar part of
the proof of Theorem 5: consider a 2’ such that = y 4 2’; then

y+z=y+72,
and thus by the law of cancellation for addition
z=17. Q.E.D.

In this proof it is clear from (2) that (—y) + z is a number satisfying
the desired condition; that is, if z = (—y) + z, then £ = y + 2. In these
various proofs involving only addition and not multiplication we refer to
the commutative and associative laws; it is understood we mean the laws
for the operation of addition. The strategy of this proof is to pick the
axiom closest to the theorem (Axiom 8) and work from it. There was no
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need to use the negative operation in this proof; it is sufficient to have in
(1) that there are numbers » and v withz + 4 =0 and y +v = 0. We
introduced the operation merely to give some further practice in handling it.

DeEFINITION 2. z—y =zifandonlyifz = y + =

The traditional notation of arithmetic has been followed in using the same
sign ‘—’ in both Definitions 1 and 2, although in Definition 1 it denotes a
unary operation (that is, a function of one argument) and in Definition 2,
it denotes a binary operation (that is, a function of two arguments). This
confusion in the standard notation is more or less justified by the following
theorem.

TaeEoREM 12. z —y =24+ (—y).
PROOF. By Theorem 11 there is & unique 2 such that
1 r=y+z
and hence by Definition 2
rT—y=2

The following identities show that z + (—y) equals z and hence equals
z—y:
g+ (-y)=(-9) += (Commutative law)
=(-y+@+2 By®) A
= ((—y) + y) + 2z (Associative law)
= (y + (—y)) + 2z (Commutative law)

=042 (Theorem 7)
=240 (Commutative law)
=2z (Axiom 6)

QE.D.

The next three theorems exemplify some typical and useful properties
of the relation <.

TraroreM 13. It is not the case that z < z.

ProoF. The theorem follows immediately from Axiom 10 by taking
z =y. Q.E.D. This proof is so obvious that it can be dismissed in a
sentence. If we put ‘z’ for ‘4’ in Axiom 10, we obtain the formula:

If z < z then it is not the case that z < z,
which is logically equivalent to:
It is not the case that 2 < z.
A brief indirect proof could also be given by supposing there is an z such
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that z < z, and then using Axiom 10 to derive a contradiction. Notice
the use of the phrase ‘by taking z = g’ to indicate an application of US.

THEOREM 14. Ezactly one of the following holds: z = y, z < y, y < .

PROOF. It is clear from Axiom 12 that at least one.of the three formulas
holds. We show at most one holds by showing that no two of the formulas
may hold. First, if 2 = y and z < y, we obtain at once: z < z, which
contradicts Theorem 13, and obviously exactly the same argument shows
that we may not have that both

z=y and y <z

Finally, if both £ < y and ¥ < z Axiom 10 is contradicted. Q.E.D.

The proof of Theorem 14 has been our first occasion to use an indirect
proof informally. The two applications in the proof are too obvious to re-
quire comment.

TaeEorREM 15. Ifz <Q0andy < zthenz-z <z-y.
PROOF. From the hypothesis of the theorem and Theorem 10,
0<—z and y <z
Hence by Axiom 14
(—2)y < (—2)-2
and then by Theorem 8
—(@y) < —(z-2),
whence by Theorem 9
zz<zyY QE.D.

This proof exemplifies the standard approach when the theorem to be
proved is a conditional sentence: assume the hypothesis and see if the con-
clusion can be obtained by direct methods.

The next theorem is the cancellation law for multiplication. The proof
of this law is the most intricate proof yet given and should be studied
rather carefully. Notice that it is an indirect proof; the standard, direct
method just mentioned does not work for this theorem.

TaEOREM 16. Ifz = 0andz-y = x-ztheny = 2.

PROOF. We give an indirect proof. Suppose y # z. Then by Axiom
12, y <z or z <y. Since the hypothesis of the theorem is symmetric
concerning y and z, it will be sufficient to prove the theorem on the assump-
tion that

(1) y <z
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By the hypothesis of the theorem, z > 0; hence, by Axiom 12, 0 < z or
z < 0, which yields two cases to be considered separately. If 0 < z then
from (1) and Axiom 14, we have:

Yy <z2

which together with Theorem 14 contradicts the hypothesis that z-y =
z-z. On the other hand, if z < 0, then by (1) and Theorem 15

-2 <z Y,

which together with Theorem 14 again contradicts the hypothesis that
zy==z-2 QED.

In this proof we have at various stages alternative cases to consider.
Mathematicians dislike proofs which require subdivision into a large num-
ber of cases, but the consideration of two or three cases is frequent and
often unavoidable. At the beginning we have the alternatives: y < z or
z <y. But we do not need to consider these two cases separately since
the roles of y and z are exactly the same in the hypothesis. For a proof of
one case can be repeated exactly by simply interchanging letters to give a
proof of the other case. When we are faced with the alternatives: 0 < z
or z < 0, the situation is different. The proof for one case (0 < z) de-
pends on Axiom 14, and the proof for the other case (z < 0) depends on
Theorem 15. When at some stage in a proof a variety of possibilities turn
up, the proof cannot progress until each of these possibilities (i.e., alterna-
tives) has been tracked down and satisfactorily disposed of. Of course, in
many instances the possibilities can be immediately reduced in number by
symmetry considerations, as at the beginning of this proof. The point to
remember is that if alternative cases do arise, you must indicate in the
proof some method of disposing of them.

At this point we conclude the explicit analysis of informal proofs. The
gystematic development of arithmetic is carried somewhat further in the
exercises accompanying this section.

EXERCISES

1. Formulate Theorem 5 in logical notation. (This exercise is meant to dispel
any lingering confusions about the exact meaning of the phrase, ‘there is exactly
one ...")

2. Prove the following assertions concerning the negative operation and the
operation of subtraction.

(@) —z=(-D-=z

(b) (—2)-y = z-(—y)
@—y+@y—2=2z—¢
@zy—2)=zy—z2

@ @-N+E—w)=(+2—(y+w)
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0 E-—y-—c-—w=c+w)-w+2
& E@—y)G—w)=(>@z+yw)— (zwt+y2)
3. Using the definition:

2 <y fandonlysf z=y or z<y,

prove:
tf zt+y<z+z them y<a

4. Prove the following:

(a) fz+ 2z =0thenz =0.
(b) If z-x2 =0thenz = 0.
(¢) If u #£ 0 and v 5 0 then u-» £ 0.

5. Prove the following:

(a) f0<zand 2y < z-ztheny < 2
(b) f r <O0and z-y < z-2 thenz < 7.
() f0<2z,y<0,andz<0thenz-y < y-2.
dIfz<0,0<y and0<zthenz-y < y-2.
() z—y<z—zifand onlyif z < y.

6. Define the operation of taking the absolute value of a number, and prove:

(a) |z-yl=|z|- |y

(b) |z +yl <|=z|+|y|

© l=z|=ly|<lz—y|

) z- |yl < |=-y|

@ lz—yl<lz —2[+]|y — 2|



CHAPTER 8

THEORY OF DEFINITION

§ 8.1 Traditional Ideas. In the older logic & definition is the delimita-
tion of a species by stating the genus which includes it and the specific
difference or distinguishing characteristic of the species. A typical example
is the definition of man as a rational animal. The genus is the animal
genus and the distinguishing characteristic is rationality. (What has been
stated in capsule form is the Aristotelian theory of definition.) Many text-
books which are not so traditional as to demand strict adherence to the
Aristotelian analysis, do seriously promulgate the four traditional “rules”
of definition:

1. A definition must give the essence of that which is to be defined.

2. A definition must not be circular.

3. A definition must not be in the negative when it can be in the positive.
4. A definition must not be expressed in figurative or obscure language.

Certainly these rules have serious use as practical precepts. They rule out
as definitions statements like:

Beauty is eternity gazing at itself in a mirror—KHALIL GIBRAN,
The Prophet,

which violates Rule 4, or:
Force is not a kinematical notion,

which violates Rule 3. On the other hand, these rules are of little help in
clarifying the formal notion of a proper definition within & precisely stated
theory, such as the theory of the real numbers partially developed in the
last chapter.

For example, we may define in arithmetic the pseudo-operation » as
follows:

(1) as*y=3z ifandonlyif <z and y<s
151
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From our intuitive knowledge of arithmetic we may easily use this pseudo-
operation to derive a contradiction.

1*x2=3
since
1<3 and 2<3;
but also,
1%2 =4
since

1<4 and 2<4.
Hence, we infer:
3 =4,

which contradicts the familiar fact that 3 ¢ 4. But all four of the tradi-
tional rules seem to be satisfied by (1). Whatever sort of entities essences
are, the essence of the * operation is surely stated by (1). Furthermore,
the definition is neither circular, negative, obscure, nor in figurative lan-
guage. It is transparently clear from this simple example that in order to
develop an adequate formal theory of definition we must penetrate beyond
the semi-platitudinous level of the four traditional rules.

§ 8.2 Criteria for Proper Definitions. A traditional definition per
genus et differentiam is often called a real definition because it is said to
characterize the essence of a species. The kind of definition common in
mathematics, that is, definitions which introduce a new symbol, are often
called verbal or nominal definitions. However, it is not clear how a sharp
distinction between the two kinds of definitions can be made. For our
purposes, it is sufficient to understand that a definition is a statement
which establishes the meaning of an expression. The definition accom-
plishes this by relating the expression it defines (the definiendum) to other
expressions (the definiens) already available.

At least two questions immediately arise from this vague statement
about what definitions are. What is meant by ‘other expressions already
available’? What restrictions if any are there on the logical form of sen-
tences which may serve as definitions? The answer to the first question is
that we have in mind the introduction of a definition within a specified
theory, like the elementary theory of arithmetic considered in the previous
chapter. As understood here, a theory is characterized in terms of its
primitive, non-logical symbols and its axioms. In the case of the theory
of the last chapter the primitive symbols are the relation symbol ‘<’, the
operation symbols ‘+’ and ‘-’, and the individual constants ‘0’ and ‘1’.
The axioms are just the fifteen axioms given at the beginning of the chap-
ter. The theory of groups introduced in Chapter 5 had three primitive
symbols and three axioms. In the present chapter, first-order predicate
logic with identity as developed in preceding chapters is assumed, and we
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only consider theories which can be formalized within the framework of
this logic.

The first definition in a theory is, then, a sentence of a certain form
which establishes the meaning of a new symbol of the theory in terms of
the primitive symbols of the theory. The second definition in a theory is
a sentence of a certain form which establishes the meaning of a second new
gymbol of the theory in terms of the primitive symbols and the first defined
symbol of the theory. And similarly for subsequent definitions. The point
to be noted is that the definitions in a theory are introduced one at a time
in some fixed sequence. Because of this fixed sequence we may always
gpeak meaningfully of preceding definitions in the theory. Often it is con-
venient to adopt the viewpoint that any defined symbol must be defined
in terms only of the primitive symbols of the theory. In this case there is
no need to introduce definitions in some fixed sequence. However, the
common mathematical practice is to use previously defined symbols in de-
fining new symbols; and to give an exact account of this practice, a fixed
sequence of definitions is needed.

It was remarked in the last chapter that from the standpoint of the logic
of inference a definition in a theory is simply regarded as a new axiom or
premise. But it is not intended that a definition shall strengthen the
theory in any substantive way. The point of introducing a new symbol is
to facilitate deductive investigation of the structure of the theory, but not
to add to that structure. Two criteria which make more specific these in-
tuitive ideas about the character of definitions are that (i) a defined sym-
bol should always be eliminable from any formula of the theory, and (ii) a
new definition does not permit the proof of relationships among the old
symbols which were previously unprovable; that is, it does not function as
a creative axiom.* In the previous chapter, for instance, we introduced
the symbol for subtraction by the equivalence:

) z—y=2 fandonlyif z=y+ 2
We may use (1) to eliminate any occurrence of the subtraction symbol.
Thus by virtue of (1) we eliminate ‘—’ from:
If y>0 then z—y#z,
and obtain the arithmetically equivalent statement:
If y0 then zy+ z.

It seems reasonable to require that any definition introducing a new sym-
bol may be used to eliminate all subsequent meaningful occurrences of the
new symbols. To be eliminable is a characteristic property of a defined

* These two criteria were first formulated by the Polish logician 8. Lesniewski (1886~
¥339); he was also the first person to give rules of definition satisfying the criteria.
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symbol, as opposed to a primitive symbol. We may now formalize the
concept of eliminability.

CRITERION OF ELIMINABILITY. A formula S tniroducing a new symbol
of a theory satisfies the criterion of eliminability if and only if: whenever
S; 8 a formula in which the new symbol occurs, then there is a formula
Sy in which the new symbol does not occur such that S — (S; <> Sp) is
derivable from the axioms and preceding definitions of the theory.

As the wording of this criterion suggests, hereafter we do not call defini-
tions new axioms although they function as additional axioms in logical
inference. The reason for this terminological restriction is obvious. In
laying out a given theory for investigation we want to state the creative
axioms at the beginning and always refer to them as ‘‘the axioms”. Since
the definitions are theoretically dispensable, we do not want to give them
the same status as the basic axioms of the theory.

The notion of a definition not being creative is formalized in the following
statement.

CRITERION OF NON-CREATIVITY. A formula S introducing a new symbol
of a theory satisfies the criterion of non~creativity if and only if: there is
no formula T in which the new symbol does not occur such that S — T s
derivable from the azioms and preceding definitions of the theory but T is
not so derivable.

In other words, we cannot permit a formula S introducing a new symbol
to make possible the derivation of some previously unprovable theorem
stated wholly in terms of primitive and previously defined symbols. An
example of a formula which does not satisfy this criterion of non-creativity
is the second axiom for groups if we consider a more limited theory than
that of groups. The single primitive symbol of our theory is the binary
symbol ‘o’ and the single axiom the associative axiom:

o)) zo(yoz) = (zoy)oa.

As the first definition of this theory we now propose the following formula
introducing the new individual constant ‘e’:

2 zoe = z.

However, applying the criterion of non-creativity we reject (2) as a pro-
posed definition in our theory, for from (2) we may derive at once:

3) (Ay)@)xoy = ).

We note that (3) is a formula whose only non-logical symbol is the primi-
tive symbol of the theory, but it is trivial to find an interpretation showing
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that (3) cannot be derived from (1). Thus (2) is creative and must be re-
jected as a proper definition.

It should be noticed that a special consequence of the criterion of non-
creativity is the criterion of relative consistency. If the axioms and pre-
ceding definitions are consistent and if a formula introducing a new symbol
may be used to derive a contradiction, then the new formula does not
satisfy the criterion of non-creativity. For from a contradiction any for-
mula may be derived, since (P & -P) — Q is a tautology. Thus we do not
need as an independent third criterion that of relative consistency.

In the next section we turn to the task of stating rules of definition which
will guarantee satisfaction of the two criteria of eliminability and non-
creativity.

EXERCISES

1. Use the definition of subtraction to eliminate the subtraction symbol from
the following statements.

@) z—0=nu2

b)z—1x1.

() fzs“ythenz—y=y—=z
@DIf0<zand0<ythenzx—ys=z4y.

2. Given the theory consisting of the single axiom on the binary operation sym-
bol ‘0’:
zoy=yogz,
prove that the formula:
zoy=e

introducing the individual constant ‘¢’ is creative in this theory.

§ 8.3 Rules for Proper Definitions. In theories stated in precise lan-
guage (whether the subject matter is pure mathematics, physics, or psy-
chology) we ordinarily introduce three kinds of defined symbols: relation
symbols, operation symbols, and individual constants. Thus in the theory
of the arithmetic of the real numbers begun in the last chapter, ‘<’ and
¢>7 are defined relation symbols, the symbols for subtraction and division
are defined operation symbols, and names of any numbers except 0 and 1
are defined individual constants (for instance, ‘2’, ‘3’, and ‘4’).

For simplicity of statement we shall introduce separate rules for each of
these three kinds of symbols. We first state rules requiring that a proper
definition be an equivalence. Subsequently we discuss the use of identities
to define operation symbols and individual constants. In dealing with
definitions which are equivalences it is customary to introduce the new
symbol on the left side of the equivalence and to call this side the definten~
dum (“thing to be defined””). The right side is called the definiens (“thing
defining””). Thus in the definition of subtraction, ¢ — y = 2 is the de-
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finiendum and ‘z = y + 2’ is the definiens. We use this language of ‘de-
finiendum’ and ‘definiens’ throughout this chapter.

Rure ror DeFINING RELATION SYMBOLS. An equivalence D introducing
a new n~place relation symbol P is a proper definition in a theory if and
only if D is of the form P(vy, ..., v,) &> S, and the following restrictions
are satisfied: (i) vy, ..., v, are distinct variables; (ii) S has no free vari-
ables other than vy, ..., v,; and (iii) S ¢s a formula in which the only
non-logical constants are primilive symbols and previously defined sym-
bols of the theory.

Note that the definiendum P(vy, ..., v,) is an atomic formula, which form
is needed to guarantee elimination of the defined relation symbol from
every possible context. Corresponding to the convention set up in the
previous chapter, the variables vy, ..., v, are free in the equivalence D.
Strict conformity to the formal rules of inference could be obtained by
adding universal quantifiers in front. Some examples coupled with discus-
sion will help clarify the three restrictions on the rule. The requirement
that the variables vy, ..., v, be distinct prevents definitions like:

€))] z<z fandonlyif z=2 or z <z.

Formula (1) does not really define the binary relation symbol ‘<’, since
only one variable oceurs in the definiendum. With (1) at hand, we would
not know how to eliminate ‘<’ from the formula 2z < y. The definiens of
(1) must be regarded as defining a unary relation symbol, say, ‘U’ (unary
relations are just properties, i.e., a property is a one-place relation):
U(z) fandonlyif z=2z or z <=z
Of course, the property U is a trivial universal property possessed by every
number. As a second example, consider the definition of the quaternary
relation which holds between four numbers if the difference between the
first and the second is less than that between the third and fourth. We
use the letter ‘A’ as the relation symbol.
2 A(z,y,u,v) ifandonlyif z—y <u—uo.

The generality of (2) and thus the general eliminability of the relation
symbol ‘A’ would be ruined if (2) were replaced by:

3) Az, y,u,z) fandonlyif z —y <u-—z.
The definiens of (3) really defines the ternary relation T':
@ T(x,y,2) fandonlyif z—-y<z-—az.

(Notice the intuitive meaning of the relation T': T'(z, y, 2) just when z is
less than the mean of y and z (ie., z < (¥ + 2)/2).)
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The second restriction prevents definitions like:
) R() ifandonlyif z+y =0.

When (5) is added to the axioms of arithmetic we may derive a contradic-
tion. The source of the trouble is the appearance of the variable %’ in the
definiens but not in the definiendum. Now (5) is logically equivalent to
the pair of statements:

(6) If z4+y=0 then R(z),
) If R(xz) then z4+y=0.
But from the logic of quantifiers we know that (6) is equivalent to:
(8) If thereisa y suchthat z+y =0 then R(z),
and (7) is equivalent to:
)] If R(z) thenforevery y,z+4y=0.
From (8) and (9) we immediately infer the patent falsehood:

(10) If there is & y such that z +y =0 then for every y,
z+y=0.

(Note that the variable ‘2’ is left free in this discussion, since it appears in
a proper manner in both the definiendum and definiens of (5).)

On the other hand, the second restriction does not prevent variables from
being free in the definiendum but not in the definiens. Thus we admit as
a proper definition:

(11) Q(z,y) ifandonlyif z > 0.

There is no definite formal reason for prohibiting variables from being free
in the definiendum but allowing them to be free in the definiens. On the
other hand, such variables are not used to express anything intuitively
meaningful; the triviality of their role is underscored by the fact we can
always find an equivalence which has the same logical content and which
has the same variables free in the definiendum and the definiens. Thus we
may convert (11) into a formula having the same variables free in definiens
and definiendum by conjoining to the definiens the logical truth: y = y.
The new formula:

12) Q,y) fandonlyif z>0&y =y

is logically equivalent to (11). A similar conjunction of logical identities
can be used to convert any equivalence having more free variables in the
definiendum than the definiens into one having the same number in both.

The third restriction simply prohibits two kinds of circularity of defini-



158 THEORY OF DEFINITION

tion. We could not admit as a proper definition:
(13) R(z) if and only if R(z);

a logical truth such as (13) would not be creative. Its defect is that it
does not satisfy the criterion of eliminability. Formula (13) does not yield
a procedure for eliminating the relation symbol ‘R’. Of a similar sort is
the pair of equivalences:

(14) R(z) if and only if it is not the case P(z),
(15) P(z) if and only if it is not the case R(z).

If we define the relation symbol ‘R’ in terms of the new relation symbol ‘P’,
and vice versa, then we are not able to eliminate either in favor of the
primitive notation. Thus we have the requirement that no other new
symbol appear in the definition and that the definitions be given in a fixed
sequence.

We now turn to the rule for defining operation symbols. One essentially
new restriction has to be added to the three needed for relation symbols.
In stating the rule we use the standard notation

(Elw)s
for
There is exactly one w such that S.

RuLe For DEFINING OPERATION SYMBOLS. An equivalence D iniro-
ducing a new n-place operation symbol O s a proper definition in a theory
if, and only if, D is of the form

O(V]_, s ey V,.) =W & s,

and the following resirictions are satisfied: (i) vy, ..., vn, W are distinct
variables, (ii) S has no free variables other than vy, ..., v,, w, (iii) Sis a
formula in which the only non-logical constants are primitive symbols
and previously defined symbols of the theory, and (iv) the formula (Elw)S
18 derivable from the axioms and preceding definitions of the theory.

Consideration of the pseudo-operation * introduced in § 8.1 is sufficient to
justify the fourth restriction. By use of the pseudo-operation * we were
able to derive a contradiction in § 8.1 just because ‘z * y’ does not desig-
nate a unique entity. In the case of the definition of the operation *:

(16) zxy=¢ fandonlyif <2z and y <z

we cannot prove that there is exactly one z such that z < z and y < 2,
and thus (16) is not a proper definition. The function of the fourth re-
striction is to require that the definition of any new operation be preceded
by & theorem which guarantees that the operation is uniquely defined. In
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Chapter 7 the definitions of the negative operation and subtraction were
both preceded by such justifying theorems. The generality of the defining
rule, which applies to operations of whatever complexity, should not obscure
the fact that we are usually concerned with binary operations, whose defini-
tions are of the form:

zoy =2z if and only if $S(z,y,2),

and we need a preceding theorem to the effect that for every z and y there
is exactly one z such that S(z, ¥, 2).

We can regard individual constants as operation symbols of rank zero.
However, because of the somewhat startling form of definitions of individ-
ual constants when the definitions are equivalences rather than identities,
it seems advisable to state the rule explicitly. The reason for insisting on
the consideration of definitions of individual constants in the form of
equivalences is that it is not always possible to introduce them by means
of identities, as we shall shortly see. In order to make the general rule in-
tuitively clearer, we may first indicate how we could define the constants
‘0’ and ‘1’ in arithmetic if we had formulated our axioms without using
them as primitive symbols. We would introduce the following two equiva-
lences:

17 0 =y if and only if for every z,z 4y =2,
(18) 1 =y if and only if for every z,z'y = 2.

Note that the variable ‘z’ is bound in the definiens of both (17) and (18).
The restriction on the uniqueness of ¥ must apply to individual constants.
If the restriction were dropped, we could introduce a constant b’ by a
definition such as the following:

(19) b=y ifandonlyif y>0

and derive a contradiction. For, it follows from (19) that
b=1

and
b= 2,

Hence,
1=2

which is absurd.

RuLE For DEFINING INDIVIDUAL CONSTANTS. An equivalence D intro-
ducing a new individual constant ¢ 18 a proper definition in a theory if
and only if D 18 of the form

c=w e S,
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and the following restrictions are satisfied: (i) S has no free variable other
than w, (ii) S is a formula in which the only non-logical constants are
primative symbols and previously defined symbols of the theory, and (iii) the
Sformula (E'w)S 73 derivable from the axzioms and preceding definitions of
the theory.

In the next section we introduce rules for defining operation symbols and
individual constants by means of identities rather than equivalences. Sev-
eral applications of the rules stated in this section are to be found in the
exercises.

EXERCISES

1. Which of the following definitions of relation symbols are improper? If im-
proper, state what restriction is violated.

(a) R(z, y) if and only if there is a z such that z 4+ y = =.
(b) R(z, y) if and only if z + y > =.

(¢) R(z, y) if and only if y > 2.

(d) Rz, y)and z =# yifand only if z + y > O.

(e) Rz, z)ifand only if z 4+ 1 > 0.

2. Which of the following definitions of operation symbols are improper? If a
definition is improper, use it to derive intuitively a contradiction.

(a) zoy =zifandonlyifz < 2and y < 3and z < 4.
(b) zoy=zifandonlyifzr=1andy =2andz =7,
() zoy=zifandonlyifr<landy <2andz=17.
(d) zoy=zifandonlyifz=1andy =2and 2z < 7.
() zoy=zifandonlyifz+y=x+ 2.

() zoy==zifandonlyif -2 = y.

3. Which of the following definitions of individual constants are improper? If
improper, state what restriction is violated.

(a) ¢ = y if and only if there is an z such that z + y = 1.
(b) ¢ = y if and only if for every zif ¢ > 0, thenz + y > 0.
(¢) c=yifandonlyify =14+ 1.
dc=yifandonlyify = y.

(e) ¢ = y if and only if ¥ = y.

4, Give an example of an improper definition whose definiens is:

(a) a logical truth.

(b) the negation of a logical truth.

(c) an axiom of the theory in which the definition is proposed (construct a
simple theory for this exercise).

5. Give an example of a proper definition whose definiens is:

(a) a logical truth.

(b) the negation of a logical truth.

(c) the negation of an axiom of the theory in which the definition occurs
(construct a simple theory for this exercise).
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§ 8.4 Definitions Which Are Identities. In the last section we re-
marked that operation symbols and individual constants are often intro-
duced by identities rather than equivalences. We want now to consider
appropriate rules for such identities.

Since the definition:
@ 2=1+4+1

seems more natural and elegant than the definition:
2) 2=y ifandonlyif y=1+1,

it is reasonable to ask why equivalences are ever used to define individual
constants. The answer is very simple: identities alone are not adequate
for the job. If ‘0’ and ‘1’ were eliminated as primitive symbols in arith-
metic, they could be introduced by equivalences (17) and (18) of the last
section, but these equivalences could not be eliminated in favor of iden-
tities.*

The same remarks apply to the use of equivalences rather than identities
to define operation symbols. For instance, if no other definitions have
been given in the theory of arithmetic of Chapter 7, then neither the nega-
tive operation nor the subtraction operation symbol can be defined by an
identity; but given one, the other can be so defined:

z—y=z+(-y)
—z =0 -z
Or if the individual constant ‘—1’ is first defined by the equivalence:
—1=2z ifandonlyif z+4+1=20,
then the negative operation symbol may be defined by the identity:
-z = —1-2.

As these examples illustrate, the possibility of defining an operation sym-
bol by an identity is relative to the exact character of the preceding defini-
tions of the theory.

* This statement about the inadequacy of identities would be false if our basic logic
had been extended to include a description operator ‘the object z such that ...”. This
operation is usually symbolized by ‘(1z)’, a notation first introduced by Peano. With
this operator available, we could introduce as a definition of ‘0’:

0= (Wl)z +y =)

The description operator was not introduced because it is not really needed in the de-
ductive investigation of theories formalizable within first-order predicate logic and be-
cause its introduction would further complicate our basic rules of inference.
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We now turn to the formal rules. In the case of identities which are
used as definitions we call the left side of the identity the definiendum, and
the right side the definiens, as would be expected from our previous usage;
here the definiendum and the definiens are both ferms, in the sense of
Chapter 3. Corresponding to the notion of atomic formula introduced in
Chapter 3, it is convenient to introduce the notion of an atomic term. An
atomic term is a term which is either an individual constant or which has
exactly one occurrence of one operation symbol. Thus ‘z-y’, ‘=z + ¥/,
‘¢ — ¢’ and ‘1’ are atomic, while ‘z 4 (z + 2)’ and ‘z-(y + 2)’ are not.
When a definition is an identity it is required that the definiendum be an
atomic term.

RuLE For DEFINING OPERATION SYMBOLS. An identity D introducing
a new n-place operation symbol O is a proper definition in the theory if
and only if D i3 of the form

O(Vl, eey V,;) =t

and the following restrictions are satisfied: (i) vy, ..., vo are distinct
variables, (ii) the ferm t has no free variables other than vy, ..., Vn,
(iii) the only non-logical constants in the term t are primitive symbols
and previously defined symbols of the theory.

It is worth remarking that when identities are used to define operation
symbols, no justifying theorem is needed to guarantee that the operation
symbol is well-defined, for the formula (Elw) (t = w) is a truth of logic.
Since the rule for defining individual constants by use of an identity is
very similar to the one just given for operation symbols, its formal state-
ment is left as an exercise. The standard definitions of names of numbers
exemplify introduction of individual constants by means of identities:

2=1+4+1
3=2+1
4=341
EXERCISES

1. Assuming no preceding definitions in the theory of arithmetic of Chapter 7,
which of the following arithmetical operations can be defined by identities? Where
the answer is positive, state the definition.

(a) Squaring a number.

(b) Cubing a number.

(c) Absolute value of a number.

(d) Operation of adding five to a number.

(e) Operation of multiplying & number by two.
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2. Give examples which justify the three restrictions on the rule for defining
operation symbols by identities.

3. Formally state the rule for introducing individual constants by definitions
which are identities.

4. Given as axioms all true statements of arithmetic not involving the symbol
‘0’, can you define ‘0’ by means of an identity?

5. Given as axioms all true statements of arithmetic involving the primitive
symbols ‘+’, ¢-’, ‘<’ and ‘0’, can you define ‘1’ by an identity?

6. Given as axioms all true statements of arithmetic involving the primitive
symbols ‘4, ‘<’, ‘0’ and ‘1’, can you define by an identity the multiplication
symbol?

§ 8.5 The Problem of Division by Zero. That everything is not for
the best in this best of all possible worlds, even in mathematics, is well

illustrated by the vexing problem of defining the operation of division in
the elementary theory of arithmetic. If we introduce the definition:

1) z/y=2 fandonlyif z=y-z

we realize immediately that (1) does not satisfy the fourth restriction for
equivalences defining operation symbols. For we cannot prove that given
any two numbers z and y there is a unique 2z such that z = y-2. For in-
stance, there is no z such that 1 = 0-z; and any number z has the property
that 0 = 0-2.

An obvious modification of (1) is:

(2) z/y =2 ifandonlyif y#0 and z =y-2

But we cannot prove that given any two z and y there is a unique z such
that y > 0 and z = y-2. To see this, we need merely consider the case of
y=0.

The apparent naturalness of (2) suggests a weakening of the fourth re-
striction to the requirement that there is at most one z such that y = 0
and z = y-z. It is easy to show that (2) satisfies this weakened restric-
tion, but unfortunately we can derive a contradiction from (2). The infer-
ence runs as follows. It is a logical truth that

1 1
@ 070
Hence, there is an z such that
1
@ 0=

and thus by (2)
00 and 1 =0-z,

which is absurd. The status of (3) needs to be noted. It is a fundamental
assumption of the logic developed in this book that all terms designate
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objects. Given any operation symbol we can always write down the ana-
logue of (3) as a logical truth, and then infer the kind of existential state-
ment represented by (4). Such inferences were discussed in Chapter 5, and
their logical validity need not be re-examined here. The awkward possi-
bility of changing the basie logic to solve the problem of division by zero
is mentioned along with other possible solutions in § 8.7.

In spite of the difficulties besetting us there is a formally satisfactory
way of defining division by zero. It is a so-called axiom-free definition
since it requires no previous theorem to justify it. It does require that
when = 0 then z/y = 0. Because of the several quantifiers occurring in
the definiens we use logical notation to state the definition.

G zly=zo @)N=z20z1=y7]
vEEAwE)E =w o z=y-2)&z=0)].

The complicated character of (5) argues strongly for some other solution,
which we turn to in the next section. Although (5) is unwieldy, it repre-
sents an approach that is theoretically important in providing a method
for giving definitions of operation symbols which do not depend on previ-
ously established theorems. The general formulation, of which (5) is a
specific instance, is the following.

o(xly ---;xn) =Yy (z)[z =Y < 5(121, voey Tmy z)]
v(Aw)@)e=w o Sy, ..., %n, 2) &y = 0].

Sometimes the setting of ¥y = 0 when the operation is not “defined” in the
usual sense seems a little strange. Thus many mathematicians would be
uneasy at seeing:

2
0~
and thus, say:
2
14+-=1
+0

These matters are discussed further in §8.7. Here it will suffice to say
that there seems to be no method of handling division by zero which is
uniformly satisfactory.

EXERCISES

1. Give an axiom-free definition of the square root operation. Here the problem
is the square root of any negative number.

2. Prove that there is exactly one z satisfying the definiens of (5).

3. Give an axiom-free definition of subtraction.
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§ 8.6 Conditional Definitions. The customary practice in mathe-
matics is to use conditional definitions rather than the awkward axiom-free
definitions introduced at the end of the previous section. The technique
of conditional definition is to preface an ordinary proper definition by a
hypothesis. Thus a possible conditional definition of division is:

¢)) If y>0 then z/y =2 ifandonlyif z=y-2

The main disadvantage of conditional definitions is that they do not fully
satisfy the criterion of eliminability. For example, if we use (1) to define
division, then we cannot eliminate the symbol for division from the sen-
tence:

1

1
0 0
On the other hand, it is apparent we can eliminate it in all “interesting”
cases, namely, all cases which satisfy the hypothesis of (1).
Although conditional definitions are used as much in defining relation
symbols as operation symbols, we shall only state the rules for operation
symbols, and leave the case of relation symbols as an exercise.

RuLes For ConpiTioNAL DEFINITIONS OF OPERATION SYMBOLS. An
tmplication C introducing a new operation symbol O is a conditional
definition in a theory if and only if C is of the form

H— [O(vy ..., Vn) =W & 8]

and the following restrictions are satisfied: (i) the variable w is not free
in H, (i) the vartables vy, ..., v,, W are distinct, (iii) S has no free
variables other than vy, ..., vn, W, (iv) S and H are formulas in which
the only non-logical constants are primitive symbols and previously defined
symbols of the theory, and (v) the formula H — (E!w)S s derivable from
the azioms and preceding definitions of the theory.

In view of the several detailed explanations of similar rules in preceding
sections, specific comments are not needed. Several applications are given
in the exercises.*

* A philosophical concept related to conditional definitions is Rudolf Carnap’s notion
of a reduction sentence, which provides a method of relating dispositional predicates like

‘being soluble in water’ to directly observable predicates. A possible reduction sentence
for the solubility predicate is:

If z is placed in water, then z is soluble in water if and only if z dissolves.

For further details see Carnap’s article, “Testability and Meaning,” Philosophy of
Science, Vol. 3 (1936) pp. 419471 and Vol. 4 (1937) pp. 1-40.
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EXERCISES

1. State rules for conditional definitions of relation symbols.

2. State rules for conditional definitions of individual constants.

3. Give a conditional definition of the property of a number being odd. (mINT:
The hypothesis will be: z is an integer.)

4. Give a conditional definition of the property of a number being prime.

5. Give a conditional definition of the square root operation.

6. Assuming exponential operations are already defined give a conditional defini-
tion of the logarithmic operation to the base 10.

§ 8.7 Five Approaches to Division by Zero. We have already men-
tioned several aspects of the problem of division by zero, and have re-
marked that there is no uniformly satisfactory solution. In this section
we want to examine five approaches to the problem. The next to last of
the five yields the solution which is probably most consonant with ordinary
mathematical practice.

The first approach differs from the others in that it recommends a change
in the basic logic to deny meaning to expressions like:

Without attempting to characterize the basic changes necessary, we may
still offer some general objections to this approach. The first objection is
that it is undesirable to complicate the basic rules of logic unless it is abso-
lutely necessary. In other words, change the foundations of inference only
if all other approaches have failed. Second, if such a change were adopted,
the very meaningfulness of expressions would sometimes be difficult if not
impossible to decide. For example, assume that we have added to our
axioms of Chapter 7 sufficient axioms to obtain the expected theorems on
the natural numbers (i.e., the positive integers). Consider now the ex-
pression:
1 1
(4] For every natural number n, — = —,
n* n*

where n* is the unary operation defined as follows: n* = 1 if » is an odd
integer or n is an even integer which is the sum of two prime numbers;
n* = 0 if n is an even integer which is not the sum of two primes. The
problem of the existence of even integers which are not the sum of two
primes is a famous problem of mathematics which is still unsolved (Gold-
bach’s hypothesis). Thus on the basis of the first approach the meaning-
Julness (not the truth or falsity) of (1) is an open question.

The second approach is to let /0 be a real number, but to define division
by the conditional definition stated in the last section:

If y0 then z/y =2z ifandonlyif z=y-2
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In this case for every number z, z/0 is a real number, but we are not able
to prove what number it is. In fact, we cannot even decide on the truth
or falsity of the simple assertion:

=
i
SRS

2)

The inability to prove or disprove (2) is an argument against the second
approach, since we want our axioms to be as complete as possible.

The third approach agrees with the second in making /0 a real number,
but it differs in making z/0 = O for all z. This eliminates the undecid-
ability of statements like (2). For the third approach the appropriate
definition of division is a proper definition similar to the axiom-free defini-
tion discussed at the end of § 8.5:

zfy=2e [y 0> z=y2)&@F=0-—>2=0)]

An advantage of the third approach is that it permits the definition of
zero by a straightforward proper definition fully satisfying the criteria of
eliminability and non-creativity. The main disadvantage of this approach
is the one mentioned in § 8.5: many mathematicians feel uneasy with the
identity:

z

—=0.

0

The fourth approach agrees with the second and third in requiring no
basic change of logic; it differs in placing the object /0 outside the domain
of real numbers; more precisely it differs in not making it possible to prove
that /0 is a real number. The basic idea is to introduce & predicate ‘B’
which means “is a real number’. Hypotheses using this predicate must be
added to all the axioms stated in Chapter 7. Furthermore, to guarantee
that addition and multiplication of numbers yield numbers, we must add
the two closure axioms:

R(z) & R(y) — Rz +y),
R(z) & R(y) — R(z-y).

The introduction of the predicate ‘R’ widens our domain of individuals,
for now it does not follow that everything in the domain is & real number
(in particular that 1/0 is a real number). The introduction of ‘R’ has the
further consequence of making it natural to make all our definitions of
arithmetical relations and operations conditional. There is no point in de-
fining the relation of equal to or less than, for instance, for things which
are not numbers. Thus we would have:

[Riz) &R@y)] > z<y o =y vz <yl
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The definition of division would be:
@) [R@)&RW&R@D&y#0] > [z/y=2 o z=y-2.

If z is a real number, with (3) at hand we cannot prove:

z
(—) is a real number

and we cannot prove:
z .
o is not a real number,

but we are not faced with the counterintuitive situation of being forced to
call z/0 a real number. The situation can be improved by introducing into
our system a primitive symbol for some object which is not a real number.
Without saying what the object is, let us designate it by ‘. Then we
have the axiom:

-R(") ’

that is, the assertion that » is not a real number. We may now define
division by:
@ [R@)&RW)] > lz/y=2
< [y=0 > R &z=y-2) &Y =0 > z =)

The virtue of (4) is that it definitely places 2/0 outside the domain of real
numbers for any number z. Such a consequence would seem to be in
closest accord with ordinary mathematical usage. Definition (4) also has
the virtue of making

T Yy

0 0
where z and y are real numbers, thus eliminating a vast proliferation of odd
mathematical entities. On the other hand, to see once for all that all is
not for the best in this best of all possible worlds, notice that if we adopt
(4) we cannot decide whether or not »/» is a real number. If we use condi-
tional definitions and insist on not tampering with the basic law of identity
for terms, then we must be prepared for the undecidability of the status of
entities like »/». We may take the attitude that everything is in good
order in the domain where we intend to use the division operation, and we
really do not care what is going on elsewhere if no inconsistencies can
creep in.

A fifth approach should be mentioned which is of considerable theoretical

importance but does not correspond at all to ordinary mathematical prac-
- tice. The idea is simple: banish operation symbols and individual con-
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stants, and use only relation symbols. Thus ‘0’ is replaced by the primitive
one-place predicate ‘Z’, where it is intended that Z(z) means that z is an
identity element with respect to addition. The ternary relation symbol
‘A’ is used to replace the addition operation symbol:

Az, y,2) o zty=2
Similarly the ternary relation symbol ‘M’ is used for multiplication:
M@, y,2) o 2y =2

With this apparatus we may easily give a proper definition of the division
relation symbol:

D(z,y,2) & -Z(y) & M(y, ¢, ).

In this approach there is no need for unusual mathematical entities, but it
is extraordinarily awkward to work continually with relation symbols
rather than operation symbols. For example, the associativity of addition
has to be expressed in some manner like the following:

A(Z, Y, ’U)) & A(w, 2, 81) & A(y; 2, v) & A(x; v, 82) — 8§ = 8.

§ 8.8 Padoa’s Principle and Independence of Primitive Symbols.
When the primitive symbols of a theory are given, it is natural to ask if it
would be possible to define one of them in terms of the others. The Italian
logician Alessandro Padoa formulated in 1900 a principle applying the
method of interpretation which may be used to show that the primitive
symbols are independent, that is, that one may not be defined in terms of
the other. The principle is simple: to prove that a given primitive symbol
is independent of the remaining primitives, find two interpretations of the
axioms of the theory such that the given primitive has two different inter-
pretations and the remaining primitive symbols have the same interpreta-
tion. For instance, consider the theory of preference based on the primi-
tive relation symbols ‘P’ (for strict preference) and ‘I’ (for indifference).
The axioms of the theory are:

Al. If xPy & yPz, then zPz.
A2. If zly & ylz, then zl2.
A3. Ezxactly one of the following:

zPy, yPzx, z1y.

We want to show that ‘P’ is independent of ‘I’, that is, cannot be defined
in terms of ‘I’. Let the domain of interpretation for both interpretations
be the set {1, 2}. Let ‘I’ be interpreted as identity in both cases. In one
case let ‘P’ be interpreted as ‘<’ and in the other case as ‘>’. In the first
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interpretation, we have:

1P2
gince
1<2,
and consequently by Axiom A3
not 2P1.

But in the second interpretation, we have:

2P1
since
2> 1.

Now if ‘P’ were definable in terms of ‘I’ then ‘P’ would have to be the
same in both interpretations, since ‘I’ is. However, ‘P’ is not the same,
and we conclude that ‘P’ cannot be defined in terms of ‘I’.

To make clear the procedure for applying Padoa’s principle to any theory
formalized in first-order predicate logic with identity, we want now to
make more precise the general definition of independence of a primitive
symbol and also to characterize more sharply the notion of two interpreta-
tions of a theory being different for a given primitive symbol of the theory.

Let R be an n-place primitive relation symbol of a theory. Then we say
that R is dependent on the other primitive symbols of the theory if a formula
of the form

Rviy ..., vm) & S

may be derived from the axioms, where (i) vy, . . ., v, are distinct variables,
(ii) the only free variables in S are vy, .. ., v,, and (iii) the only non-logical
constants oceurring in S are the other primitive symbols of the theory.

The close relation between this definition of dependence of a primitive
relation symbol and the rule for defining new relation symbols in a theory
is obvious and expected. The definitions of dependence of operation sym-
bols and individual constants are similar and will be left as exercises.

We now want to use the definition of dependence for relation symbols to
sharpen the description of Padoa’s principle for proving independence.*
To prove an n-place primitive relation symbol ‘R’ independent of the other
primitive symbols of a theory, we need to find two interpretations of the
theory, that is, two interpretations of the axioms of the theory such that:

* Padoa’s original discussion of these matters is not entirely adequate. The standard
references for a complete discussion are J. C. C. McKinsey “On the Independence of
Undefined Ideas,” Bulletin of the American Mathematical Society, Vol. 41 (1935) pp. 291—
297, and Alfred Tarski, “Einige methodologische Untersuchungen tiber die Definier-
barkeit der Begriffe,” Erkenninis, Vol. 5 (1935-1936) pp. 80-100. An English transla-

tion of Tarski’s article is to be found in Alfred Tarski, Logic, Semantics, Metamathe-
matics, Oxford, 1956.
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(i) The domain of both interpretations is the same.
(ii) The two interpretations are the same for all other primitive sym-
bols of the theory.
(iii) Let ‘R’ be the first interpretation of ‘R’ and ‘R’ the second, then
‘R,’ and ‘R’ must be different in the following respect: there are elements
Z3, ..., Zn in the domain of interpretation such that

(a) ‘Bi(xyy ..y xs) 18 true,
and
(b) ‘Ro(z1, - .., %) i false.

To see that two such interpretations establish the independence of ‘R’,
suppose that ‘R’ is dependent on the other primitive symbols of the theory;
that is, suppose that there is a formula:

(1) Ry, ..., %y) < S

of the kind demanded by the definition of dependence such that (1) is
derivable from the axioms of the theory. As before, let the subscript ‘1’
refer to the first interpretation and ‘2’ to the second interpretation. In
both interpretations we must have:

2 Ri(zy, ...y Tn) © Sy,
and
(3) Rﬂ(xly ey :D,.) > 52’

since (1) is a logical consequence of the axioms of the theory. Moreover,
since all primitive symbols except ‘R’ are the same in both interpretations,
we also have:

(4) 51 > 82.
From (2), (3), and (4) we infer that
(5) Rl(xb seey xn) « R2(x1; seey Z,.),

which contradicts (a) and (b) of (iii) and proves that our supposition of
dependence is absurd.

The definition of differentness of interpretation is similar for operation
symbols and individual constants; * precisely the same kind of argument
as that just given shows that finding the two appropriately different inter-
pretations is adequate to prove the independence of operation symbols or
individual constants.

A simple example will illustrate how Padoa’s principle is used to prove
the independence of an operation symbol. We consider the theory whose

* A classical way of describing this difference is that the primitive symbol being
proved independent must have a different eztension in the two interpretations.



172 THEORY OF DEFINITION

primitive symbols are a one-place relation symbol ‘P’ (that is, ‘P’ denotes
a property) and a binary operation symbol ‘c’. The axioms of the theory
are:

Al. P(z) & P(y) — P(zoy).
A2. P(z) &-P(y) — -P(zoy).
A3. zoy=youz.

We indicate the first and second interpretations by subscripts as previously.
The common domain of interpretation is the set of positive integers, and

Py(z) <> Py(z) < z is an even integer,
zoy=z+y,
zoay=z+y+ 2

We easily verify that both interpretations satisfy the axioms. The inde-
pendence of ‘o’ follows from the fact that we have:

1012=3
10,2 =5 3.

Without going into details it may be mentioned that Padoa’s principle
may be easily extended to theories which assume in their formalization not
only first-order predicate logic with identity but also a good deal of classical
mathematics. Probably some of the most interesting applications of
Padoa’s principle to such “advanced’’ theories are in the domain of em-
pirical science, for there is a fair amount of confused discussion regarding
the interdefinability of various empirical concepts. In discussions of the
foundations of mechanics, for instance, it is often claimed, following Ernst
Mach, that the concept of mass can be defined in terms of the concept of
acceleration, or that the concept of force may be defined in terms of the
concepts of mass and acceleration. However, it can be shown by applica-
tion of Padoa’s principle that under several plausible axiomatizations the
concepts of mass and force are each independent of the other primitive
concepts of mechanics.*

EXERCISES

Be careful not to violate Rule VII, §4.2 in doing these exercises.

1. Consider the weak theory of preference discussed in this section. Prove
that the primitive relation symbol ‘I’ is dependent on ‘P’.

2. Define the notion of dependence for operation symbols.

3. Characterize the two different interpretations needed to prove that an opera-
tion symbol is an independent primitive symbol of a theory.

4. Consider the theory of groups as given in Chapter 5 and based on three
primitive symbols. Is the operation symbol ‘7 for the inverse of an element of
8 group dependent or independent?

* See §12.5.
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5. Consider the axioms for the measurement of mass given in Exercise 9, § 4.5.
Prove that the primitive symbols ‘Q’ and ‘#’ are both independent.

6. Define the notion of dependence for individual constants.

7. Characterize the two different interpretations needed to prove that an indi-
vidual constant is an independent primitive symbol of a theory.

8. Consider the theory of groups discussed in Chapter 5. Is the individual
constant ‘¢’ dependent or independent in this theory?

9. Consider the axiomatization of Huntington’s for the “informal part” of
Principta Mathematica, already discussed as Exercise 12, § 4.1. The three primitive
symbols are a one-place relation symbol ‘C’, a binary operation symbol ‘4’, and a
unary operation symbol ‘V; and the five axioms are:

Al, If C(x + y) then C(y + 2).
A2. If C(z) then C(z + y).

A3. If C(z)) then —C(x).

Ad. If C(z)) then C(z).

A5. If C(z + ) & C(z") then C(y).

To show that the primitive symbol ‘C’ is independent, consider the domain of
interpretation consisting of the numbers 1, 2, 3, 4. In the first interpretation let 1
and 2 have the property C, i.e., Ci(1) & C3(2). The binary operation symbol ‘4’
is given by the following table for both interpretations (the use of such finite tables
is common in proving independence of axioms or primitive symbols).

+ 1 2 3 4

LR -
P et e
DD = D) =
GO OO =
G0 DD e

The table is used in the following manner. To find what element 3 -- 2 is, we
look at the entry occurring in the third row and second column and find:

34+2=1.
For the joint interpretation of the unary operation ! we have the following table:

z z!

GO DD =t
0D OO W

In the second interpretation the only change is in ‘C’. We now have: Cx(1) & Ca(3).
It is easily verified that both interpretations satisfy the axioms. Since

Cx(2) & —Cx(2),

we conclude that ‘C’ is an independent primitive symbol. Prove that the two
operation symbols are also independent.

10. Using tables similar to those given in the previous exercise, prove that the
five axioms of Exercise 9 are independent.
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CHAPTER 9

SETS

§ 9.1 Introduction. In this and the next two chapters we develop the
elementary theory of sets in an intuitive manner. The present chapter is
concerned with arbitrary sets; Chapter 10 with those sets which are rela-
tions; and Chapter 11 with those sets which are functions.

Since in Chapter 7 a certain portion of arithmetic was developed in a
logical fashion from a small list of axioms, some readers may feel that it
would be more appropriate to develop the theory of sets axiomatically
rather than intuitively. However, there are good grounds for introducing
the concepts of set theory informally. The concepts of arithmetic are
familiar to everyone; an axiomatic presentation of arithmetic may continu-
ally call upon familiar facts to guide and motivate its lines of develop-
ment. Although the concepts of set theory are logically simpler in several
respects than those of arithmetic, they are not generally familiar. The
purpose of Chapters 9-12 is to provide such familiarization.

§ 9.2 Membership. By a sef we mean any kind of a collection of en-
tities of any sort.* Thus we can speak of the set of all Americans, or the
set of all integers, or the set of all Americans and integers, or the set of
all straight lines, or the set of all circles which pass through a given point.
Many other words are used synonymously with ‘set’: for instance, ‘class’,
‘collection’, and ‘aggregate’. We shall sometimes use these other words
for the sake of literary variety.

We say of the members of a set that they belong to the set; it is customary
to use the symbol ‘<’ resembling the Greek letter epsilon, as an abbrevia-
tion for ‘belongs to’. Thus we write:

Elizabeth II belongs to the class of women,
or simply:
(1)  Elizabeth II € the class of women.

* Although the notion of a set was introduced in Chapter 2 in connection with the
theory of inference, the discussion here is self-contained.
177
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In ordmary language (1) would be expressed by:
Elizabeth II is a woman.

Thus the verb ‘to be’ often has the meaning of set membership.

We use the word ‘set’ in such a way that a set is completely determined
when its members are given; i.e., if A and B are sets which have exactly
the same members, then A = B. Thus we write:

The set of equilateral triangles = the set of equiangular triangles,

for something belongs to the first set if and only if it belongs to the second,
gince a triangle is equilateral if and only if it is equiangular. This general
principle of identity for sets is usually called the principle of extensionality
for sets; it may be formulated symbolically thus:

2) A=B o (2)(zcd o zcB).

Sometimes one finds it convenient to speak of a set even when it is not
known that this set has any members. A geneticist may wish to talk
about the set of women whose fathers, brothers, and husbands are all
hemophiliacs, even though he does not know of an example of such a
woman. And a mathematician may wish to talk about maps which cannot
be colored in fewer than five colors, even though he cannot prove that
such maps exist (the question whether there are such maps, as a matter
of fact, is a famous unsolved mathematical problem). Thus it is convenient
to make our usage of the term ‘set’ wide enough to include empty sets, i.e.,
sets which have no members.

From our analysis of implications in Chapter 1, it is clear that if A is a
set which has no members, then the following statement is true, since the
antecedent is always false:

3) @)z cA — z B).

And, correspondingly, if B is empty, i.e., has no members, then it is true
that:

()] @)z €B — z c A).
From (2), (3), and (4) we conclude that if two sets A and B are empty, then:
A = B;

that is to say, there is just one empty set; for given two empty sets, it fol-
lows from the principle of extensionality for sets that the two sets are
identical. Hence we shall speak of the empty set, which we denote by a
capital Greek lambda:

A,
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A is the set such that for every =z, z does not belong to A; that is, sym-
bolically:
(2)-(z € ),

and we abbreviate ‘~(z € A)’ to ‘¢z ¢ A’, and write:

() (> ¢ A).

We shall find it convenient in general to use the notation ‘¢’ to indicate
that something does not belong to a set.

Often we shall describe a set by writing down names of its members,
separated by commas, and enclosing the whole in braces. For instance, by:

{Roosevelt, Parker}

we mean the set consisting of the two major candidates in the 1904 Ameri-
can Presidential election. By:

{1,3, 5}

we mean the set consisting of the first three odd positive integers. It is

clear that
{1: 3; 5} = {1; 5, 3}

(for both sets have the same members: the order in which we write down
the members of a set is of no importance). Moreover,

{1’ 1,3, 5} = {1’ 3, 5}

(for we do not count an element of a set twice).

The members of a set can themselves be sets. Thus a political party
can be conceived as a certain set of people, and it may be convenient to
speak of the set of political parties in a given country. Similarly we can
have sets whose members are sets of integers; for instance, by:

{{1, 2}, {8, 4}, {5, 6}}
we mean the set which has just three members, namely, {1, 2}, {3, 4}, and
{5, 6}. By:
{{1, 2}, {2, 3}}

we mean the set whose two members are {1, 2} and {2, 3}. By:

{1, 2}, {1}}

we mean the set whose two members are the sets {1, 2} and {1}.

A set having just one member is not to be considered identical with that
member. Thus the set {{1, 2}} is not identical with the set {1, 2}; thisis
clear from the fact that {1, 2} has two members, whereas {{1, 2}} has just
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one member (namely, {1, 2}). Similarly,
{Elizabeth II} »* Elizabeth II,

for Elizabeth II is a woman, while {Elizabeth II} is a set.

Ordinarily it is not true that a set is a member of itself. Thus the set
of chairs is not a member of the set of chairs: i.e., the set of chairs is not
itself a chair. This remark illustrates the very great difference between
identity and membership; for the assertion that

A=A

is always true, whereas that
Acd
is usually false.*

The relation of membership also differs from the relation of identity in
that it is not symmetric: from A ¢ B it does not follow that B € 4. For
instance, we have:

2e{L 2},
but:
{1,2} ¢2.

Moreover, the relation of membership is not transitive: from A ¢ B and
B € C it does not follow that A ¢ C. Thus, for example, we have:

2e{l, 2}
and:
{1, 2} e {{1, 2}, {3, 4}}

2¢{{1,2}, {3,4}},

for the only members of {{1, 2}, {3, 4}} are {1, 2} and {3, 4}, and neither
of these sets is identical with 2.

It should be noticed that if, for instance, {a, b} is any set with two
members, then, for every z, « € {a, b} if and only if eitherz = a or z = b,
that is, symbolically:

but:

@ eclad) & (x=avz=0").

Similarly, if {a, b, c} is a set with three members, then z < {a, b, ¢} if and
only if either z = a or z = b or z = ¢. It is for this reason that we just
said that 2 ¢ {{1, 2}, {3, 4}}; for if z € {{1, 2}, {3, 4}}, then either z =
{1, 2} or z = {3, 4}; and since 2 > {1, 2} and 2 = {3, 4}, it follows that
2¢ {11, 2}, {3, 4}}.

It should also be noticed that there is a close relationship between saying
that something has a property and saying that it belongs to a set: a thing

* In most standard systems of axiomatic set theory no set may be a member of itself.
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has a given property if and only if it belongs to the set of things having
the property.* Thus to say that 6 has the property of being an even
number amounts to saying that 6 belongs to the set of even numbers.
Since we can always in this way express things in terms of membership in
sets instead of in terms of the possession of properties, we do not find it
necessary to give any more detailed discussion of properties.

In §5.1 we expressed the principle of the identity of indiscernibles in
terms of properties. Expressed in terms of membership the principle be-
comes: If y belongs to every set to which = belongs, then y = z. Put in
this form, the principle has perhaps a more obvious character than it has
when put in terms of properties. For z € {z} (ie., z belongs to the set
whose only member is z), and hence, if ¥ belongs to every set to which z
belongs, we conclude that y € {z}, so that y = =.

§9.3 Inclusion. If A and B are sets such that every member of 4 is
also a member of B, then we call A a subset of B, or say that A is included
in B. We often use the sign ‘C’ as an abbreviation for ‘is included in’.
Thus we can write, for instance:

The set of Americans is a subset of the set of men,
or:
The set of Americans is included in the set of men,

or simply:
The set of Americans C the set of men.
Symbolically we have:
@ ACB o (x)(zcdA — z cB).

It is clear that every set is a subset of itself; i.e., for every set 4 we
have: A © A. Moreover, the relation of inclusion is transitive; i.e., if
A C Band B C C, then A C C (for if every member of A is a member of
B, and every member of B is a member of C, then every member of 4 is a
member of C). The relation of inclusion is not symmetric, however; thus
{1, 2} < {1, 2, 3}, but it is not the case that {1, 2, 3} < {1, 2}.

It is intuitively obvious that identity, membership, and inclusion are
distincet and different notions, but it is still somewhat interesting to observe
that their distinction may be inferred simply from considering the ques-
tions of symmetry and transitivity. Thus inclusion is not the same as
identity, since identity is symmetric while inclusion is not. And inclusion
is not the same as membership, since inclusion is transitive while member-
ship is not. And we have seen earlier that identity is not the same as

* This principle is sometimes called Cantor's aziom for seis, after the founder of set

theory, G. Cantor (1845-1918). This principle must be suitably restricted to avoid
contradiction.
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membership, since identity is both symmetric and transitive, while mem-
bership is neither. In everyday language all three notions are expressed
by the one overburdened verb ‘to be’. Thus in everyday language we write:

Elizabeth II is the present Queen of England,
Elizabeth II is a woman,
Women are human beings.

But in the more exact language being developed here:

Elizabeth II = the present Queen of England,
Elizabeth II ¢ the class of women,
The class of women C the class of human beings.

When A C B, the possibility is not excluded that A = B; it may happen
also that B C A, so that A and B have exactly the same members, and
hence are identical.

When A © Bbut A # B, we call A a proper subset of B. We use ‘C’
as an abbreviation for ‘is a proper subset of’. Thus:

{1,2} c{1,2,3]
is true, as is also:
{1,2} € {1,23};
but:
{1,2,3} c {1, 2,3}
is false, although:
{1,2,3} < {1, 2, 3}
is of course true.
Symbolically we have:

ACBeo ACB&A = B,

EXERCISES

1. Which of the following statements are true (for all sets A, B, and C)?

(a) f A=Band B =C, then 4 = C,
bW IfAcBand Be(C, then A cC.
() fAC Band BC C, then A C C.
(d) fA =Band BeC, then A €C.
() IfAcBand B=C,then A €C.
() AcBand BC C,then 4 <C.
() TAC Band B<C,then 4 cC.
(h) f AC Band B cC, then BC C.
i) HAC Band BC C,then A C C.
) HTAcBand BC C,then A cC.
k) IfAcBand BC C,thendCC.
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2. For each of the statements in Exercise 1 which is false give an example of
particular sets A, B, and C which show that the statement is not in general true.
3. Give an example of sets 4, B, C, D satisfying the conditions:

ACB
BeC

ccD
D=E

4. What is wrong with the following argument?

Socrates is a man. Men are numerous. Therefore, Socrates is numerous.
5. What is wrong with the following argument?

Tomeats are cats. Cats are a species. Therefore, tomcats are a species.

6. In each of the following examples decide which of the following statements
are true: A ¢ B,AC B,AC B, A =B.

ExamrLE (A).

A = {1, {1}, Roosevelt, 4},
B = {1, {1}, Roosevelt, Churchill}.

ExamrLE (B).

A = the set of positive integers,
B = the set of positive and negative integers.

ExamrLr (C).

A is the set consisting of the following: the number 5, the set consisting of
Roosevelt, the set consisting of the set consisting of the number 1.

B is the set consisting of the following: the number 5, Roosevelt, the set con-
sisting of the set consisting of Roosevelt, the number 1.

Examrre (D).

A=1{1,3,4,2, 9
B={1,2+1,1+8, 10,2+ 0, 1008, 4}

ExamrLe (E).

A = the set whose members are the following: the set of all Presidents of the
United States in the nineteenth century, Truman, McKinley, the smallest
positive integer divisible by 5.

B = the set whose members are the following: the set of all Presidents of the
United States up to 1953, the number 10.

7. Which of the following statements are true for all sets 4, B, and C?

(a) A¢ B&BgC > A¢C
b)) A#=B&B#C > A=C
(c) AcB&—(BCSC)—> A¢gC
d ACB&BC C - ~CC 4)
) ACB&BecC > AgC
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§ 9.4 The Empty Set. As mentioned earlier, the empty set, A, is char-
acterized by the property that, for every z, z ¢ A.

It should be noticed that, although nothing belongs to the empty set,
the empty set can itself very well be a member of another set. Thus if
we speak of the set of all subsets of the set {1, 2}, we are speaking of the
set {{1, 2}, {1}, {2}, A} which has four members; the three-member set
{{1, 2}, {1}, {2}} on the other hand, is the set of all non-empty subsets of
{1, 2}.

We recall the fact that a set A is a subset of a set B if and only if every
member of A is also a member of B, i.e., if and only if: for every z, if
z € A, then z ¢ B. In particular, the empty set A is a subset of a set B
if and only if: for every z, if z c A, then 7 € B. Since always z ¢ A,
however, it is always true that if + € A, then x € B. Thus, for every set
B, we have:

ACSB.

That is, the empty set is a subset of every set. In addition, the empty set
is the only set which is a subset of the empty set; for if B C A, then,
since we also have: A C B, we can conclude that B = A.

We can summarize these facts about the empty set as follows:

@ @)(= ¢ 4),

(id) (34)A c4) &(34)(A ¢ 4),
(iif) (4)A € 4),
(iv) (AYACA & A =4,

§9.5 Operations on Sets. If A and B are sets, then by the intersection
of A and B (in symbols: A N B) we mean the set of all things which belong
both to A and to B. Thus, for every 2,z € (4 N B) if and only if z € 4
and z € B; that is, symbolically:

) @DxecANBe zcA&zeB).

If A is the set of all Americans, and B is the set of all blue-eyed people,
then 4 N B is the set of all blue-eyed Americans.

If A is the set of all men, and B is the set of all animals which weigh
over ten tons, then A M B is the set of all men who weigh over ten tons.
In this case we notice that A N B is the empty set (despite the fact that
A # A, and B # A, since some whales weigh more than ten tons). When
A N B = A, we say that A and B are mutually exclusive.

Our use of the term ‘intersection’ is similar to its use in elementary
geometry, where by the intersection of two circles, for instance, we mean
the points which lie on both circles. Some authors use, instead of ‘N’,
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the dot ‘-’ which is used in algebra for multiplication; such authors often
speak of the “product’”’ of two sets, instead of their intersection.

If A and B are sets, then by the union of A and B (in symbols: 4 U B)
we mean the set of all things which belong to at least one of the sets A
and B. Thus, for every z, 2 € (A U B) if and only if either z € 4 or
T € B. (Notice that, as explained in Chapter 1, we use the connective ‘or’
in its non-exclusive sense: ‘c € A or x € B’ is false only in case both z ¢ A
and z ¢ B.) Symbolically:

@) @zecAdUBe zecAvzeB).

If A is the set of all animals, and B is the set of all plants, then 4 U B is
the set of all living organisms. One often wishes to consider the union of
two sets, however, even when they are not mutually exclusive. For in-
stance, if A is the set of all human adults, and B is the set of all people
less than 40 years old, then A U B is the set of all human beings.

Some authors use the addition sign ‘4’ instead of ‘U’, and call the union
of two sets their “sum”.

If A and B are two sets, then by the difference of A and B (in symbols:
A ~ B) we mean the set of all things which belong to A but not to B.
Thus, for every z, t € A ~ B if and only if 2 ¢ 4 and z ¢ B; that is,
symbolically:

3) z(zcA~B o z2zcA &z ¢B).

If A is the set of all human beings, and B is the set of all human females,
then A ~ B is the set of all human males. One often wishes to consider
the difference of two sets A and B, however, even when B is not a subset
of A. For instance, if 4 is the set of human beings, and B is the set of all
female animals, then A ~ B is still the set of all human males, and B ~ 4
is the set of all female animals which belong to a non-human species.

These operations on sets (intersection, union, and difference) can of
course be iterated. Thus, suppose, for instance, that

4= {1) 2},
B = {1; 3, 5}7
C= {2; 3,5, 7}1
D= {4;5:617};
then
AUB={1,2} U{L3 5} =1{1,23, 5
and hence

CNAUB =1{2,3,57} N{1,23,5} =1{23,5}
and hence
DN[Cn 4 UB)]= {4:5y6:7}~{213:5} = {4:6)7}'
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Similarly, since
CUD=1{2,357} U {4567} = {2,3,4,5,6,7},
we have:
AUBNCUD)=1{1,23,5} N {23,4,5,6,7} = {2, 3, 5}..

EXERCISES

1. If A is the set of all even positive integers, and B is the set of all integers
which are greater than 10, what are the following?

AUB A~B
ANB B~A

2. If A is any set, what are the following?

ANA A~A
AUA A~A

3. Letting:
A = the set of all positive integers C = {2, 4}
B = {3, 5} D = {1, 2}
find the following:
A~B (BUON®BUD)
A~C A~(CND
A~D (4~C)U (4 ~D)
4. Letting
A={1;2} F=”1;3}11:2}
B ={{3,4},1,7} G ={{1,2}, 1,7}
C = {{3,4}, 1, 2} H={{1,2},1,2}
D = {{1,3},4, 7} I={{1:2}y{1}) {21}
E=1{{1,3}1,7} J = {{1}, {2}}
find the following:
ANB ANG
ANcC ANH
AND ANI
ANE ANJ
ANF
5. Find the following:
AN {A}
{A} N {A}
{A, {A}} ~A
{A, {A}} ~{A}
{A, {A}} ~ {{A}}
6. Letting
A= {1} C=1{1,2} E={1,{1, {1}}}
B = {1, {1}} D ={1,2, {1}}
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find the following:
ANB (CUD)~B
AUB (AND)~E
@auBnce {BINE
{A}N B (4} U D)N (E ~0).
7. Using the sets of Exercise 6, which of the following statements are true?

(8) AcB H CCD

(b) AC B (8 BC D

(¢) BeE (W B~AcD

(d) BCE () E~BC A

(e) CeD

8. Taking the binary relation symbol ‘<’ as the single primitive symbol of set
theory, define the operation symbols of intersection, union, and difference in a
manner which satisfies the rules of definition for operation symbols given in Chap-
ter 8.

§ 9.6 Domains of Individuals. Often one is interested, not in all pos-
sible sets, but merely in all the subsets of some fixed set. Thus in soci-
ology, for instance, it might be natural to be talking mostly about sets of
human beings; and to speak with the understanding that when a set was
mentioned it was to be taken to be a set of people, unless an explicit state-
ment to the contrary was made. In such discourse one might say, for
example, ‘the set of albinos’, and it would be understood that one was re-
ferring only to the set of albino people, and not also to albino monkeys,
albino mice, and other albino animals.

Similarly, in some geometrical discourse it is natural to use the word
‘set’ to mean ‘set of points’. (Sometimes in mathematics people press into
service in some specialized sense some of the various words mentioned
above as being here taken to be synonymous with ‘set’: a geometrician
might, for example, adopt the convention of speaking of sefs of points,
classes of sets of points, and aggregates—or perhaps families—of geometrical
curves.)

When a fixed set D is taken as given in this way, and one confines him-
self to the discussion of subsets of D, we shall call D the domain of individ-
uals, or sometimes the domain of discourse. Thus the domain of individuals
of the sociological discussion mentioned above is the set of all human
beings.

We shall denote the domain of individuals by ‘V’. It is important to
remember that though ‘A’, as seen earlier, stands for a uniquely determined
entity (the empty set), the symbol ‘V’ is interpreted differently in different
discussions. In one context ‘V’ may stand for the set of all human beings,
in another for the set of points of space, and in another for the set of
positive integers.
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When dealing with a fixed domain of individuals V, it is convenient to
introduce a special symbol for the difference of V and a set A4:

~4d =V~A

We call ~A the complement of A. More generally, the difference B ~ A
of B and 4 is called the complement of A relative to B; so the complement of
a set is simply its complement relative to the given domain of individuals.

As should be expected, we may find the complement of a set which itself
results from operations on other sets. For example, let

V=112, 3]}
A={12)
B = (2,3].

Then
~A =V~A=1{123}~{1,2} = {3},

and correspondingly,
~(AUB)=V~(AUB)={1,23} ~({1,2} U {2,3})
= {1, 2, 3} ~ {1, 2, 3} = A.

Some further facts about the operation of complementation are men-
tioned in § 9.9.

EXERCISES
1. If

V = {1, 2, 3, 4, 5} A =1{12}

B= {21 3}
what are the following:

~A ~A N ~B A ~(~B)

~B ~AN B) ~4 ~B
~A ~(~B)

2. Let V be the set of all positive integers, and let

A = set of all even positive integers,

B = set of all odd positive integers,

C = set of all positive integers greater than 10,
D = set of all positive integers less than 15.

Find:
(@) ~A ) D~C @) 4 ~(~0)
(b) M4 U B) () ~D~0) () (4N D) ~(~B)
(¢) ~4 N B) @® CU ~D (k) A ~(~C U D)
d ~C () ~cND

3. Consider the axioms for groups given in Chapter 5. Let the domain of inter-
pretation be the set of all subsets of some given domain V of individuals. Inter-
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pret the inverse operation symbol as complementation. Let the empty set be the
identity element. If the binary operation symbol is interpreted as:

(a) intersection of sets

(b) union of sets

(c) difference of sets
are the three group axioms satisfied? If not, state which axioms are not satisfied
and give explicit counterexamples,

4. Same as Exercise 3 except that the identity element is interpreted as the do-
main V of individuals.

§9.7 Translating Everyday Language.* This section is devoted to
the problem of translating sentences of everyday language into the sym-
bolism we have been developing in this chapter. It should be realized, as
was pointed out in Chapter 3, that the usage of everyday language is not
8o uniform that one can give unambiguous and categorical rules of trans-
lation. In everyday language we often use the same word for essentially
different notions (‘i8’, for example, for both ‘c’ and ‘C’); and, sometimes
for literary elegance, we often use different words for the same notion (‘i¢’,
‘is a subset of’, and ‘is included in’, for example, for ‘C’).

We consider here only those sentences which can be translated into a
symbolism consisting just of letters standing for sets, parentheses, and the
following symbols:

N, U, ~ A =, # C.

Such a symbolism can handle statements involving one-place predicates
very well, but it is not adequate to the complexities of thought that can
be expressed by means of many-place predicates. This symbolism is essen-
tially equivalent to the language of the classical theory of the syllogism.
It is important to note that we are not using here the notion of member-
ship; we restrict ourselves to sets all of which are on the same level—sub-
sets of some fixed domain of individuals.

An English statement of the form ‘All ... are ...’, where the two
blanks are filled with common nouns such as ‘men’ or ‘Americans’ or
‘philosophers’, means, of course, that the set of things described by the
first noun is a subset of the set of things described by the second noun.
Thus, for example:

(¢)) All Americans are philosophers

means:
The set of Americans C the set of philosophers,

or, using ‘A’ as an abbreviation for ‘the set of Americans’, and ‘P’ as an
* This section may be omitted without loss of continuity.
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abbreviation for ‘the set of philosophers’:
ACP,

We can also express the meaning of this statement in other, equivalent,
ways:

AUP=P,
or:

AN ~P =A,

etc., and these other modes of expression often turn out to be useful. In
such discussions a domain of individuals is easily fixed and thus the size of
complement sets such as ~P. Here, for example, V can be taken as the
set of all human beings.

We use the same mode of translation of statements of the form ‘All ...

are ...’ also when the second blank is filled with an adjective. For exam-
ple, we take:

2) All Americans are mortal
to mean:

The class of Americans C the class of mortal beings,
or, using obvious abbreviations:
ACM.

Sometimes, however, in contexts of this sort people suppress the word
“all”’—writing, for instance:

TYyrants are mortal
instead of:
3 All tyrants are mortal,
or:
Women are fickle
instead of:
4) All women are fickle,
which we should translate, respectively, by:
TCM
and:
W CF.

One must be on guard when translating statements of this kind, however;
for ordinary language uses the same form also to express essentially dif-
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ferent ideas. Thus, as we have seen before:
5) Men are numerous
does not mean:
The set of men C the set of numerous things

@i.e., that every man is numerous) but rather, letting M be the set of men
and N be the set of sets which have numerous members:

MeN.
Similarly:

6) The apostles are twelve

means that the set of apostles belongs to the set of sets having just twelve
members.

Corresponding to the distinction which we have made between member-
ship and inclusion, the older logic made a distinction between the “dis-
tributive” and “collective” application of the predicate to the subject.
Using this terminology, one says that in (1), (2), (3), and (4) the predicate
is applied to the subject distributively, and that in (5) and (6) it is applied
to the subject collectively.

An English statement of the form ‘Some ... are ...’, where the blanks
. are filled by common nouns (or perhaps the second blank is filled by an
adjective) means that there exists something which is described by both
terms: i.e., that the intersection of the two corresponding sets is not empty.
Thus, for instance:

@ Some Americans are philosophers

means that there exists at least one person who is both an American and a
philosopher, and is accordingly translated:

ANP#A,

Although a statement of the form of (7) implies that the sets corre-
sponding to subject and predicate are not empty, no such inference is to
be drawn from a statement of the form of (1). Thus, for example, it is
true that

All three-headed, six-eyed men are three-headed men,
but it is not true that
Some three-headed, six-eyed men are three-headed men.

(Modern logic differs in this point from the older logic, which allowed the
inference of ‘Some S are P’ from ‘All S are P’.)
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An English statement of the form No ... are ...’ (where, as before,
the blanks are filled by common nouns) means that nothing belongs both
to the set corresponding to the first noun, and to the set corresponding to
the second noun: ie., that the intersection of these two sets is empty. For
instance, the sentence:

()] No Americans are philosophers

is translated:
ANP=A.

Thus (2) has the same meaning as:
No Americans are immortal
since both can be translated:
AN ~M=A,

An English statement of the form ‘Some ... are not ...’ (where the
blanks are filled by common nouns) means that there exists something
which belongs to the set corresponding to the first noun, and does not be-
long to the set corresponding to the second noun: i.e., that the intersection
of the first set with the complement of the second is not empty. The
sentence:

Some Americans are not philosophers

is translated:
AN ~P A,
We turn now to the problem of trapslating some statements of a more
complicated sort. ‘

The word ‘and’ often corresponds to the intersection of sets. Thus:
All Americans are clean and strong
is translated (using obvious abbreviations):
Aconas.
The same applies to the word ‘but’; thus:
Freshmen are ignorant but enthusiastic

is translated:
FCINE.

The situation is quite different, however, when the ‘and’ occurs in the
subject rather than in the predicate. Thus:

9) Fools and drunk men are truth tellers



TRANSLATING EVERYDAY LANGUAGE 193
is translated, not by:

(10) FNDYCT
but rather by:
(11) (FUD)CT.
For (9) means that both the following statements are true:
(12) All fools are truth tellers
and:
(13) All drunk men are truth tellers;
and (12) and (13) are translated, respectively, by:
(14) FCrT
and:
s) pCT;

and (14) and (15) are together equivalent to (11). (It should be noticed
that (10) says less than (11); for:

FNDCFUD

is true for every F and D—and hence (10) is true whenever (11) is true—
while a statement of the form (10) can be true even when the correspond-
ing statement of the form (11) is false.)

Often the statement to be translated does not contain any form of the
verb ‘to be’ at all. Thus the statement:

Some Frenchmen drink wine

can be translated:
FN WA,

if we think of ‘F” as standing for the set of Frenchmen and ‘W’ as standing
for the set of wine drinkers.
The statement:

Some Americans drink both coffee and milk
can be translated:
ANCNMsz=A,

where ‘4’ stands for the set of Americans, ‘C’ for the set of people who
drink coffee, and ‘M’ for the set of people who drink milk. (Here we have
adopted the practice, which is frequently employed, of suppressing paren-
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theses in representing the intersection of three or more sets, writing simply:
A N C N M instead of: 4 N (C N M); we shall sometimes adopt a similar
practice in connection with the representation of the union of three or
more sets. We shall discuss this matter further in § 9.9.)

Still more complicated examples are possible. Consider:

(16) Some Americans who drink tea do not drink either coffee or milk,

The general form of this statement is: Some S are not P. The subject is
translated:
ANT,

where T = the set of tea drinkers, and the predicate is translated:
CUM.
The whole sentence (16) is then translated:
ANT)N~CUM)=A,
which is also equivalent to:
ANTNACN~M=A,

since, corresponding to De Morgan’s laws for the sentential connectives,
we have:

17 ~(CUM) =~CN~M.
Identities like (17) are discussed in more detail in § 9.9.

EXERCISES

1. Buppose a psychologist performs a learning experiment with a group of rats
in & T-maze. On the basis of a theory which he has developed he expects certain
responses with certain characteristics. For simplicity let us think of these charac-
teristics as left or right (corresponding to a left or right turn in the maze), and re-
inforced or unreinforced. For accurate comparison of what is predicted by the
theory and what is observed experimentally, he distinguishes between the set of
predicted responses and the set of observed responses. Letting

V = the set of all possible responses,
P = the set of all predicted responses,
O = the set of all observed responses,
L = the set of all left responses,
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B = the set of all right responses,
E = the set of all reinforced responses,
U = the set of all unreinforced responses,

translate into symbolic form the following statements which the psychologist might
make about his experiment.

(a) All predicted responses were observed.

(b) Some left responses were predicted.

(c) All predicted left responses were reinforced.

(d) No observed responses were not predicted.

(e) No observed right responses were not predicted.

(f) Some left responses which were observed were not predicted.

() No right responses were either observed or predicted.

(b) Some right responses which were reinforced were observed but not pre-
dicted.

(i) Some left responses which were not predicted were unreinforced.

(i) All left responses which were predicted were observed and they were
found to be reinforced.

2. Letting

V = the set of all people,

A = the set of all Americans,

C = the set of all people who drink coffee,
F = the set of all Frenchmen,

M = the set of all murderers,

P = the set of all philosophers,

T = the set of all people who drink tea,
W = the set of all people who drink wine,

translate the following statements into symbolic form:

(a) Some American wine-drinkers are philosophers;

(b) No Frenchman is an American;

(c) People who drink wine and coffee also drink tea;

(d) All French murderers drink coffee, tea, and wine;

(e) Some American murderers drink coffee and tea, but not wine;

(f) Some French murderers who drink wine do not drink either coffee or tea;
(g) A philosopher drinks neither tea nor coffee;

(h) Some Frenchmen are either philosophers or murderers;

() All coffee drinkers drink either tea or wine.

§9.8 Venn Diagrams.* In studying sets and relations between them,
it is sometimes helpful to represent the sets diagrammatically; one draws
a rectangle to represent the domain of individuals, and then draws circles,
or other figures, inside the rectangle—thinking of the points inside the
various figures as corresponding to the members of the sets being repre-
sented by the figures.t Thus if we know of two sets A and B, for instance,

* This section may be omitted without loss of continuity.

t The basic idea of using circles in this way was due to the eighteenth-century Swiss
mathematician Euler. Some of the refinements to be explained below are due to the
nineteenth-century British logician Venn. The diagrams are sometimes called Euler
diagrams, or Venn diagrams.
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that they are mutually exclusive, we can represent this situation by the

following diagram:
AQ QB

Figure 1

If we know that A C B, we can represent the situation by Figure 2.

Ficure 2

A more traditional way of describing Figure 2 is to say that all A are B,
i.e., all members of A are members of B. To reinforce the discussion in
the last section, we shall, when it is convenient, place such traditional
statements in parentheses.

If we know of three sets A, B, and C, that A € B (all A are B) and
B N C = A, (ie., no B are C), we can represent the situation by Figure 3.

c

FIaure 3
From the figure it is clear that in this case we must also have: 4 N C = A
(no A are C).
Sometimes, instead of trying to incorporate the given information into
the diagram simply by drawing the circles in an appropriate manner, it is
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convenient to draw the figures in a rather arbitrary way (so that they will
divide the interior of the rectangle into a maximum number of parts) and
then get the information into the figure by other methods, such as the
shading of areas. Having decided, let us say, to indicate by horizontal
shading that an ares corresponds to the empty set, we indicate that A N B
= A by Figure 4; and that A C B by Figure 5; for to say that A4 is a sub-
set of B means that no part of A lies outside B.

A 8

Fiaune 4

F1qure §

Using such diagrams, it is often easy to see what conclusions can be
drawn from given information about two or more sets. Thus suppose, for
example, that it is given, of two sets A and B both that A N B = A, and
that A C B. The first statement (as indicated in Figure 4) means that
the common part of A and B is to be shaded; and the second statement
(as indicated in Figure 5) means that the part of A which is outside of B
is to be shaded. Thus we obtain Figure 6, where we notice that all of 4
is shaded. Thus we see that the two given statements jointly imply that
A is the empty set.

Ficurz 6
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Horizontal shading is used to indicate emptiness of a region. Another
kind of symbol is needed for non-emptiness. We shall use a device of
linked crosses.* Thus if A N B A (some A are B) we represent this
situation by Figure 7; the cross indicates that the region common to A
and B is not empty. We represent the more complicated situation:
AN (BUC) A, (some A are either B or C) by Figure 8.

8

»

Figurnm 7

Figure 8

The three crosses in Figure 8 are linked to show that at least one of the
three small regions is non-empty. If the linkage had been omitted in
Figure 8, the figure would represent much more than that A N (B U C) =
A. If the linkage were omitted, we could infer:

4] ANB~C#=A (the top cross)
2) ANBNC)#=A (the middle cross)
3) ANC)~B=A (the bottom cross)

Obviously, any one of the assertions (1)-(3) impliesthat A N (B U C) = A
and more. Without the linkage Figure 8 would say far too much.
The situation described by

AUB#A (Something is either A or B)
AU~C#A (Something is either A or not C)

* This device is due to Professor Robert McNaughton.
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is represented by Figure 9. Note the two separate linkages, one for each
of the two existential statements.

Figure 9

What interpretation should be given to a diagram in which a cross and
shading occur in the same region? Suppose, for example, that we have:

)] ANC#=A {Some A are C)
G ¢ccB (All C are B)

We obtain Figure 10, in which the part of C which is outside of B has been
shaded horizontally, to show that it is empty, and linked crosses have
been placed in the two parts of the common region of A and C, to show
that it is not empty. The problem of interpretation centers around Region
®. Consideration of (4) and (5) clearly urges the stipulation that shading

Ficure 10

dominates a cross, and hence Region @ is empty. We are thus able to
conclude that Region (@ is not empty, that is, (4) and (5) imply that
AN (BNC)sA (some A are B and C).
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There is one set of circumstances in which we do not want to say simply
that shading dominates a cross. When every cross in a linkage of crosses
is “covered” by shading we must conclude that the diagram is inconsistent
rather than that the linked regions are completely empty, for a linkage of
crosses means that at least one of the regions linked is non-empty. We
may in fact use these circumstances to investigate by use of Venn diagrams
the consistency of a set of conditions imposed on sets. Thus suppose, for
example, that it is given of three sets 4, B, and C that:

6) ACC (All A are C)
) ANC=A (No A are C)
€] ANB#A (Some A are B)

This situation is represented by a Venn diagram in Figure 11.

Ficure 11

Assumption (6) leads us to shade Regions @ and (2); assumption (7) leads
us to shade Regions @ and (®; and assumption (8) leads us to place two
linked crosses in Regions @ and ®. Thus the given assumptions imply
that Regions @ and ® are both empty and non-empty, which is a contra-
diction.

There is, of course, a very great difference between saying that certain
conditions on sets are inconsistent and saying merely that they imply that
some set is empty. Thus assumptions (6) and (7) above imply that A is
empty, but these two assumptions by themselves are not inconsistent.

‘With the notation for Venn diagrams now complete, it is of some interest
to show how the apparatus may be used to establish the validity of classical
syllogisms. As an example, consider the syllogism:

9 No Bare C
(10) AllAdareB
(11) Therefore no 4 are C
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Premises (9) and (10) are represented by Figure 12.

A B

\:l
N

Fiaure 12

We now examine the diagram to see if it implies that no A are C. We see
at once that the region common to A and C is horizontally shaded, and we
conclude that the conclusion of the syllogism is valid. All other valid
syllogisms may be tested in the same way, but there is no need to restrict
the use of Venn diagrams to testing the validity of those arguments which
have the classical syllogistic form. Venn diagrams may be used to repre-
gent any argument which does not involve more than three sets. More-
over, by a careful use of ellipses in place of circles relations among four sets
can be represented diagrammatically, but relations among five or more
sets can often not be represented by any simple diagrammatic device.

EXERCISES

1. Let A and B be sets such that A N ~B = A. Represent this situation by
a Venn diagram.

2, Let A and B be sets such that A 1 ~B = A and Bl ~A = A. Represent
this situation by a Venn diagram. Express the relation between A and B in a
simpler manner.

3. If it is given that A C B and that C N ~B ¢ A, what relation can be con-
cluded to hold between A and C?

4. Draw a Venn diagram representing that A C C, and B {1 ~C 5 A.

5. Are the following assumptions mutually consistent?

BNC=A

ANC~B=A

ANB~C=A
AUNBpuuUunNoOUBNC %A

6. Are the fo]lovging assumptions mutually consistent?
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7. Are the following assumptions mutually consistent?

Some Americans are virtuous.
No virtuous people steal from the poor.
Some Americans steal from the poor.

8. Given:

All unicorns are dead
No unicorns are dead

can you infer that there are no unicorns?

9. Are the assumptions of Exercise 8 mutually consistent?
10. Test the validity of the following arguments by Venn diagrams. State in
terms of regions of the diagram why the argument ig valid or invalid.

(a) All witnesses are prejudiced.
Some witnesses are not liars.
. Some liars are not prejudiced.
(b) All witnesses are prejudiced.
Some liars are not prejudiced.
~ Some liars are not witnesses.
(c¢) All liars are prejudiced.
Some witnesses are not liars.
~. Some witnesses are not prejudiced.

(@ ANBC ~C
AUCCH
SANC=A

() AS ~BU )
BC ~4AU0)
ZB=A

) ~AS ~BNC)
cC ~A
BCAU
~ ~§BUC)C ~A

§9.9 Elementary Principles About Operations on Sets. We have
seen how it is possible to use diagrams in order to determine what conclu-
sions can be drawn from given assumptions. A somewhat similar applica-
tion of diagrams could be made to the problem of determining whether
certain equations, or principles of other forms, are always true (for all
gets). However, a method which has more general applicability and more
interest from a mathematical standpoint is to reduce the test of the truth
of an equation for all sets to the problem of deciding if a corresponding
formula is a tautological equivalence, which can always be done by sen-
tential methods. For instance, suppose we want to show that for all sets
A and B

(¢)) AUB=BUA.
From the definition of the union operation we know that for an arbitrary
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individual

()] zcAUBeo zcAvzeB.
Moreover, it is a tautological equivalence that

&) zcAvzeB o zeBvzrcA.
And corresponding to (2), we have:

€)) zcBUA o zeBvzrcA.

Combining (2)-(4) from the transitivity and symmetry of equivalence we
conclude:

®) zcAUBeozecBUA,
and we conclude from (5) by the principle of extensionality for sets that
(6) AUB=BUA.

The inference from (5) to (6) is routine and usually omitted, and similarly
for the inference from (1) to (2). Moreover, these equivalences may ba
presented in compact form like the identities of Chapter 7. The informal
proof of (1) may then be written:

zcAUBozcAvzecB
o>zecBvzecd
< zecBUA.

Since the steps of the inference either involve tautological equivalences or
one of the four characterizing equivalences:

zcAdAUBeozcAdvzeB

zcANBozeAdA&zeB

zrcA~BeozcA&zgB
ze~A o xgA,

each line need not be tagged by a justifying reason. To illustrate these
methods on a more complicated example we may prove that for all sets
A and B

A~(ANB)=A~B.

PROOF.
(4] 2cA~ANB) <~ zcA&z¢ANB
)] ozcA&-(zcA &z eB)
3) zcA&(@geAvzegB)
4) o rzecA&zs¢eA)vVEzcA &z ¢B)
(5) o>zcAd&z¢B

() > zcA~B. QED.
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Note that in line (1) we eliminated only one set operation. The intersec-
tion was then eliminated in line (2). Replacement of one set operation at
a time by the appropriate sentential connective avoids mistakes. In going
from (4) to (5) we used the tautological equivalence (P & -P) v Q « Q.
For handy reference we list the more useful identities and some other
closely related principles. For each of the identities there is a correspond-
ing tautological equivalence if we let P & —P correspond to A and P v -P,
say, correspond to V. Proofs of the identities by the sentential methods
just discussed are left as exercises. The proofs of those principles which
are not identities is only slightly more complicated.

LIST OF SET IDENTITIES AND OTHER PRINCIPLES

(1) AUA=A4 (16) AUB=A > A=A
@ANV=4A VB A
B AUB=BUA (A7) ANB»A—> A=A
4@ANB=BNA (18) AU(BUC) = (4 UB)
(5) AUBNC) = (4 UB) uc

N@UOo (199 AN(@BNC) =(4NB)
) AN@BUC) =(4N B) ne

Uu@no (20 AUMANB) =4
M AU~A =V @) ANAUB) =4
Q) AN~A =4 (22) ~A = A
@ AUA=4 (23) ~(4 U B) = ~A N ~B
(1) ANA=4A (24) ~(4 N B) = ~A U ~B
(1) AUV=Y (25) A~A=A
(12) ANA=A (26) A~(ANB)=A~B
(13) A=V () ANA~B)=A~B
(14) ~~A =4 (28) (A~B)~B=A~B

(15) A =~B — B = ~A

(29) (A~B)~A = A
(30) (A~B)UB=AUB
(1) (AUB ~B=A~B

These thirty-one principles are deliberately arranged in a certain order,
for the first eight may be taken as axioms of a theory formalized in first-
order predicate logic with identity; with the addition of the axiom:
(34)(3B)(4 # B) and the appropriate definition of set difference the
remaining twenty-three principles may be derived as theorems.* Any
model of these axioms is called a Boolean algebra, and the axioms are some-
times called the axioms for the algebra of sets. A much more powerful

* This set of axioms is essentially due to E. V. Huntington, “Sets of Independent
Postulates for the Algebra of Logie,” Transactions of the American Mathematical Society,
Vol. 5 (1904) pp. 288-300.
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set of axioms can be based on the notion of set membership, which is not
used in any of the above principles.

Most of the equations (1)-(31) are so important, and so frequently re-
ferred to, that they have been given special names, some of which are
identical with the names of the corresponding tautologies. Others have
names derived from the fact that they express important structural proper-
ties of the operations on sets like associativity or commutativity. Identity
(1) says that the empty set is a right-hand identity element with respect to
the union operation, and (2) says that the domain V of individuals is a
right-hand identity element with respect to intersection. (3) and (4) are
the commutative laws for union and intersection. Identities (5) and (6)
are dual distributive laws. Notice that if we compare union to arithmetical
addition and intersection to arithmetical multiplication, the analogue of
(5) does not hold in arithmetic. Identity (7) is the set formulation of the
law of excluded middle; everything in a given domain is either in a set or
its complement. In (8) we have the law of contradiction; nothing can be a
member of both a set and its complement. Equations (9) and (10) ex-
press what is usually called the idempotency of union and intersection. The
problem of finding an arithmetical operation which is idempotent is left as
an exercise. Principle (14) is the law of double negation, and (15) expresses
a principle of contraposition. In (18) and (19) we have assoctalive laws,
which justify the omission of parentheses, and in (20) and (21) laws of
absorption. Equations (23) and (24) are De Morgan’s laws.

It should be remarked that for proof of those principles involving the
empty set A or the domain V of individuals, we need to use that for every z

T gA,
zcV.

Consider Principle (13): A »= V
PROOF. Suppose that A = V. Then by the principle of extensionality

zcA o zeV;
but
z gA,
whence
z¢V,
which is absurd. Q.E.D.

By considering an arbitrary member of a set and using tautological im-
plications rather than tautological equivalences, useful principles of inclu-
sion for sets are easily established. As an example we may consider:

ANBCA.
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PROOF,
(1) zcAdNBeozxzcA&zeB
2 — z cA. Q.ED.

Line (1) is an equivalence; the right-hand side of (1) tautologically implies
the right-hand side of (2) but is not tautologically equivalent to it. The
characterizing equivalence used for inclusion is, of course:

ACB« (x)(xcA — zcB).

In writing down proofs of inclusion relations between sets, one point needs
to be remarked. Consider:

@4AnNB~BNCCA.

PROOF.
1) zc(ANB~(BNC) ozcANB&zgBNC
2 —-2z2cANB
3) —~zcA&zecB
@ —zcA QED.

The point is that although line (3) is tautologically equivalent to line (2),
we use an implication sign in line (3), because this implication sign indicates
the relation of (3) to the left side of (1), not to the right side of (2).
Inclusion relations corresponding to all the useful tautological implica~
tions given in Chapter 2 are easily verified by the method just indicated.

EXERCISES

1. Prove by the methods of this section the validity of each of principles (1)-
(31).

2. If union is interpreted as addition, intersection as multiplication, difference
of sets as subtraction, the empty set as zero, and the domain V of individuals as
one, which of the principles (1)-(31) express truths of arithmetic?

3. Can you give an example of an arithmetical operation which is idempotent?

4. Give a counterexample to show that the operation of difference (of sets) is
not in general commutative.

5. Give a counterexample to show that the operation of difference is not in
general associative.

6. Give a counterexample to show that the operation of difference is nof in
general distributive with respect to union, that is, it is not true for all sets 4, B, C,

that
A~BUO=A~BUMA-~O).
7. Is the operation of difference distributive with respect to intersection?
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8. Prove by the methods of this section the validity of the following inclusion
relations for any sets 4, B, C:

@ ACAUB
) A~BC A
() A~BUCO)CA~BNO)
@(@ANB ~CC(AUB)~C

9. Using Principles (1)—(8) as axioms of a formalized theory, which has primi-
tive operation symbols ‘U’ ‘11’ and ‘~’, and which has individual constants ‘A’
and V’, derive Principles (9)—(24) as theorems, using as an additional axiom

8.1) (3A)(3B)(A # B).
10. Let us add to our axioms for Boolean algebras of the preceding exercise:
Derintmion 1. A ~B = AN ~B.
Prove Principles (25)—(31).
11. Continuing the development of the theory of Boolean algebras, we add:
DernmrioN 2. AC B« AU B=B,
P.n;ve) the following theorems (numbered consecutively with the thirty-one prin-
ciples):

(32) AC A
(33) ACB&B
(3) ACB&B
(35) AC 4

(36) ACA > A=A

12. Still continuing the theory of Boolean algebras, we add:
DeFINITION S, AC B ACB&A # B.

Prove:

(37) A C A)
(38) AC B — —«(BC 4)

(39) ACB&BCC —» ACC
(40) ACB — ACB

4) ANBCA > A=B
(42) ANB=A—A~BCA

13. Referring to the last section of the previous chapter, prove that none of the
five primitive symbols of the theory of Boolean algebras presented in the above
exercises is independent of the others.

A—>A=B
C—-ACC

ininN
Ny



CHAPTER 10

RELATIONS

§ 10.1 Ordered Couples. In Chapter 9 we were concerned almost en-
tirely with sets and the notion of membership in sets; the other notions
(such as the notion of the empty set, of the intersection of two sets, and so
on) were defined in terms of these two (thus, the empty set was defined to
be the set A such that, for all z, z ¢ A; the intersection of two sets was de-
fined to be the set of all things which belong to both of the given sets;
and so on). In this chapter, however, we introduce a new notion, the
notion of an ordered couple, which we do not here define in terms of set
and membership.* Intuitively, an ordered couple is simply two objects
given in a fixed order. We use pointed brackets to denote ordered couples.
Thus {z, y) is the ordered couple whose first member is £ and whose second
member is . In §9.2 we defined two sets as identical when they have
the same members. The requirement of identity for ordered couples is
stricter. Two ordered couples are identical just when the first member of
one is identical with the first member of the other, and the second member
of one is identical with the second member of the other. In symbols:

¢y (@ y) =(4v) & @=uky=y).

We have, for example:

{1; 2} = {2; 1}’
but:

(1, 2) = (2,1).

We may define ordered triples, and in general ordered n-tuples, in terms
of ordered couples. An ordered triple, for instance, is an ordered couple
whose first member is an ordered couple, that is,

2) (2,9, 2) = {{z, 9), 2).

* Such a definition is possible.
t The notation: (z, y) is also widely used.
208
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Proceeding in this way, we define ordered quadruples:
(z, 9,2, w) = ((z,9, 2), w),
and in general ordered n-tuples:
(T1, Tgy vy Tn) = {{T1, T2, +++y Tn—1)) Tn).

In this book we shall do very little work with ordered triples, ordered
quadruples, etc., but it is perhaps useful to indicate how the above defini-
tions are used to prove facts about ordered n-tuples. We select the simple
task of showing that two ordered triples are identical just when their
corresponding members are identical. Let (z, y, ) and (u, v, w) be two
arbitrary ordered triples. It is clear from the logic of identity that if
2z =wu,y =vand z=w then (z, y, 2) = (u, v, w). On the other hand,
let us begin with: (z, ¥, z) = {4, v, w). Then by (2) we have:

((x’ y); z) = ((u: 1)), w);

and using (1) we obtain:
3) (z,y) = (u, )

and:
2 = w,

But (3) and (1) together yield:

z=u and y=uo.
Thus we have shown:

<x1y12)=(u;')’w) < (x=u&y=v&z-w).

It is important to notice that the repetition of the same element adds
nothing in describing sets but it does in the case of ordered triples. For
example,

{1’ 2,2} = {1; 2}1
but
(1,2,2) # (1, 2),

since (1, 2, 2) = ({1, 2), 2) and (1, 2) 5 1.

The notion of a finite sequence may be defined in terms of ordered n-tuples.
S is a finite sequence if and only if there is a positive integer n such that
S is an ordered n-tuple. Thus, for example, (Socrates, Plato, Democritus,
Aristotle) is a finite sequence of Greek philosophers. In particular, it is
an ordered quadruple.

It is often useful to consider the set of all ordered couples which can be
formed from two sets in a fixed order. The Cartesian (or cross) product of
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two sets A and B (in symbols: A X B) is the set of all ordered couples
(z, y) such that z ¢ A and y € B. For example, if

A = {1, 2}
B = {Gandhi, Nehru}
then

A X B = {{1, Gandhi), (1, Nehru), (2, Gandhi), (2, Nehru)}.

§ 10.2 Definition of Relations. In ordinary discourse we often speak
of relations, which we think of as holding between two things, or among
several things. Thus we say that Elizabeth II stands in the relation of
mother to Prince Charles—by which we mean that Elizabeth II is the
mother of Prince Charles. Or we may say that the relation of coincidence
holds among three lines—by which we mean that they all intersect in one
point.

For our discussions, it is convenient to introduce letters to designate
relations. Thus we may introduce the letter ‘M’, for the relation of
mother, and then write:

(Elizabeth II) M (Prince Charles)

to indicate that Elizabeth II is the mother of Prince Charles. Similarly
we may wish to speak of the relation A such that, for every zrand y,z 4 y
if and only if = is an ancestor of y.*

In dealing with a relation that holds among three or more things, it is
convenient to put the letter standing for the relation, and then the names,
in proper order, of the things among which it holds. Thus we may speak
of the relation P such that, for every z, y, and 2, P(z, y, 2) if and only if =
and y are the parents of z. Similarly, we may speak of the relation B such
that, for every z, y, 2, and w, B(z, ¥, 2, w) if and only if z owes y dollars
to z for w; so that, for example:

B(John, 5, Henry, shoes)

means that John owes Henry five dollars for shoes.

When we speak of relations in everyday contexts, we insist that there
be some intuitive way of describing what sort of connection there is be-
tween things which we say stand in some given relation to each other.
Unfortunately, this intuitive idea of connectedness is often vague, even
though it may have a very precise meaning in particular cases. This same
situation arose, if you remember, in our discussion of the sentential con-
nectives. Our decision in Chapter 1 was to permit a conjunction of any
two sentences, regardless of how unconnected they might seem intuitively.
Similarly, we now find it expedient, again because of the difficulties of

* In the language of Chapter 4, the letters ‘M’ and ‘A’ are predicates.
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formulating a precise general notion of connection or dependence, to insist
that any set of ordered couples is a binary relation. Thus the set

{ (Aristotle, A), (7, Julius Caesar)}

is a relation, although no one would claim it has any intuitive significance.
Our general definition is then:

(1) A binary relation 13 a set of ordered couples.

According to this definition the relation of loving is the set of ordered
couples {z, y) such that z loves y. The relation of being less than is the
set of all ordered couples (z, ¥) of numbers such that, for some positive
number 2,

zt+z=y.

The obvious extension of (I) is that a relation which holds among three
things is & set of ordered triples, and a relation which holds among »
things is a set of ordered n~tuples.

A relation is called ‘n-ary’ if its members are n-tuples. For the special
cases n = 2 and n = 3 we use special names, speaking of ‘binary’ and
‘ternary’ relations.

Since a relation is a set of ordered n~tuples, we can also use the “¢&”
notation to indicate that certain things stand in a given relation. Thus
we can write:

(John, Mary) € L,
instead of :
John L Mary

to indicate that John loves Mary. Similarly we can write:

{George, Mary, Elizabeth) ¢ P,
instead of:
P(George, Mary, Elizabeth)

to indicate, let us say, that George and Mary are the parents of Elizabeth.
It is necessary to remember that an ordered couple is not a relation, but
the set consisting of the ordered couple is. For instance,

{Thomas Aquinas, 4) is not a relation;
{(Thomas Aquinas, 4)} is a relation;
{{(Thomas Aquinas, 4)}} is not a relation.

The last example of the three is not a relation because the only member of
the set is itself a set, which is not an ordered couple.
We now introduce some useful special terminology for binary relations.
If R is a binary relation, then the domain of R—in symbols: D(R)—is
the set of all things « such that, for some y, (z, y) € R. Thus if M is the
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relation which consists of all couples (z, y¥) such that z is the mother of y,
then the domain of M is the set of all women who are not childless. If

R; = {(A, Plato), (Jane Austen, 101)

(the youngest bride in Tibet, Richelieu)},
then

D(R;) = {A, Jane Austen, the youngest bride in Tibet}.

The counterdomain (or converse domain) of a binary relation B (in sym-
bols: C(R)) is the set of all things y such that, for some z, {z, y) < R.
The counterdomain of the relation M considered just above is the set of
all people—since everyone has a mother. If B is the relation which con-
sists of all couples (z, y) such that x is the brother of y, then the domain
of B is the set of all men who have at least one brother or sister, and the
counterdomain is the set of all people who have at least one brother. We
have for the relation Ry defined above:

C(R,) = {Plato, 101, Richelieu}.

The field of a binary relation R (in symbols: & (R)) is the union of its
domain and its counterdomain. Thus z belongs to the field of a binary
relation R if and only if either {z, z) ¢ R for some z or (2, y) € B for
some y. The field of the relation B considered just above is the set of all
people who belong to families containing at least two children, at least
one of which is male. As another example,

F(R;) = {A, Jane Austen, the youngest bride in Tibet, Plato,
101, Richelieu}.

EXERCISES
1. Let:
4 = {1, 2)
Az = {A}
B = {<1; 2): <2: A>}-

(a) Is R a subset of the Cartesian product 4; X 4,7
(b) Is D(R) a subset of 4,7

(¢) Is C(R) a subset of 45?7

(d) Is ZF(R) a subset of A3 U A45?

2. What are the domain, counterdomain, and field of the relation of being a
father?

3. What are the domain, counterdomain, and field of the relation of being a
grandfather?

4, Is the domain of the relation of being a grandfather a proper subset of the
domain of the relation of being a father?



PROPERTIES OF BINARY RELATIONS 213

§ 10.3 Properties of Binary Relations. We now turn to some im-
portant properties of binary relations. As certain of our examples and
exercises will show, these properties play a useful role in a wide variety of
scientific contexts.

A (binary) relation R is reflexive in the set A if for every zin A,z Rz
(i.e., {z, ) € R). In symbols:

Rreflexivein 4 « (z)(zx ¢ A — z R2z).

The relation <, for instance, is reflexive in the set of all real numbers,

since for every number z, z < z. If

A, = {Descartes, Mersenne},
Ay = {Descartes, 5},
and
R; = {(Descartes, Descartes), (Mersenne, Mersenne), (5, A)},

then R, is reflexive in 4; but is not reflexive in A, since the ordered
couple (5, 5) is not a member of R;. The relation of loving is probably
reflexive in the set of all people; indeed, some moralists maintain that we
all love ourselves somewhat too well.

A relation R is srreflexive in the set A if, for every z in A it is not the case
that z R z. In symbols:

R irreflexivein 4 « (){z €4 — -z R 2)).

The relation of being a mother is irreflexive in the set of people, since no
one is his own mother. The relation < is irreflexive in the set of real
numbers, since no number is less than itself. We have already seen that
R, is not reflexive in Az, but it is also not irreflexive in A, because
{Descartes, Descartes) € R;. Consider:

Az = {5, Elizabeth I},

It is clear that R is irreflexive in A3. From the example of R; and 4,,
it should be obvious that for any relation R and set A there are three
possibilities:

¢)) R is reflexive in A.
2 R is irreflexive in A.
3) Neither (1) nor (2).

These three possibilities are mutually exclusive, with one exception: every
relation R is both reflexive and irreflexive in A.

A relation R is symmetric in the set A if for every z and y in 4, whenever
z Ry, then y Rz. In symbols:

R symmetricin 4 & @)@z cd&ycA&zRy — yRa].
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The relation of being cousins is symmetric, but the relation of loving is
not, an unfortunate fact which has been remarked upon by many novelists.
The relation of being a brother is not symmetric, since any woman who
has a brother affords a counterexample. (Notice that in these last three
examples we have omitted explicit reference to a set in which the relations
are or are not symmetric. We shall often do this when the set we have in
mind is obvious, in this case the set of all people.) Ry is symmetric in all
three sets, 4;, A, and A43;.

A relation R is asymmetric in the set A if, for every « and y in 4, when-
ever = R y, then it is not the case y R z. In symbols:

R asymmetricin 4 « @)@lzcAd &ycAd &zRy — -(y R2)).

The relation of being a mother is asymmetric, for obvious biological
reasons. On the other hand, the relation of loving is neither symmetric
nor asymmetrie, which fact partly accounts for the dramatic interest of
the subject. If we want to show that a particular relation is neither sym-
metric nor asymmetric, we need to give a definite counterexample to show
that it is not symmetric, and a different one to show that it is not asym-
metric. (Similarly we need to give two distinct counterexamples to show
that a relation is neither reflexive nor irreflexive.) For example, the rela-
tion < in the set of numbers is not symmetric, since 1 < 2 but not 2 < 1.
On the other hand, it is not asymmetric, since from 3 < 3 it clearly does
not follow that not 3 < 3. In the first counterexample we substituted ‘1’
for ‘2’ and 2’ for y’. In the second, we substituted ‘3’ for both ‘=’ and ‘y'.
In trying to grasp the exact sense of these definitions of properties of rela-
tions it is important to remember that the same term can be substituted
for different variables such as ‘2’ and ‘.

The relation <, which is neither symmetric nor asymmetric, has a closely
related property which we now define. A relation R is antisymmetric in the
set A if for every z and y in A, whenever z Ry and y Rz, then z = y.
In symbols:

R antisymmetric in
Ao @DWPrcd&ycAd&zRy&yRz — z =y

As already remarked, < is an example of an antisymmetric relation. The
relation C of inclusion is a second example. The relation R is antisym-
metric in A;, As, and A3. On the other hand, only in a world of com-
pletely egocentric, narcissistic people would loving be antisymmetric.
Notice that vacuously every asymmetric relation is also antisymmetric.
I say ‘vacuously’ because if a relation is asymmetric in a set A then there
are no two objects z and y in A such that z Ry and y R z; that is, it is
never the case that 2 ¢ 4 and y ¢ 4 and z Ry and y Rz. Hence by a
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simple application of truth tables (an implication is true when the ante-
cedent is false) it is always the case that if 1 ¢ A and y € 4 and z Ry
and y Rz, then 2 = y.

It is also possible for a relation to be neither symmetric, asymmetric,
por antisymmetric in a set. An example is the relation of loving already
mentioned several times. Provided a relation R holds between at least
two (not necessarily distinct) elements of A, the mutually exclusive and
exhaustive possibilities in the case of symmetry conditions are the following:

4)) R is symmetric in 4.

@) R is asymmetric in 4.

3) R is antisymmetric but neither symmetric nor asymmetric in 4.
) Neither (1), (2), nor (3).

In order to make the conditions mutually exclusive, we had to require
‘that R be antisymmetric but not symmetric as well as not asymmetric.
We leave as an exercise the construction of a relation which is both sym-
metric and antisymmetric in a set and holds between two not necessarily
distinct elements of the set.

A relation R is transitive in the set A if, for every z, y, and z in A, when-
ever t Ry and y B 2, then z R z. In symbols:

R transitive in
Ao @yRrtcd&ycAd&zcA&2zRy&yR2z - zR2).

The relations < and C are obviously transitive. The relation of identity
is also transitive. On the other hand, the relation of being a mother is
not, since if z is the mother of y and y is the mother of 2 it cannot be the
case that z is also the mother of z. The relation R is transitive in 4, A,
and A; in what may be called a vacuous sense, for there are no two ordered
couples in R which afford a test case, so to speak, of transitivity by having
the second member of one ordered couple (the y of z R y) identical with
the first member of another ordered couple (the y of y R 2), and thereby
permit the test of having the remaining two members (z and 2) stand in the
given relation (x Bz). Let us consider a case in which such a test arises:

A4 = {2, 7, Goethe}
As = {2, 7, Edgar Guest}
R3 = {(2, Goethe), (Goethe, 7), (Edgar Guest, 2), (2, 7)}.

It should be obvious that R; is transitive in 44 and not in 45. For B3 to
be transitive in A5, we would need to add the couple (Edgar Guest, 7) to
R;. The test case for the transitivity of R; in A4 is provided by the
couples (2, Goethe) and {Goethe, 7). For R3 to be transitive in A4 the
couple (2, 7) must also be in B3. The example of B3 can be misleading.
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In general we cannot decide if a relation is transitive in a given set by
considering a single test case; it is often necessary to consider several cases
or even to decide in a systematic way what the situation is in an infinity
of cases (as for <).

Related to transitivity is the less important notion of intransitivity. A
relation R is intransitive in the set A if for every z, y, and z in 4, whenever
z Ry and y R 2, then it is not the case that z R2. In symbols:

R intransitive in . ,
Ao @WRrcd&ycA&zcA&zRy&yRz — -(z R2)).

The relation of being a mother is a familiar example of an intransitive
relation. There is a general tendency, particularly in the literature of the
social sciences, to confuse non-transitive and intransitive relations. Clearly
a relation may be non-transitive without being intransitive.

A relation R is connected in the set A if for every z and y in A, whenever
z#y,thenz Ry or y Rz. In symbols:

R connectedin 4 & (2))ccd&ycAd &z =y - 2Ry vyR2).

From the definition it is obvious that a relation is connected in a set when
it connects any two distinct members of the set; that is, given any two
distinet members, one stands in the relation to the other. The relations
< and < are both connected in the set of numbers. On the other hand,
the relation of being a mother is not connected in the set of people, since
given two people chosen at random it is seldom the case that one is the
mother of the other. The relation R, is not connected in either Ay, Ay, or
A3. For instance, it is not connected in A; because neither (Descartes,
Mersenne) € R; nor (Mersenne, Descartes) € Rj. However, the relation
R; is connected in Ay, but it is not connected in As. For R3 to be con-
nected in A5 we would need to have either (Edgar Guest, 7) € R; or (7,
Edgar Guest) € R;.

We now introduce a property very similar to connectedness. A relation
R is strongly connected in the set A if for every z and y in A, either z R y
oryRz.* Insymbols:

R strongly connectedin 4 & (z)y)zcd &ycd — zRyvyRz).

It should be clear that if R is strongly connected in A then R is also con-
nected in A. The relation < is strongly connected in the set of all num-
bers. On the other hand, the relation < is not strongly connected in the
set of numbers, since not 1 < 1, that is, if = y = 1 then neither z < Y
nory < z.

* The terminology ‘strongly connected’ is not widely used. There does not seem to
be a generally agreed upon name for this property.
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In concluding this section we want to make two general points which
may be illustrated by considering the property of connectedness. Let

Ag = {2, the author of Hamlet, Francis Bacon}
Ry = {(2, Francis Bacon), (2, 2)}.

The problem: Is R4 connected in A¢? The answer depends not on logic
but on Shakespearian scholarship: Did Francis Bacon actually write the
plays attributed to Shakespeare? If so, then he is identical with the author
of Hamlet, and R, is connected in Ag. However, most scholars do not be-
lieve that Bacon wrote the plays, and the most acceptable answer is that
R4 is not connected in Ag. From our standpoint the interest of this exam-
ple is in emphasizing that it often is not a question of logic or mathematics
but of empirical fact as to whether a relation has a given property such as
asymmetry, transitivity, or connectedness. The point to be noted is that
different names or descriptions may be used in referring to a single individ-
ual. If Bacon had written the plays, then

Francis Bacon = the author of Hamlet,

and in describing 4¢ we would have been referring to the man Bacon in
two different ways. A final example also illustrating this last point is the
following. Let

A7 = {1’ 2}
Ry = {(1) 1>; <1 +1, 2)7 <1) 2); <1 + 1, 1>}'

Since 2 = 1 4 1, R4 is both reflexive and symmetric in 4.

EXERCISES

1. Classify the following relations according to the properties they do or do
not have (e.g., reflexive, symmetric, not antisymmetric, not transitive, ete.)

(a) The relation of being a grandfather in the set of all persons.

(b) Let A = the set of all real numbers, and z Ry if and only if x < y + 1.
(c) Let A = the set of all real numbers, and z Ry ifand only if s <y — 1.
(d) Let A = {1, 2, Mark Twain}, and B = {(1, 2), (2, 1), (Mark Twain,

1)}.
(e) Let A = {3, 5, 8}, and R = {(3, 3), (5, 5), (8, 8)].
(f) Let A = {Madison, Pinckney, 2}, and R = {(1, 1), {(Madison, Pinck-
ney), (1, 2}}.
() The relation of being the same height in the set of all persons.
(h) The relation of being exactly one year younger in the set of all persons.
(i) The relation of exact divisibility in the set of positive integers.

2. State the precise circumstances under which a relation is both symmetric and
asymmetric in a set A,



218 RELATIONS
3. Let 4 = {1,2, {1}}.

(a) Give an example of a binary relation which is reflexive and transitive, but
not symmetric in A.

(b) Give an example of a binary relation which is reflexive and symmetric,
but not transitive in A.

(c) Give an example of a binary relation which is reflexive, but neither sym-
metric nor transitive in 4.

(d) Give an example of a binary relation which is neither reflexive, symmetric,
nor transitive in A.

4. Let A = {Napoleon, Wellington}. Can you give an example of a relation
which is irreflexive, symmetric, and transitive in 4?

5. Give an example of a relation which is both symmetric and antisymmetric in
a set and is such that it holds between at least two elements of the set.

6. Give an example of a family relationship which is both transitive and in-
transitive.

7. Any equal-arm balance used for measuring mass is not perfectly sensitive.
Three objects z, y and z may always be found such that z exactly balances Y, 0
exactly balances 2, but  does not exactly balance z. The ordered triple (z, y, 2) is
called an intransitive triad. Given a balance which is only sensitive to differences
of mass greater than or equal to .001 gram, state the masses in grams of a possible
intransitive triad for this balance.

§10.4 Equivalence Relations. Binary relations which have certain
combinations of the properties defined in the previous section are both sig-
nificant and useful. We shall define a few of the more common types in
this and the next section.

A relation which is reflexive, symmetric, and transitive in the set A4 is
an equivalence relation in A. The relation of identity is an equivalence
relation. The same is true of the relation of having the same mass in the
set of physical bodies, the relation of having the same volume, and the
relation which holds between two sets if and only if they have the same
number of elements. The relation of parallelism between straight lines is
another example. Both in mathematical language and ordinary language
equivalence relations are often called relations of equality. Thus, as was
pointed out in § 5.1, lines which have the same length are called equal.
To avoid the common confusion between equivalence in some aspect of
two objects and identity of objects, we always use ‘equality’ as a synonym
for “dentity’.

Between the relation of identity and equivalence relations there is an
intimate kind of connection which has far-reaching applications. We shall
describe this connection without developing its consequences. Let R be
an equivalence relation in A4, and for z € 4, we characterize the set [z] as
follows:

velel © ycAd &z Ry).

The special square brackets enclosing ‘2’ are used to designate the R-equiva-
lence class of z in A; in other words, [z] is the R-equivalence class generated
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by z. We may easily show that each element of A belongs to exactly one
R-equivalence class in A. Furthermore, we have the important result that

4] [zf] =[y] fandonlyif zRy.

The general philosophical significance of (1) is that it formulates a principle
of abstraction: objects which are equivalent in some respect generate iden-
tical classes.

One of the reasons for the importance of this principle of abstraction is
that application of it can often lead to a substantial reduction in the num-
ber of entities being considered by passing from objects to equivalence
classes of objects. For example, suppose we are comparing the apparent
fairness of a large number of coins by flipping each of them fifteen times.
The complete result of our test of each coin may be represented by an
ordered 15-tuple. ‘H’ is used to show that the outcome of a flip was
heads and ‘T’ to show that it was tails. Thus, for example,

(4,T,H,...,H)

indicates that the first, third, and fifteenth flips came out heads and the
second flip tails. Since the outcome of each flip is either H or T, there
are 2! (= 32,768) possible outcomes of the test, i.e., 32,768 ordered 15-
tuples of the kind described. Developing a theory for comparing these
32,768 possible outcomes seems rather complicated. But an essential sim-
plification suggests itself. In deciding on the fairness of a coin we are
really only interested in the ratio of the number of flips with outcome
heads (or tails) to the total number of flips. For example, if a coin came
up heads fifteen times in a row we would be strongly inclined to conclude
that it was not a fair coin, i.e., a eoin with respect to which the chances
of heads or tails on a flip were about even. Since we are interested only
in the ratio of heads to the total number of flips, we may ‘“throw away”
the information concerning in what order H and T occurred. We define
two of our ordered tuples as ratio-equivalent if H occurs the same number
of times in each. Thus,

(H’ H, H! T’ T’ T’ T’ H’ T, T’ T’ H’ H, T! T)
and
(,T,H,T,H,H,T,T,T,T,HHTHT)

are ratio-equivalent since six H’s occur in both the ordered 15-tuples. It
is obvious that there are 16 ratio-equivalence classes corresponding to
0, 1, 2, ..., 15 occurrences of heads, and the small number of such
equivalence classes compares impressively with the 32,768 ordered tuples.
In particular, it is possible to develop rules for accepting or rejecting a
coin as fair simply according to which equivalence class its test belongs to.
The actual construction of such rules is beyond the scope of our discussion,
since it is essentially a problem of statistics rather than logic.
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EXERCISES

1. Which, if any, of the relations in Exercise 1 of the preceding section are equive
alence relations?

2. Can you give an example of a family relationship which is an equivalence re-
lation in the set of all persons?

3. Let S be the relation such that S y if and only if « and y are born in the
same state, and let A be the set of all persons born in some state of the United
States.

(a) How many S-equivalence classes of A are there?
(b) What S-equivalence class is [Truman]?
(¢) What S-equivalence class is [Eisenhower]?

4. A manufacturer of high-quality dice tests the fairness of each die by rolling
it a hundred times and tabulating the results. There are thus 6% possible out-
comes of a given test. Describe an intuitively acceptable equivalence relation
which will group the possible outcomes into a relatively small number of equiva-~
lence classes.

§ 10.5 Ordering Relations. In this section we define relations which
order sets in various weak and strong senses. Historically the strong order-
ings, such as < and < for the real numbers, were discovered first. The
weaker orderings discussed below are generalizations of such strong order-
ings. The ordering relations defined in this section all have important ap-
plications both in mathematics and the empirical sciences, particularly the
social sciences. Some of the exercises at the end of the section illustrate
possible applications.

No new fundamental properties of relations are introduced in this sec-
tion. You will quickly be able to understand the notions of ordering de-
fined if you explicitly notice that each ordering simply represents a certain
combination of the fundamental properties defined in § 10.3. We begin
with the ordering relations which are logically the simplest.

A relation R is a quasi-ordering of the set A if and only if R is reflexive
and transitive in A. The relation C of inclusion among sets is an example
of a quasi-ordering (of the set of all sets). The relation < is a quasi-
ordering of the set of all numbers. The relation of being at least as tall
a8 is a quasi-ordering of the set of all persons. Since all three of these
relations have other properties than those of being reflexive and transitive,
they are, as we shall see, more than just quasi-orderings. For another
example, let

4, = {1, 2, Robin Hood}
Ry = {(1, 1), (2, 2), (Robin Hood, Robin Hood), (1, 2),
{2, Robin Hood), (2, 1), (1, Robin Hood)}.

Then R, is a quasi-ordering of 4;.
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A relation R is a partial ordering of the set A if and only if R is reflexive,
antisymmetric, and transitive in 4. In other words, a partial ordering of
A is an antisymmetric quasi-ordering of A. The relations © and < just
mentioned are partial orderings. On the other hand, B; is not a partial
ordering of A,, since it is not antisymmetric in A;: {1, 2) € R; and
2, 1) ¢ Ry, but 1 # 2. Also, the relation of being at least as tall as is
not a partial ordering of the set of persons, since two distinct men may
have the same height, and thus the relation is not antisymmetrie.

A partial ordering R of a finite set A may be represented by a Hasse
diagram.* Small circles represent elements of A and if ¥y may be reached
from z by a continually ascending, not necessarily straight line,

o

S

then z R y. For instance, the diagram above represents the partial order-
ing of @, b, ¢ such that a R b and ¢ R b. R is the set {{a, a}, (b, b), (¢, ¢),

(a, b), {c, b)}.
Other examples of partial orderings are given by the other diagrams.

GF X O N

A relation R is a simple ordering of the set A if and only if R is reflexive,
antisymmetric, transitive, and connected in 4. In other words, a simple
ordering of A is a connected partial ordering of A. The relation < is a
simple ordering of the set of all numbers. On the other hand, the relation
C of inclusion is not a simple ordering of the set of all sets, since neither
{1} € {2} nor {2} C {1}; i.e., since C is not connected in the set of all
sets. None of the above Hasse diagrams represents a simple ordering,
since each diagram has at least two elements not connected by an ascend-
ing line. In fact, Hasse diagrams of simple orderings are dull. They always
look like:

that is, a Hasse diagram of a simple ordering is just a single vertical line.
* These diagrams are so called after the mathematician H. Hasse.
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The relation C of proper inclusion and the relation < of less than are
closely connected with C and < respectively, but C and < are not partial
orderings. Since these latter relations are important examples of ordering
relations, they suggest the notion of a sirict partial ordering. We use the
word ‘strict’ ecause the relation < is sometimes called a strict inequality.
Thus a relation R is a strict partial ordering of the set A if and only if R is
asymmetric and transitive in A. The relation of being taller than is a
strict partial ordering in the set of human beings. It is of some interest
to note that the relation of being a husband is a strict partial ordering in
the set of human beings. The asymmetric character of the relation is ob-
vious, and the relation is transitive in a vacuous sense, since there are not
three individuals z, y, and z such that z is the husband of y and y is the
husband of z, for this would require y to be both male and female.

It should be noticed that in the phrase ‘strict partial ordering’ the word
‘striet’ does not function as an adjective modifying ‘partial ordering’, for
strict partial orderings are not certain special partial orderings. Excluding
relations n the empty set, no relation can be both a partial ordering and
a strict partial ordering, for the former must be reflexive and the latter
irreflexive. On the other hand, the distinction between partial orderings
and strict partial orderings is substantively trivial. To each partial order-
ing there corresponds a unique strict partial ordering, and conversely.
Furthermore, the Hasse diagrams of a partial ordering and the correspond-
ing strict partial ordering are identical.

The relation between < and < suggested partial orderings and strict
partial orderings. It also suggests simple orderings and strict simple order-
ings. A relation R is a strict simple ordering of the set A if and only if R is
asymmetric, transitive, and connected in A. As is to be expected, a strict
simple ordering of A is just a connected strict partial ordering of A. The
relation < in the set of numbers is a prime example of a strict simple
ordering.

A relation R is a weak ordering of the set A if and only if R is transitive
and strongly connected in A.* Since if a relation is reflexive and con-
nected, it is strongly connected, any simple ordering is also a weak order-
ing, just as any simple ordering is also a partial ordering; but there are
weak orderings which are neither partial nor simple orderings—for instance,
the relation of being at least as tall as, already mentioned. Also, R, is a
weak ordering of A;. If z =y, then the assumption that t Ry or y Rz
implies that = R z, which leads us to the conclusion that any weak ordering
of a set A is also a quasi-ordering of A.

The following diagram makes clear the relations between the various
kinds of orderings introduced in this section. When we can pass from one
ordering to another by a continuously rising path, this means the second

* The term ‘weak ordering’ is not entirely standard.
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is a special case of the first. For example, every partial ordering is also a
quasi-ordering, but, of course, not every quasi-ordering is a partial order-
ing. Since all the ordering relations considered in this section are transi-
tive, we make transitive relations the most general case in the diagram.

strict simple ordering simple ordering weak ordering

strict partial ordering partial ordering

quasi-ordering

transitive

Sometimes, instead of saying, for instance, that a relation R is a partial
ordering of A, it is convenient to say that A is partially ordered by R.
Similar terminological remarks apply to the other kinds of ordering.

EXERCISES

1. In the text no example is given of a quasi-ordering which is not a partial
ordering, a weak ordering, or an equivalence relation. Give such an example.

2. Determine what kind of ordering relation, if any, each of the relations is in
Exercise 1 of § 10.3. Characterize each relation as fully as possible. (For ex-
ample, if a relation is a partial ordering, it is not sufficient to say it is a quasi-
ordering.)

3. Let A be the set of married couples, and let 2 P y if and only if the male of
couple x is shorter than the male of couple y, and the female of couple z is shorter
than the female of couple y. Is P a strict simple ordering of A? If not, why not?

4. Since equivalence relations provide a kind of ordering, where would you put
them on the diagram of this page?

5. Consider the following relations. If they are partial orderings or strict par-
tial orderings of their fields draw their Hasse diagrams.

Rl = {§1) 2): (1; 3)7 <2’ 4)) (1’ 4;) (3; 4>}

Ry = {(Lincoln, Jefferson), (Jefferson, Madison), {Madison, Cleveland)}
RS = {(11 1); (2: 2 ] <3; 3); (1; 2)}

Ry = {(1: 2); §2; 1 }

Rs = {<1; 2>, 1, 5): (57 3): <17 3)) (51 4)’ <1; 4)}

6. Economists, psychologists, sociologists, and philosophers have been inter
ested in the kinds of choices people make in varying situations. They have at-
tempted to lay down certain necessary conditions of rationality on a man’s choice.
(See Exercise 11 of §4.1.) If these conditions are not satisfied, it is maintained
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that he is not acting or choosing in an intuitively reasonable way. For example,
it seems reasonable to expect a man’s preference relation to be transitive and
asymmetric. Correspondingly, it is reasonable, at least as a first approximation,
to expect a man’s “indifference” relation to be an equivalence relation, that is, re-
flexive, symmetric, and transitive. By “indifference relation” we mean the rela-
tion which holds between two things for which he has an equivalent preference.
Thus, Smith might be indifferent as between a green Buick and a blue one.

Summing up, we lay down the following conditions of rationality for an indi-
vidual faced with a set A of alternatives:

(1) His relation P of preference must be asymmetric and transitive in A.

(2) His relation I of indifference must be an equivalence relation in A.

(3) For any two, not necessarily distinet, alternatives in A, exactly one of
the following: 2 Py, y Pz, x 1 y.

Condition (8) simply says that the individual has to know what he wants in the
sense that given any two alternatives he can say whether he prefers one to the
other or is indifferent between them.

Now our precise definition of a relation as a set of ordered couples can be em-
pirically useful in studying to what extent individuals are rational in their choices.
We present an individual with a list of choices, and we record his answers in terms
of ordered couples. Even better, we may observe his actual behavior and record
his choices.

The problem to solve is the following: Given the data on a certain individual,
i.e., the record of his choices, to decide if he is rational in the sense defined above,
and if he is not, what conditions he has violated (e.g., perhaps his relation I of
indifference is not symmetric). Since it is senseless to present a subject with a
choice between one and the same object, in describing the I relation of an indi-
vidual we omit couples of the form (z, z), and we shall simply assume in the fol-
lowing problems that the I relation of every subject is reflexive. Notice that it
is up to the examiner or experimenter to see that at least one ordered couple oc-
curs in either the relation P or I comparing every object in A with every other.

(a) We ask Jones to choose pairwise between four automobiles: Buick, Chrysler,
Mercury, Studebaker. These automobiles constitute the set A. From his re-
sponses we obtain the following relations P and I. Are his responses rational?
If not, what conditions are violated?

P = {{Chrysler, Buick), (Buick, Mercury), (Mercury, Studebaker), (Buick,
Studebaker), {Chrysler, Studebaker)}
= {(Mercury, Chrysler), (Chrysler, Mercury), (Studebaker, Chrysler)}.

(b) We ask factory workers to choose between paired items in terms of their
relative importance to them. The items are: ventilation and lighting (V & L), in-
teresting work (W), complete health insurance plan (H), pension fund (F), oppor-
tunities for promotion (0).

Mr. Smith responds as follows:

P = {(F’ 0)7 (H, 0)! (H’ F)’ <H7 V & L>} (HI W)) (Fl V&L)’ (O’ W)’
(F, W), {F,0)}.
I=((V&L W), (W,V&L),(V&LO), 0,V &L)}.

Is he rational? If not, what conditions are violated?
(c) Using the set of automobiles given in (a), construct rational preference and
indifference relations for yourself,
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7. Economists often use the notion of a commodity space. Very simply, a com-
modity space is a set of ordered n-tuples of goods. For brevity of notation, we
may represent an ordered n-tuple of goods by an ordered n-tuple of real numbers.
Each number represents the amount of some definite good. For example, (1, 3, 2)
might represent 1 TV set, 3 loaves of bread, and 2 bottles of beer. Such ordered
n-tuples of goods are often called commodity bundles. Now it is sometimes diffi-
cult to choose between two commodity bundles; one bundle might have, for in-
stance, more oranges and fewer apples than another. But on the assumption that
& larger amount of any good is preferred to a smaller amount, the following weak
principle of preference may be introduced:

() Commodsty bundle a 13 to be preferred to commodity bundle b if a has as much
of every good as b, and more of at least one good.

On this principle, the bundle a, = (1, 3, 2) is to be preferred to bundie a; = {0,
38, 2), since a; has as much bread and beer as a,, and it has in addition a television
set.

(a) In general what kind of ordering relation on a commodity space may be
derived from Prineiple (I)?

(b) Let R be the ordering relation on a commodity space derived from (I). A
bundle z of a commodity space S is said to be a Pareto optimal point if there is no
y in S such that y R z, that is, such that y is preferred to x according to Principle

.
Let

S = {(1) 3 2)) <0’ 3) 2)7 <1} 2, 2>) (1! 2) 5)) (2’ 0)4>! (0) 5) 1)’ <1’ 2’ O)’ <0,

1,09}

Which elements of S are Pareto optimal points?
(c) Let A =1{0,1,2, 8,4,56},and let S = A X A X A. Which elements of
S are Pareto optimal points?

§ 10.6 Operations on Relations. If V is any domain of individuals,
then by the universal relation over V we mean the set of all ordered couples
(x, y) where x ¢ V and y ¢ V, that is, the Cartesian product V X V.

The empty set A is the relation which never holds. If R, for instance,
is the relation which holds between z and y if and only if z is the mother
of y, and y is the mother of z, then R = A, for no one is his own grand-
mother.

Since relations are a special kind of sets, we can consider, as applied to
relations, the usual operations on sets. Thus, for example, if R and S are
relations, then B N 8 is the relation which consists of the intersection of
R and S:ie., z(R N S)y if and only if both z Ry and 2 Sy. Similarly,
R U 8 is the union of R and S: z(R U S)y if and only if either z Ry or
zSy. And R ~ 8§ is the relation such that z(R ~ S)y if and only if z R y
and not z S y.

If z B y when z is a brother of y, and z Sy when z is a sister of y, then
z(B U S)y when z is a sibling of y; but B N 8 is the empty relation. We
notice that B ~ 8 = B, since the sets of ordered couples B and § are
mutually exclusive.
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If R C S we call R a subrelation of S. Thus brotherhood is a subrelation
of siblinghood; for whenever z is a brother of y, then z is a sibling of .
Every relation is a subrelation of the universal relation over its own field.

If we have chosen a domain of individuals V, and if U is the universal
relation over V (ie., U = V X V), then by ~R, when R is a relation
whose field is a subset of V, we mean simply U ~ E.

Besides these operations, which are all simply special cases of the opera~
tions on sets, it is also possible to define some special operations on binary
relations which depend on the fact that they are sets of ordered couples.
The converse of a relation R (in symbols: E) is the relation such that, for
all z and y, z Ry if and only if y Rz. Thus the converse of a relation is
obtained simply by reversing the order of all the ordered couples which
constitute it. The converse of the relation H which holds between z and
y if and only if z is the husband of y, is the relation W which holds between
y and z if and only if y is the wife of z. Thus,

~

It W =H.
R = {<1: 2); <1) 3)1 (2: 4)}

R = {(2’ 1); <3; 1)) (4; 2>}

If R and S are binary relations, then by the relative product of R and S
(in symbols: R/S) we mean the relation which holds between z and y if
and only if there exists a z such that R holds between z and 2z, and S holds
between z and y. Symbolically,

zR/Sy & (A2)@Rz&z8y).

If z P y means that z is a parent of y, and z Sy means that z is a sister
of y, then z(S/P)y means that there is a z such that z is a sister of z and
z is a parent of y, and hence such that z is an aunt of y. The formation
of relative products is not a commutative operation. For instance, with
P and S as above, P/8 is not the same as S/P: a man’s aunt is seldom a
parent of his sister.

If z P yy when z is a parent of y, then z(P/P)y if and only if z is a grand-
parent of y; z[(P/P)/Ply if and only if z is a great-grandparent of y; and
go on. On the supposition that creation had no beginning (i.e., every per-
son has parents), the relations P, P/P, (P/P)/P, etc., are all different.

As a final example, if

then

R = {<1’ 3): (2: 3>}’
S = {<3; 1);:
R/S = {<1y 1); (2) 1);:

S/R = {(3,3)},
(S/R)/R = A.

then
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EXERCISES
1. If
zFy means % is father of y
zMy  means <z is mother of y
zBy means z is a brother of y
xSy means z is a sister of y
what does it mean to say that:
(a) z(F/M)y ® zi(BU S)/(M U F)ly
(b) =(M/8)y ® =M U Fy
(c) a(M/Fy () 23 U Fyy
@ 2(S U Byy @ sl U F/BU Sy
(e) [S/(M U My () =(M U F)/[(BU 8)/(M U F)y

2. Using the letters introduced in Exercise 1, express the following by means of
formulas:

(a) z is a grandparent of y
(b) = is a grandchild of y
(e) zis a great-uncle of y
(d) z is a half-sibling of y

3. Consider the following relations:

% f); (5 10) (2, 3>, (1,3), {4,4)}

1, 2) 1§

L 2), (2 1), {1,1), (2,2)}

(a) What properties of reflexivity, symmetry, and transitivity does each of
the relations have in its own field?

(b) Is the field of the relation C a subset of the domain of the relation A?

(c) Is the converse domain of D a subset of the field of C?

(d) Is any one of the four relations an equivalence relation in its own field?

(e) Is B a subrelation of A?

(f) Is C a subrelation of D?

(z) What is the universal relation over the field of C?

(h) Which (if any) of the relations is identical with its converse?

(i) What relation is the relative product B/C? List its members.

(3) List the members of C/B. Does B/C = C/B?

(k) What relation holds between D/C and C/D?

4. What is the converse of the relation < for the real numbers?

5. Is the relation < a subrelation of <?

6. What relation on the real numbers is the relative product </<? (That is,
the relative product of less-than with itself.)

7. Let thf field of < be the set of all real numbers. What is the field of the
relation </<?

8. Let

’ td

o, s, ot o,

(1,
¢
¢
(1,

Tawk

4= {<1: 2)) <3: 4)) (2’ 2>}
B = {{4,2),(2,5), (3,1), (1, 3)}.
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List the members of the following sets:

(a) 4/B d) B/A
(b) A/B (e) A/(B/A)
(©) 4/(BU 4) (H AN (4A/B)

9. Let the relations A and B be defined as in Exercise 8.

(a) Is A/B a subset of the Cartesian product A X B?
(b) Is B/A a subset of the Cartesian product D(B) X C(B)?

10. Let A be the set of all real numbers. If we fix an origin and unit the points
of a plane may be considered as the Cartesian product 4 X 4. A straight line in
the plane is a certain subset of A X A, whence it is a relation, and we may use
the language of this chapter to talk about operations on lines.

(a) What sort of geometrical figures are the following:
(i) the union of two straight lines?
(i) the intersection of two straight lines?
(iii) the difference of two straight lines? R
(b) If L is a straight line, what is its geometric relation to its converse L?
(¢) Given any two straight lines, is their relative product a straight line?

11. One objection to the theory of preference discussed in previous chapters in
various exercises ig that the relation I of indifference is not transitive for many in-
dividuals and situations. R. Duncan Luce has given a simple set of axioms on
the relations P and I which do not require transitivity of I, and on the basis of
which two relations may be defined which do satisfy the axioms given in Exercise
6, § 10.5.* His axioms are (for every z, ¥, 2, w in the set 4 of alternatives):

Sl. z 1z

82. IftPy&ylz&zPwthenz Pw.

83. IftPy&yPz&ylwthennotbothzIw&z I w.
84. Ezactly one of the following: x Py, y Pz, x1y.

We now define:

@) 2Py zPyvizly&(A)zccA&zlz&zPy)lv
}zly&(Hz)(ch&xPz&zIy)]
@) zlye =Py&—yPuz.

Prove:

(a) Exactly one of the following: z Py, y Pz, z I y. (Distinguish cases in
the proof.)

(b) I is reflexive in A.

(¢) I is symmetric in 4.

(d) Z is transitive in A.

(e) P is transitive in A.

*R. Duncan Luce, “Semiorders and a Theory of Utility Discrimination,” Econo-
meirica, Vol. 24 (1956) pp. 178-191.



CHAPTER 11

FUNCTIONS

§ 11.1 Definition. Webster’s New International Dictionary defines the
mathematical notion of function in this manner:

A magnitude so related to another magnitude that to values of the latter
there correspond values of the former.

The two difficult words in this definition are ‘magnitude’ and ‘corresponds’.
What are magnitudes and what does it mean for one thing to correspond
to another? In the last chapter we added the notion of ordered couple to
those of set and membership in order to define relations. Can we avoid
adding the seemingly vague notions of magnitude and correspondence in
order to define the notion of function? Before deciding this question, let
us look at another definition. A well-known textbook * in the differential
and integral calculus states:

A variable is a quantity to which an unlimited number of values can be as-
signed in an investigation .... When two variables are so related that the
value of the first variable is determined when the value of the second is given,
then the first variable is said to be a function of the second .... The second
variable ... is called the independent variable, or argument; and the first varia-
ble ... is called the dependent variable, or function.

To begin with, in this definition the word ‘variable’ is not being used as it
is in this book, but rather more or less as a synonym for Webster’s ‘magni-
tude’. This definition is neither worse nor better than Webster’s: we can-
not clearly understand either definition without some clarification concern-
ing the elusive notions of magnitude and quantity.

A somewhat more sophisticated definition is the following:

A function is a rule which assigns to each element of a given set a unique ele-
ment of some other, not necessarily distinct, set.

Here, at least, there is no loose talk about magnitudes and quantities. In
many respects this definition is intuitively satisfactory. On the other
* W. A. Granville, P. F. Smith, and W. R. Longley, Elements of the Differential and

Integral Caleulus, rev. ed., New York, 1941.
229
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hand, the notion of rule it uses is reminiscent of the vague notion of de-
pendence or connection we were careful to avoid in characterizing the sen-
tential connectives and in defining the notion of a relation.

Fortunately there is a way out which bypasses these difficulties. We
may define functions as binary relations which relate to each element of
their domains a unique element of their counterdomains. More formally,
a function R is a binary relation such that if t Ry and z Rz then y = 2.

You are probably used to thinking of functions in numerical terms, but
there is no necessity for this. For example, in our society the relation of
being a husband is a function, since a person has at most one wife (at a
given time). On the other hand, the relation of being a mother is not a
function since one person can be the mother of several distinct children,
but the converse is a function. It will be useful to consider some simple
constructed relations. Let

R; = {(1, 2), (Madison, Pinckney)}
R, = {(1, 2), (1, 3), (Plato, Aristotle)}.

It should be clear at once that R, is a function and R, is not, but to avoid
any possible misunderstandings let us examine the situation in some detail.
The domain of R; is the set

{1, Madison}.

To each element in D(R;) there corresponds a unique element in the
counterdomain of R, (i.e., C(Ry)). Thus,

1R;2 and Madison R, Pinckney.

The domain of Ry is the set
{1, Plato}.

To Plato there corresponds a unique element in C(Ry), namely, Aristotle,
but to the number one there does nof correspond a unique element in
C(R2), for we have:
1R;2 and 1R,3,
and
2 # 3.

Thus R, is not a function.

We have already used two notations for relations: z R y and (z, ) c R.
We now introduce a third and customary notation for the special case of
functions. In the case of R, above, which is a function, we write:

Ri(1) = 2,
R1(Madison) = Pinckney.
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Notice that this special functional notation cannot be used for relations
which are not functions. For example, if we apply it to R; we obtain the
following absurdity:

RBy(1) = 2,

RZ(I) = 3’
and hence
2 = 3.

It is often convenient to use lower case letters to denote functions. For
example,
f1 = {{Romeo, Juliet), (Abelard, Heloise)},
and
fi(Romeo) = Juliet,

fi1(Abelard) = Heloise.

In mathematics functions are frequently defined by means of equations.
For example, we might want to consider the function f, such that the
domain of f, is the set of all real numbers and for any real number z,

falx) =22+ 22 + 5.
Thus,
f2(1) =8 and £(2) = 13.

A function need not be defined by a single equation. Consider, for in-
stance, the function g such that the domain of g is the set of all real num-
bers and for any real number z,

g(z) = 22 for z <0,

W .
gx) =52 + 17 for z > 0.

Thus
g(—1) =1 and g¢Q1) = 22.
(1) is equivalent to the more formal expression:
@ g@)=yeol@<0oy=2)&@E>0—y=>5"+17),
but for obvious typographical reasons it is customary to use the more in-
formal notation, which is also often written:

3 @=|" T =0
) =
g, 528+ 17 i z>0.

It needs to be emphasized that it is not formally sufficient to give the
defining equations of a function. It is also necessary to state explicitly
what the domain of the function is. In ordinary mathematical practice
this latter statement is often omitted when it is intuitively clear what is
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the intended domain of the function. For instance, the use of defining
equations like (3) usually implicitly entails that the domain of the function
is the set of all real numbers. However, we could use (3) to define a func-
tion whose domain is the set of all real numbers greater than —10, say. The
point is that when the domain of a function is an infinite set it is impossible
actually to list the ordered couples which belong to the function. Since
most functions of mathematical interest have infinite domains, the defini-
tion of a function usually consists of (a) specifying its domain and (b) giving
a rule which states the value of the function for each element in its domain.

A second example of a function defined by more than one equation is
the function A whose domain is the set of positive real numbers and which
is such that for any positive real number z

z if z is an integer,
) k(z) = {1if z is a rational number but not an integer,
0 if z is not a rational number.

h(3) = 3,h(3§) =1 and h(~/Z) = 0.

It also needs to be emphasized that a function is a set-theoretical, not a
linguistic, entity. Functions exist independent of any language. We may
digress for a moment and classify the main entities introduced in this
book as set-theoretical or linguistic.

Thus,

LINGUISTIC SET-THEORETICAL
Formulas Individuals
Sentences Ordered Couples
Sentential Connectives Sets
Variables The empty set
Terms Relations
Quantifiers Functions

Linguistic entities are, of course, always part of some language, whereas
set-theoretical entities in general are not. At first blush it may seem
strange to say that an individual like Thomas Aquinas is a set-theoretical
entity. The justification is that individuals are the ingredients out of
which we build up sets. At level zero we have individuals, at level one
sets of individuals, at level two sets of sets of individuals, and so on.
Linguistic entities are themselves set-theoretical entities, and it would be
more appropriate to entitle the right-hand column above “Set-theoretical
entities which are not linguistic entities’”.*

* The set-theoretical status of linguistic entities is somewhat complex. Asan example

consider the variable ‘z’. On the one hand, we might classify ‘2’ as an individual, but
then what is to be said about occurrences of ‘z’? Now if we classify occurrences of ‘z’
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Since every function is a relation, we may speak of the domain and
counterdomain of a function. Certain special terminology is used for
functions. The domain is often called the domain of definition of the
function, and the counterdomain is called the range of values of the func-
tion, for which we sometimes use the script letter ‘.’ Thus if f isa
function,

C(f) = R,

that is, the counterdomain of f is the same thing as the range of f. The
range of the function h defined by (4) is the set of non-negative integers.
If f is the function whose domain of definition is the set of all real numbers
and which is such that for every real number

f(x) = xz,

then the range of f is the set of all non-negative real numbers.

A function is sometimes said to map its domain onto its range. Thus
the function h maps the set of real numbers onto the set of non-negative
integers. Using this sort of terminology, we sometimes say that a function
f is a mapping, and when z is an element of the domain of f, then f(z) is
the smage of z. A function is occasionally called a correspondence (which
provides, by the way, a sharp definition of ‘correspondence’). Also certain
special functions are called transformations and operators, but we shall not
go into the basis of this usage.

In logic a function is often called a many-one relation. The genesis of
this terminology should be clear, from the definition of a function. Analo-
gously, a relation R is one-many if whenever y Rz and z R z, then y = 2.
We shall further refer to these notions in the next section.

A particularly important class of functions is the class of binary opera-
tions. A binary operation on the set A is a function whose domainis 4 X 4
and whose range is a subset of A. It is customary to speak of a binary
operation from A X A to A, and it is understood when this language is
used that the range of the operation need not be the whole of 4, but
merely a subset of A. For example, if N is the set of positive integers
and + is the binary operation of addition of positive integers, then we say
-+ is a binary operation from N X N to N, although the range of + is
N ~ {1}, for no two positive integers sum to one. Since ordered triples
are simply certain special ordered couples, namely those ordered couples

as individuals and the variable ‘2’ as the set of all such occurrences, a certain ambiguity
arises concerning the notion of occurrence. In earlier chapters we have referred to the
occurrence of a variable in a sentence, but the sentence itself has many actual occur-
rences. The safest procedure seems to be to start with the actual physical inscriptions
of ‘z’ and build up from there. Details of this construction are not relevant here.
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whose first members are ordered couples, we may also characterize binary
operations as certain ternary relations.

A ternary relation T is ;z binary operation if and only if for every z, v, 2,
andwif (z,y,2) ¢ T & (z,y, w) € T then z = w.

EXERCISES

1. Which of the following relations are functions?

(a) {{1, 1), (Judy Canova, 2), {(Madison, 1)}
(b) {él, 1), (2, 1), ?2, 2), (2,3)}
(@ {€1,1), (2, 2), (3,2)}

(d) the relation of being a spouse
(e) the relation of being a grandfather

2. State what is the domain and range of each of the relations in Exercise 1
which is a function.

3. Which of the relations in Exercise 1 of § 10.3 are functions?

4. Let z and y be real numbers. Which of the following relations are functions?

(8) The relation R such that z B y if and only if z > .

(b) The relation R such that t Ry if and only if y > = + 2.
(c¢) The relation R such that « B y if and only if z = 32

(d) The relation R such that z R y if and only if y = 2%

(e) The relation R such that z R y if and only if 3z + 2y = 0.
(f) The relation R such that z B y if and only if 22 4 2 = 0.
(g) The relation R such that z R y if and only if 2% = 92 = 0.
(b) The relation R such that # R y if and only if z = .

5. State what the domain is and the range of each of the relations in Exercise 4
which is a function.

6. Let z, y, and 2 be real numbers. Which of the following ternary relations are
binary operations? * The relation 7' such that (z, y, z) < T if and only if:

(@) 2+ 2y =2
bz<y&y<ea
©z<y&z=2

d) z-y = 2.
ez+y=2—1.
@ zyz=1.

7. State the range of each of the ternary relations in Exercige 6 which is a binary
operation,

§ 11.2 Operations on Functions, Since a function is simply a special
kind of relation, we can speak of the converse of a function. The converse
of a function is always a relation, but in general it will not be a function.

¢ Compare Exerclse 2 of § 8.3.
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Thus if
Je= {<1; 2); <2: 2)};
:f= {<21 1)7 (2} 2>}7

clearly f is a function and f is not. As a second example, suppose f is the
function such that for every real number z,*

f(z) = 2%
if we consider f as a relation, (z, ¥) cf if and only if
z =19

Consider, now, £ = 4. Then {4, 2) ¢, and also (4, —2) € f. Hence f is
not a function.

On the other hand, some functions are such that their converses are also
functions. For example, if g is the function such that for every real num-

then

ber z,

g(x) = 2z + 4.
Then g is the function such that

7(z) = Yz — 2.

When a function f is such that its converse relation f is also a function,
then we say that f is the inverse of f. To mark this special situation we use
¢—1’ as a superscript in place of the more general cup notation ‘. Thus
if the converse of f is a function,

=7
We use the notation ‘~* only when f is a function. It should be noticed
that when the inverse of f exists (i.e., the converse of f is a function), we
have the following identities: For every z in the domain of f

@ (@) = =,
and for every z in the range of f
€29) @) = =

Principles (I) and (II) are both important in solving for f and f~ 1 as we
shall soon see.

At the end of the last section we spoke of many-one and one-many
relations. A relation which is both many-one and one-many is one-one.

* 1t is understood that the use of the quantifier “for every real number &’ judicates
that the domain of definition of f is the set of all real numbers.
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We also speak of a one-one relation as a one-one function. Consider now
the following statements about a relation R:

0] R is a function.
2 R is a many-one relation.
3) The converse of R is a function.
) R is a one-many relation.
5) R and its converse are both functions.
6) R is a function and its inverse exists.
(7) R is a many-one relation and R is a one-many relation.
8) R is a one-one relation.
9 R is a one-one function.

The following equivalences hold:
1) & @),
@) « @),
() & ®) « (7)o @B <.

When functions are defined by equations as in some of the examples
already discussed, you may have some difficulty in deciding if the inverse
of the function exists, and if so, in finding an equation which will define
the inverse. Without going into any great detail, one or two practical

hints may be of value. To fix our ideas, let f be the function such that for
every real number z,

¢)) fx) = 5z — 4.

We want to use (1) to find . Since (1) holds for every real number z,
we may substitute ¥ }(z)’ for ‘2’ (application of universal specification)
and obtain:

0] J @) = 5 (2) — 4.

By virtue of (IT) we infer from (2):
3) z = 5 (z) — 4.

We now solve equation (3) for /~*(z)’, and obtain the equation defining f*:
@ ) = Yz + %6

The strategy of finding f~ as illustrated in (1)-(4) has three phases:
(i) Substitute 4 *(z)’ for ‘z’; (ii) Apply (II); (iii) Solve the resulting
equation for ‘f~(z)’.

The strategy just outlined has one defect: application of it will yield an
inverse function even though no such inverse may exist. Consider, for in-
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stance, the function f defined by the equation:

(5) flx) =22 — 1.
Substituting ¢ !(z)’ for ‘2’ and applying (II), we obtain:
(6) ze=fYz)? - 1.

Solving (6) for ¥~'(z)’ we have:
@) =x£Vz+1.
We thus infer that
f7'@) =2 and f7I(3) = -2,

2= -2

which is absurd. The mistake here was in inferring (6) from (5). The
substitution of 4~!(z)’ for ‘¢’ is permissible only if ~*(z)’ is a proper
term. If f is not a function, the expression ‘/~'(z)’ is not a term, since it
does not designate a unique entity.

Sometimes, mathematicians use the term ‘inverse’ in a slightly wider
sense, meaning by ‘an inverse’ of a function f simply any function ¢
whose domain of definition is the range of values of f, and which satisfies
the equation

flg@)] = =,

for every z in the range of f (i.e,, in the domain of g). In this sense, if f
is the function such that, for every real number z,

fl@) = 2,

then an inverse of f is the function ¢ whose domain of definition is the set
of non-negative real numbers, and which, for any non-negative real num-
ber z, satisfies the equation

g(@) = /.

Here we have, for every z in the range of f,
flg@)] = fivz]l = (Vz) = 2;
it should be noticed that here the equation
gf@)] =z
is not satisfied by every z in the domain of f—for we have, for example,
glf(~3)] = gl(—3)’] = g(9) = v/9 =3 = —3.

When a function does not have a unique inverse, mathematicians some-
times pick out (rather arbitrarily) a particular inverse and refer to it as

and hence
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the “principal inverse”—or sometimes, less exactly, as the “principal value
of the inverse”. This is especially common with respect to the trigono-
metric functions. Thus when dealing with the function sin (i.e., with the
function f such that, for every z, f(z) = sin z) it is customary to introduce,
as the principal inverse, the function g, whose domain of definition is the
closed interval —1 < z < +1, and which is such that, for any number z
in this interval, g(x) is the numerically smallest number y such that sin y =
z: 8o that g(14) = /6, for example, since sin /6 = 14, and /6 is the
numerically smallest number whose sin is 34; and similarly g(—14) =
—=x/6. It is customary to denote this function g by ‘arcsin’, or ‘sin™"’.
We notice that
sin [aresin z] = z,

for z any number in the domain of definition of arcsin; on the other hand,
we have, for instance:

. . o7 ] . x br
arcsin | sin — | = aresin = — 7 —
[ 6 te 6 6
The relative product of two functions plays an important role in many
discussions and is sometimes given a special name: the composition of the
functions. Suppose that f and g are functions, and that z, y, and z are
entities such that

@) y = f(2
and
®) 2 = g(z);

then z stands to y in the relation g/f. In other terms, from equations (7)
and (8) we see, that
y = flg(z)).

Thus the relative produet, or composition, of two functions is a function A
such that (whenever z is in the domain of definition of g, and g(z) is in
the domain of definition of f)

h(z) = f(g(z)).

This operation of forming the composition of two functions is so exten-
sively used in certain branches of mathematics that various special sym-
bols have been used for it; we shall use a small circle ‘o’. Thus,

(Fog)@ = flg()).

We introduce this special notation instead of using the relative product
notation because the order of 4’ and ‘¢’ in o ¢’ is the natural one corre-
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sponding to their order in ‘(g(z))’, whereas this order is reversed in the
relative product:

fog=g/f

It is clear that composition of functions is associative but not commutative.

The problem of finding the inverse of a function is actually a special
case of the problem of finding “the” function g, given the functions f and
fog. In finding the inverse, g is f~%, and

(fog)@) = (Fof () = f(f7 @) = =.

In general the function g is not unique, and the problem is usually just to
find at least one function g such that f o g is identical with some given func-
tion. For example, given the functions h and f such that

©) h(z) =z +1
(10) f(z) = 2%,
find a function g such that
fog=nh

Putting ‘g(z)’ for ‘2’ in (10), we have:

fgx)) = g(=)?
hence, by virtue of (9),
g(“;)2 =z41,

and

g(z) = =Vz + 1.
Thus we may take either:
. o) = Vo +1
r:

gle) = = Vz+41

as the solution of our problem. The strategy of substituting in (10) is
typical for this kind of problem. A somewhat different strategy is called
for when we are given functions g and A and want to find a function f
such that fog = h. For example, given

(11) h(z) = 102> + 1,
(12) g(z) = 5z,
find a suitable f. In this case, we first solve (12) for g, obtaining:

(13) g\ (z) = g
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Then we substitute ‘g~(z)’ for ‘=’ in (11), taking, of course, h = fog:
(14) (fog)g™'(z)) = 1049 (@))* + L

Since composition is associative, we have:

(fogog™) = (folgog™))(=),
and by virtue of (II)
@) = (folgog™)(@).

Hence we infer from (13) and (14)

T 2
f(z) = 10 (3) +1
that is,
fe) = %a? + 1.

Since this type of problem involves several steps, it may be useful to sum«
marize the typical strategy: (i) Solve for g~. (i) Substitute g~(z)’ for
‘2’ in the equation defining fog. (iii) Substitute the explicit expression
for g~! obtained in (i) on the right-hand side of the result (ii). (iv) Solve
for f.

A natural query is, What is the situation when g does not have an in-
verse? In such a case, find any function g; such that

9(0:(@)) = z.

The procedure for finding such a function g; is, of course, identical with
the procedure for finding g.

Finally we remark that since functions are relations, and relations are
sets, the set-theoretical operations of union, intersection, and difference
apply to functions. The union of two functions is not necessarily a func-
tion, although the intersection of two functions is a function.

EXERCISES

1. In Exercise 1 of § 11.1, which of the relations are one-many, that is, of which
relations are the converses functions?

2. In Exercise 4 of § 11.1, consider the relations which are functions. Of which
ones do the inverses exist?

3. Find the inverses, if they exist, of the functions defined for every real num-
ber z by the following equations:

(a) f(z) =3z + 7
b) fiz) =2*+1
(©) flz) = -2z — 4
d) fz) = 1
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4. Let f, g, and h be functions such that for every real number z

f (x) =z42
g(x) =z—2
h(z) = 3z.

Findfog,gof,foh,hog, fof,gog, (foh) og.
5. Let f and g be functions each of which has the set of all positive integers
for its domain of definition, and suppose that

_j2n if n<3
f(”)'{n if n>3

_J3n if n<3
o(n) {nifn>3

Find the domain of definition and range of fof, fog, gof, andgog.

6. Let f; be a function whose domain of definition is A; and whose range is
By; and let f; be a function whose domain of definition is A2 and whose range is
B;. What is the domain of definition of f; o fo?

7. Which of the following identities hold for any function f, g, and A? (When
we indicate the inverse of a function, we assume that the inverse exists.)

(8) fof™t =f/f7

() (fog)t = (/)

(¢) (fog)oh = (g/f)/h
d) fo(goh) = (W/g)/f

(e} fog=gof

(f) (fog)oh=Ffo(goh).

8. Let f be the function such that for every real number z,

S (x) =z+2,
and let g be the function such that for every real number z,
g(z) =z — 2.

Which of the following are functions: fU g, f N g, f ~ ¢?
9. In each of the following, find a function g such that A = fog.

(a) h(z) = 3z — 5, f(z) = 2z
(b) h(z) = 2% flz) =2* — 1
(c) Mz) =2+ 1,f(x) =a*+2
(d) k@) = 10z — 5,f(x) = Vz

10. In each of the following, find a function f such that A = fog.

(a) h{z) = 3z — 5, g(z) = 2
(b) k(z) = 5z, g(z) =z — 7
(© Mz)=2%glz)=1—z
(d) h(z) = —22 g(z) = —2
(e) h(x) = 8 — 2z, g(z) = 2*
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§11.3 Church’s Lambda Netation.* It is extremely important to
distinguish between a given function and the values of the function. For
example, suppose that f is the function such that, for every real number z,

f) =242

Then f is the set of all ordered couples of the form (z, 2®> + 2), for z a
real number. On the other hand, for any particular real number z, f(z) is
simply the real number 2% 4 2. Thus it is not correct, for example, to
use the phrase ‘the function f(z)’, instead of ‘the function f’. To amplify
the point, let

f1 = {{1, Washington), (8, Van Buren), (13, Fillmore)}.

Then we easily see that f; is a function, and for every z in D(f}), fi(z) is a
past President of the United States. It is nonsense to use the phrase ‘the
function fi(z)’, since neither Washington, Van Buren, nor Fillmore is a
function.

In introducing various special functions as examples, we have been try-
ing to make a sharp distinction between a function and its values. Our
regard for this distinction has led us to modes of expression, however,
which are more lengthy than those usual in mathematics (the distinction
is neglected in many books on mathematics). Thus in an ordinary mathe-
matics book one might find such a statement as ‘the inverse of the func-
tion z® exists’ but we should have to say ‘the inverse of the function f
such that, for every real number z

=) = xS’

exists’. It is tedious to repeat phrases like ‘the function f such that’.

Naturally, we want to have our cake and eat it too; we should like to
be exact without being dull. A partial way of achieving this end is to
introduce the lambda notation of Alonzo Church, which we shall now ex-
plain. The basic idea is that we prefix to a numerical expression an expres-
sion such as ‘Az’ to obtain an expression designating a function. Thus from
the numerical term ‘¢ 4 2’, we obtain the expression ‘(\z)(z 4 2)’ desig-
nating the function f such that for every real number z

f@) =z 42

We say that we have abstracted the function (Az)(z -+ 2) from the expres-
sion ‘z 4 2’, and we call ‘(A\x)’ an abstraction operator. An abstraction
operator has a logical status very similar to that of a quantifier. In par-
ticular, the use of abstraction operators provides a new way of binding vari-
ables. In the expression ‘(\z)(z + 2)’ both oceurrences of the variable ‘=’

* This section may be omitted without loss of continuity.
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are bound. Let us fix upon some domain V of individuals. The general
formulation of abstraction (with respect to V) is:

If v is any variable and @ is any term, then (Av)(®) designates the func-
tion whose value for x € V is designated by the result of substituiing a
symbol designating  for v in .

For simplicity of formulation we have considered a fixed domain of in-
dividuals. Consequently for any expression &, the domain of definition of
the function designated by (Av)& is V. We shall be mainly interested in
letting V be the set of all real numbers.

We only use lambda with variables, just as in the case of quantifiers.
It is nonsense, for example, to write: (A\3)(3 + 2). On the other hand, it
often does not matter which particular variable we use with lambda. Thus

A2)(z+2) = Al + 2).

It is also permissible to apply the lambda operator to a term which in-
volves more than one variable; in this case, however, we do not in general
obtain a definite function until a value is assigned to the variables other
than the one associated with the lambda operator. Thus (Az)(az -+ b) is
a function for every number a and b. And (Az)(z? + ) is a function for
every y. When there is more than one variable in & we must take some
care in replacing the variable used with lambda by another variable. Thus
if we consider the expression:

O2)(=* + 2),

(which, for every number 2, designates a function) we obtain an equivalent
expression if we replace ‘2’ by ‘y’, obtaining:

M@ + 2);
but if we replace ‘z’ by ‘2’ we obtain:

(2) (@ + 2);
and (\2)(2? + 2) is a function identical with

(2)(@ + 2),
not with

() (@® + 2).

Ordinarily, the & to which one prefixes ‘Az’ will contain the variable ‘z’.
This is not necessarily the case, however; it is also permissible to use this
notation for the so-called constant functions. Thus, for example, (A\z)(71)
is the function f whose domain is the set of all real numbers, and such
that, for every real number z,

flz) = 71,
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The distinction between functions and their values is particularly apt to
be neglected in the case of functions of constant value. But notice that
whereas ‘71’ is the name of a particular real number, ‘(\z)(71)’ is the name
of a certain set of ordered couples: the set of all ordered couples (u, v)
such that u is a real number and v = 71.

Since (\z)(z?) is a function, then

(z)(=%)(3)
is the value of the function for the argument 3. As further examples
[(\2)@® + 2)](5) = 6% +2 = 27
[2)(—2® — I7)])(=2) = —(~2)* — 17 = —9
()@ + 9] =22 +y =4+

Note the free variable ‘4’ in the last example. It should be clear how to
extend the lambda notation to abstract a function from the term ‘(\z)(z?
+ y)’. We simply add ‘(\y)’:

M () (2) (= + ).

We must, of course, be careful in finding values of such a function as (1)
for given arguments. We use parentheses to indicate which term, say
‘2’, “replaces’” which variable. Thus,

@ [(DIDE + DIDIB) = ()4 +9)]B) =4+ 3 =7,

Our procedure is to work from the inside out. We begin with the function
of one variable (\z)(z% + y), and find its value for an element of its do-
main. The result is designated by the term ‘4 4 3’ in (2). The ‘(\y)’
abstracts from this term to express a new function, and our final step is
to evaluate this new function for a given argument.

It is important to note that (1) does not designate a function of two
variables in the ordinary sense, for (1) designates a function whose domain
is the set of all real numbers and whose range is the set of functions
(\z)(z* +y). Thus

M) O2)(® +9) = {(1, (2)(® + 1)), (2, O2)(@® + 2)), ...},

whereas if f is the function of two variables such that for all real numbers
zand y

f(x) y) = -’52+y;
= {((19 1)) 2); ((11 2): 3)1 0"}0

then
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The lambda notation is easily adapted to permit the abstraction of f,
namely by reiteration of several variables with one lambda:

I= ()‘xy)(zz + ),

V2, 1) = 0@ + (V2 1) = (vV2)* +1=3.

As a final example, the function g of three variables such that for all real
numbers z, ¥, and 2z

and

9z, y,2) = 2> + 2y + yz
(\zy2)(z® + 2y + y2),

may be denoted by:

and
B) () +ay+y2)(2,4,5) =2"+2-4 + 4.5 =32

Note that the arguments of the function are listed in the same order in
which the corresponding variables are listed after lambda. Thus in (3) to
evaluate the function for the arguments (2, 4, 5), we replace ‘z’ by 2’, ¢’
by ‘4’ and ‘2’ by ‘5’ in the expression from which the function is abstracted.

EXERCISES

1. Use the lambda notation to describe the following functions:
(a) the function f such that for every real number z,
@) =2 +2*+2;
(b) the function f such that for every real number z,
f@) = vz +2;
(c) the function f such that for every real number z,
f(z) = 0;
(d) the function f such that for all real numbers x and y,
f@y) =z+y;
(e) the function f such that for all real numbers z and y,
fz,9) =2y + 2ay + .
2. Evaluate the following:

(a) [A2)(=* + z* + 2')K(1) ® [OW)([A)(22)])(3)))(6)
(b) [A2)(z + 2*))(22) (8) (A2 (z))y))(2)
(c) [Az)1 + D)1 (0) [A)MEM(VZ))(E)
(d) [A2)(z + 2)1(2) @) Azy)a® — ¥°)3, 5)

© [A)([A=)(=* + y)ENIB) G) Ay — y*2)(1, 3, 5)



CHAPTER 12

SET-THEORETICAL FOUNDATIONS OF THE
AXIOMATIC METHOD

§12.1 Introduction. Of all the remarkable intellectual achievements
of the ancient Greeks perhaps the most outstanding is their explicit de-
velopment of the axiomatic method of analysis. Euclid’s Elements, written
about 300 B.c., has probably been the most influential work in the history
of science.* Every educated person knows the name of Euclid and in a
rough way what he did—that he expounded geometry in a systematic
manner from a set of axioms and geometrical postulates. But most of us
would hardly be able to give any detailed description of Euclid’s method
or tell why it is considered important to develop geometry in this way.
Euclid begins Book I with a list of thirty-five definitions, three postulates,
and twelve axioms.} He then derives the forty-eight propositions of Book
I. The derivations are of course informal rather than formal in character.
There is in the Elements no eritique of logic nor any attempt to list per-
missible rules of inference. On this point Euclid is in agreement with
present-day standard mathematical practice, which we discussed in Chap-
ter 7. But on other matters his approach is not in complete agreement
with modern conceptions of the axiomatic method. He does not clearly
see that the axiomatic development of geometry must begin with some
ideas which are not themselves defined in terms of others. He thereby
confuses formal or axiomatic questions with problems concerning the ap-
plication of geometry. For example, Definition 1 of Book I asserts that a
point is that which has no parts, or which has no magnitude, and Definition
2 asserts that a line is length without breadth. The fundamental, tech-
nical notions here are not those of part or breadth from which we construct
the notions of point and line in a precise manner; but rather those of point
and line, and it is properties of the latter notions which are stated in the
postulates. What Euclid has tried to do in Definitions 1 and 2 is to explain

* The axiomatic method does not originate with Euclid. His main contribution was
to systematize the results of his predecessors.

t Everyman’s Library edition.
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in an intuitive way the notions of point and line. These intuitive explana-
tions are not logically necessary for the proofs of theorems, but they are
suggestive in helping one to think about the formal properties of points
and lines, as well as useful in learning how to apply geometry to empirical
problems.

In contrast to Definitions 1 and 2, Definition 11, which says that an
obtuse angle is an angle which is greater than a right angle, has a tech-
nical status. Proofs of theorems which involve the notion of obtuse angle
depend in a formal way upon this definition. We thus make the following
important distinction. The notions of point and line are undefined or
primitive notions in Euclid’s geometry, whereas the notion of obtuse angle
is a defined notion or concept.

One of the first steps in axiomatizing a subject or theory is to list the
primitive notions of the theory. It is not precisely clear what notions
should be regarded as primitive in Euclid’s development of geometry.
However, there are a large number of modern, axiomatic treatments of
Euclidean geometry which are very explicit on this point. For instance,
we might take as primitives the following three notions: the notion of
point; the notion of betweenness—of one point being between two others
on a line; and the notion of equidistance—the distance between two given
points being the same as the distance between two other given points.
Using then only the apparatus of logic and set theory we can proceed to
define all other geometrical notions in terms of these three notions. For
example, the line generated by two points z and y is defined as the set of
all points z which are between z and y or which are such that y is between
z and z or which are such that z is between 2z and y.

It is to be emphasized that the primitive notions of a theory are seldom
if ever uniquely determined by the intuitive content of the theory. Eu-
clidean geometry, for instance, may be developed in terms of & wide variety
of primitive notions other than the three mentioned above. For example,
in the famous German mathematician Hilbert’s axiomatization (1899), the
five notions of point, line, plane, betweenness, and congruence are intro-
duced as primitive. On the other hand, the Italian mathematician Pieri
published in the same year an axiomatization using only the primitive
notions of point and motion.

A preliminary step in fixing on the primitive notions of a theory is to
become clear about what other theories are to be assumed in developing fi¢ -
the axiomatization. For most axiomatic work in mathematics the standard
development of logic ana general set theory is assumed without comment.
If such an assumption is not made, then a complete apparatus must be
built from the ground up; that is, the theory must be constructed within a §-<_
completely and explicitly formalized language. In axiomatic work in the
empirical sciences, such as physics, psychology, and economics, it is cus-
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tomary to assume not only logic and general set theory but the standard
portions of mathematics as well. This permits such concepts as those of
number to be used in the axiomatizations of portions of physics or eco-
nomics, say, and yet not be regarded as primitive.

After deciding on what other theories are to be assumed and ﬁnng on
the primitive notions of the theory being studied, we are in a position to
state the axioms of the theory. The axioms are, of course, those state-
ments which are basic to the theory and from which we may derive the
other statements we consider true of the theory. It is desirable to hawve as
few axioms as seems possible, and also to take as axioms statements whose
meaning has a strong intuitive appeal. The only notions referred to in the
axioms must be the primitive notions, notions defined in terms of the
primitive notions, and the notions belonging to the theories assumed a
priori. It would, for example, be improper to refer to a particular physical
object such as the sun in an axiom of geometry, since it is hardly likely
that any physical theory, to say nothing of one dealing specifically with
the sun, would be assumed as a prerequisite to the development of geom-
etry. A second point to be emphasized is that in deriving logical conse~
quences of the axioms, nothing may be assumed about the primitive notions
except what is stated in the axioms.

In previous chapters in various exercises and examples we have con-
sidered axiomatizations of theories like the theory of groups which need
only assume first-order predicate logic with identity. Such theories are
sometimes called theories with standard formalization. Many mathemat-
ically significant theories are susceptible of such standard formalization in
a natural and simple way, and in the last two or three decades a number
of interesting results have been established about various theories of this
sort. In Chapter 7 we were concerned with a standard formalization of
the arithmetic of real numbers.

Unfortunately, when a theory assumes more than first-order logic as
already available for use in its statement and development, it is neither
natural nor simple to formalize the theory in first-order logic. For exam-
ple, if in axiomatizing geometry we want to define lines as certain sets of
points, we must work within a framework that already includes the ideas
of set theory. To be sure, it is theoretically possible to axiomatize simul-
taneously in first-order logic geometry and the relevant portions of set

' theory, but this is awkward and unduly laborious. Above all, it is repeti-

tious, for in axiomatizing a wide variety of theories, it is necessary or at

| least highly expedient to make use of set theory; if formalization in first-

order logic is the method used, then each such axiomatization must include
appropriate axioms for set theory. Theories with more complicated struc-
tures like probability theory need to use not only general ideas of set
theory but also many results concerning the real numbers and functions



PREDICATES AND AXIOMATIZATIONS OF THEORIES 249

whose domains or ranges are sets of real numbers. Formalization of such
theories in first-order logic is utterly impractical. The aim of the present
chapter is to provide a general foundation for the axiomatization of such
complicated theories, and to consider in some detail two substantive exam-
ples, one dealing with probability and one dealing with particle mechanics.

Although some of the general aspects of axiomatizing Euclidean geom-
etry have been discussed above in this section, a particular axiomatization
of geometry was not selected as a substantive example for two reasons.
First, because a large number of axioms is needed and a fair amount of
deductive development is called for to appreciate the structure of the
theory, limitations of space argued against a geometrical example. In ad-
dition, since a substantial portion of Euclidean geometry is easily axioma-
tized in first-order logic directly, it would not provide a good illustration
of axiomatic methods as applied to theories which have no natural for-
malization in first-order logic. The essential methodological purpose of
the present chapter is to demonstrate that the same standards of clarity
and precision may be achieved in axiomatizing complicated theories within
set theory as are achieved by axiomatizing relatively simple theories directly
in first-order logic. An appreciation of this point is necessary to compre-
hend the wide applicability of axiomatic methods in all domains of mathe-
matics and in the theoretical portions of the empirical sciences.

§ 12.2 Set-Theoretical Predicates and Axiomatizations of Theo-
ries. The kernel of the procedure for axiomatizing theories within set |
theory may be described very briefly: to axiomatize a theory is to define a
predicate in terms of notions of set theory. A predicate so defined is called ||
a set-theoretical predicate. Actually, a number of such predicates have
been defined in the previous three chapters, probably the most important
two being the predicates ‘is a binary relation’ and ‘is a function’.

In this chapter we shall not give a sharp definition of ‘set-theoretical
predicate’. Our objective is to elucidate by examples what is involved in
defining such predicates. Moreover, we shall assume that the set-theo-
retical framework within which we operate consists not only of general set
theory, as discussed in previous chapters, but also of the full apparatus of
classical mathematics, that is, the real numbers, functions of real numbers,
derivatives and integrals of such functions,* and the like.

At the beginning it may seem difficult to decide how much prior mathe-
matical development it is appropriate to assume in axiomatizing a given
theory. In practice, however, this question is usually easily answered. In
axiomatizing physics, for example, it is natural to make use of any part of
classical mathematics, but in studying the foundations of, say, the real
number system, results from classical mathematics could be used only with
great discretion and care if at all. In the next section when we consider

* Derivatives and integrals are needed only in the final section.

i Ea
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probability theory, it is appropriate to assume as already given in set
theory whatever is needed concerning operations on sets or operations on
the real numbers; but to make our developments depend on any results
from intuitive probability theory would be incorrect.

Any ambiguities concerning what is already a part of the general set-
theoretical framework we assume can in principle be completely eliminated
by an axiomatic development of set theory. The properties of general
operations on sets are developed first. Then the natural numbers are con-
structed, followed by the real numbers and the systematic development of
classical mathematics. This much can be accomplished by roughly a
thousand theorems and five or six hundred definitions. Definition 601,
say, could define the predicate ‘is a probability space’. Any use of classical
mathematics in this definition or in proofs of theorems about probability
spaces could then be explicitly and completely justified by reference to the
appropriate preceding theorems and definitions.*

We now turn to some specific remarks about axiomatizing a theory by
defining a set-theoretical predicate. Some of the remarks are minor in
nature, but all of them are intended to clarify various questions which
arise in axiomatic work. Our examples shall deal primarily with either
the theory of quasi-orderings or the theory of groups. To begin with, we
may consider a definition of quasi-orderings slightly different from that
given in Chapter 10. The purely set-theoretical character of the predicate
‘is a quasi-ordering’, which is defined, is immediately apparent upon con-
sideration of the terms which occur in the definiens.

DEerintTioN A. U is a quasi-ordering if and only if there i3 a set A
and a binary relation R such that % = (A, R) and

QL. R is reflexive in A.
Q2. R is transitive in A.

Note that it would not do to replace ‘U4 = (4, R)’ in the definiens of
Definition A by ‘U = {4, R}’, that is, to replace the ordered couple by
an unordered set; for if A is a set of ordered couples, confusion could arise
concerning which set, 4 or R, is meant to be the ordering relation. In
the case of strict partial orderings we could even have the anomalous situa-
tion for some sets A and R that given {A, R} we could not decide if A
was meant to be a strict partial ordering of R, or vice versa. For instance,
let :
4, = {(1, 2)}

Ry = {(2, 1)};
* A group of contemporary mathematicians writing under the collective pseudonym

‘Bourbaki’ are indeed pursuing such a systematic development of the whole of mathe-
matics.
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then R, is a strict partial ordering of 4,, and A, is a strict partial ordering
of R,. Difficulties of a deeper sort arise for more complicated theories
when unordered sets rather than ordered n-tuples are used.

The form of Definition A satisfies the rule for proper definition of rela-
tion symbols given in Chapter 8, but it is at slight variance with the domi-
nant style of modern mathematics. To illustrate other possibilities, we
consider some alternatives.

A first alternative is to define the two-place predicate ‘is & quasi-ordering
of’, which is what we did in Chapter 10.

DerinrrioN B. R is a quasi-ordering of A if and only if R is a binary
relation which is reflexive and transitive in A.

In comparing Definitions A and B it might at first seem that all the ad-
vantages of simplicity lie with B, since no quantifiers or references to
ordered couples are required in the definiens. However, the advantage of
A is that it exhibits a uniform approach applicable to any theory, for the
grammar of definitions like B becomes awkward when the predicate defined
is more than two-place. Thus corresponding to B we would have for sys-
tems of particle mechanics, defined in § 12.5, something like:

P is a system of particle mechanics with respect to T, s, m, f and g if
and only if ...

A second alternative, which is very close to standard mathematical
practice, is to use a conditional definition.

DerFinirion C. Let A be a set and R a binary relation. Then (A, R)
18 a quasi-ordering if and only if

Q1. R is reflexive in A.
Q2. R i3 transitive in A.

In the case of C the purely set-theoretical structure of quasi-orderings is
the hypothesis of the conditional definition. Such conditional definitions
seem very natural, and we shall use them in the sequel, but they do pro-
mote the continual commission of a certain kind of minor error, which
may be illustrated by C. Suppose someone asserts as a theorem:

If {4, R) is & quasi-ordering then A is a subset of the field of R.

This assertion seems to be an obvious consequence of C and familiar facts
about relations. However, the difficulty is that since it is not stated in
the hypothesis of the theorem that A is a set and R a binary relation, we
cannot use C to infer that R is reflexive in A, from which we may obtain
the desired conclusion. In other words, since the conditional clause of

Definition C is not satisfied we cannot significantly use C in an inference.
]



Q)

252 FOUNDATIONS OF THE AXIOMATIC METHOD

But in many contexts this criticism is a quibble. It is perfectly obvious
that it is intended for the theorem stated to apply only to the appropriate
set-theoretical entities. :

In discussions dealing with entities having the same general set-theo-
retical structure, the problem just mentioned is often met by the device
of specifying at the beginning of the discussion this general structure. For
example, we might define a simple relation structure as an ordered couple
consisting of a set and a binary relation. Then all our definitions of order-
ing relations are for such structures. Thus

DerinirioNn D. A simple relation structure (A, R) is a quasi-ordering
if and only if R is reflexive and transilive in A.

In considering groups and related algebraic structures, we may consider
algebras consisting of a non-empty set A and a binary operation o from
A X A to A, that is, o is a function whose domain is 4 X 4 and whose
range is a subset of A. We then define:

DerintrioNn E.  An algebra (A, o) is a group if and only if for every
z,y,andzin A

Al. zo(yoz) = (zoy)oz
A2, There is a w in A such that

z=yow.
A3. There is a w in A such that
T=woy.

(Here we have used the formulation of the axioms for groups already stated
in Exercise 5 of § 5.2.) Now Definitions C, D, and E all violate the rules
for conditional definitions given in Chapter 8. For instance, in the case of
C, the definiendum uses the term ‘{4, R)’ where a single variable should
be used. To rectify this mistake and then point out how it is conveniently
met in practice we may consider Definition E. We may reformulate it.

Derintrion F. If A = (4, o) and (4, o) is an algebra, then A 18 a
group if and only if ...
(The German letter ‘U’ is used in deference to a common usage in the
literature. The reason for the usage is this: A denotes the basic set of
the group, whereas ¥ is the basic set together with the operation.) The

lengthy conditional clause of F is tedious to repeat continually. The stand-
ard abbreviation is to write instead:

DerFintrion G. An algebra % = (A, o) i8 a group if and only if ...

If for any reason an exact formulation is wanted, the phrase ‘An algebra
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% = (4, o)’ of Definition G can always be expanded in the style of Defini-
tion F.

In connection with the definition of groups it should be remarked that
many mathematicians prefer a definition like:

DerintrioNn H. A set A i3 a group with respect to the binary operation
oifand only if ...

But the predicate here is so lengthy that it is customary to refer to the
set A alone as a group, which is literally false and may lead to mistakes.
Definition G has simultaneously the virtues of brevity and explicitness.

In ordinary mathematical contexts definitions are frequently formulated
in a metamathematical fashion, but this metamathematical formulation
does not involve any real metamathematical commitments, that is, com-
mitments to prove assertions about expressions of some given, fixed lan-
guage.* Definition G, for instance, might be formulated:

Derinrrion 1. An algebra A = (A, o) 3 a group if and only if the
following three axioms are satisfied . ..

Mathematical proofs about groups would not use in any explicit or deep
fashion properties of the metamathematical notion of satisfaction, which
is used in Definition I.

When a theory is axiomatized by defining a set-theoretical predicate, by
a model for the theory we mean simply an entity which satisfies the predi-
cate. For the theory of quasi-orderings we could put the point trivially
as follows. If (4, R) is a quasi-ordering, then {4, R) is a model for the
theory of quasi-ordering. Correspondingly, if an algebra (4, o) is a group
then (4, o) is a model for the theory of groups. When the theory of
groups is axiomatized directly in first-order logie, the notion of model is
defined so that the same set-theoretical entities are models for the theory
thus formulated, and similarly for other theories which may be axiomatized
either directly in first-order logic or by defining a set-theoretical predicate:
the two axiomatizations have the same entities as models.

During the last two decades the phrases ‘model’ and ‘mathematical
model’ have been widely used, particularly in the behavioral sciences.
These phrases seem to be used in at least three distinet senses. The sense
of the phrase in logic has just been described. A second meaning of ‘model’
for mathematical economists is closely related: the model for a theory is
the set of all models for the theory in the logicians’ sense. What the
logicians call a model is labeled a structure. In this terminology, if an
algebra (4, o) is a group then it is a structure for the theory of groups.

* Roughly speaking, metamathematics is that branch of mathematics which investi-
gates the structure of formalized languages or theories and their relation to other mathe-

matical entities. Many philosophers tend to call the study of formalized languages
semantics and logical synlaz rather than metamathematics,
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The third meaning of ‘model’, the one most popular with empirical scien-
tists, is what we have meant by ‘theory’ in preceding pages. In this sense,
to give a mathematical model for some branch of empirical science is to
state an exact mathematical theory. In such empirical contexts the word
‘theory’ is often reserved for non-mathematical, relatively inexact state-
ments about the fundamental ideas of a given domain of science. The
important difference between the first two senses of model and the third
is that only in the third sense are models linguistic entities.

When theories are formalized in first-order logic, theorems relating dif-
ferent models for the theory are necessarily metamathematical in their
statement and proof.* In contrast, theorems comparing various models
for a theory may be stated in direct mathematical fashion, when the theory
is axiomatized by defining a set-theoretical predicate. For example, con-
sider the following theorem about quasi-orderings.

TaeoreM 1. If (4, R,) and (A, R;) are quasi-orderings then
(A, R, N Ry) i3 a quasi-ordering.

PROOF. We need to show that B; N R, is reflexive and transitive in 4.
Let z be an arbitrary element of A. By hypothesis of the theorem, we
have:

zRiz &z Ry 2,
whence
4 R1 N Rz z, M

which proves B, N R, is reflexive in A.

Now suppose we have for any elements z, ¥, and zin 4:

(1) :chﬂRzy&leﬂRzz,
which is equivalent to:
2 zRy & yRiz & xRy & yR2z.

From (2) and the fact that by hypothesis R; and R, are transitive in 4,
we infer:

@ zRyz & xRz,

which is equivalent to:
z Rl n Rz 2,

and thus B; N R, is transitive in 4. Q.E.D.

* Generally speaking, metamathematical methods are not used by mathematiclans
when they can be avoided, for their exact application requires the often tedious and
difficult task of working with a completely specified and formalized language. This
remark {8 not meant to devalue in any way the significance of metamathematics. Many
important results can be established only by metamathematical methods.
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If the theory of quasi-orderings were formalized in first-order logic, we
would then need to formulate Theorem 1 in a metamathematical fashion.

TarvoreMm 1. If (A, Ry) and {A, R;) are models satisfying the theory
of quasi-orderings, then (4, By N Ry) s also such a model.

Essentially, the proof of Theorem 1’ is just like that of Theorem 1 and
would require the same set-theoretical framework. The advantage of
Theorem 1 over Theorem 1’ is that the proof of Theorem 1 requires no
shifting back and forth from a theory formalized in first-order predicate
logic to a metamathematical framework which includes all the apparatus
of set theory.

In the informal proof of Theorem 1 we have used in an intuitive and
somewhat casual fashion properties of sets familiar from Chapters 9-11.
It is important to reiterate the remark made in the first section of this
chapter: in axiomatizing particular theories within set theory it is possible
for almost all mathematical purposes to proceed without an axiomatization
of set theory itself explicitly at hand. Familiar properties of sets are used
in proofs without explicit appeal to theorems derived from some given
axioms of set theory. This practice will be held to in subsequent sections
of this chapter and should be adopted in working various of the exercises.

When a theory is axiomatized by defining a set-theoretical predicate the
independence of axioms or primitive notions is established by the kind of
methods previously described and used. The axioms are listed in the
definiens of the definition of the given predicate; and a given axiom is
shown to be independent by exhibiting a set-theoretical entity which satis~
fies the predicate defined by the original definiens minus the given axiom,
but does not satisfy the full definiens. Intuitively this just amounts to
finding a model satisfying all but the given axiom. It needs to be noted
that the purely set-theoretical structure of entities satisfying a predicate
is usually not characterized in the axioms proper, but rather is stated in
one of the following three places.

(i) The running text of the definiens immediately preceding the axioms
(see Definition A).
(ii) The hypothesis of the definition if the definition is conditional in
form (see Definition C).
(iii) Informally in the discussion preceding the definition (see Defini-
tions D and E).

From the standpoint of the systematic theory of definition, (i) is superior;
but from the standpoint of brevity and elegance, (iii) is to be preferred.
Whichever alternative is adopted, the set-theoretical structure of models
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for a theory is not stated in the sentences labeled azioms.* This has the
desirable consequence that the proofs of independence of axioms of a given
theory all make use of the same general kind of set-theoretical entities.
For instance, each of the models proving the independence of one of the
axioms for groups of Definition E must be an algebra, that is, an ordered
couple whose first member is a set A and whose second member is a binary
operation from the Cartesian product 4 X 4 to 4.

Since the definitions favored in the above discussion of alternatives de-
fine one-place predicates, some clarification about the status of primitive
notions is needed. Intuitively, the primitive notions of a theory are just
the sets, relations, and operations which are members of an ordered n-tuple
satisfying the given predicate. Thus the theory of quasi-orderings and the
theory of groups as formulated in this section are each based on two primi-
tive notions. Unfortunately a certain ambiguity surrounds the use of the
term ‘primitive notion’. For example, consider the predicate ‘is a group’.
An infinity of ordered couples {4, o) satisfy this predicate, but we do not
want to infer from this that there is an infinity of sets and binary opera-
tions which are primitive notions for group theory. Rather we want to
say that (with reference to Definition E) there are exactly two primitive
notions. We can make the primitive notions of a theory definite mathe-
matical objects by relativizing them to a model for the theory. Thus we
say that any model for the theory of groups has exactly two primitive
notions, namely a set and a binary operation. The proof of independence
of primitive notions then amounts to showing that the primitive notions
of an arbitrary model for the theory cannot be defined in terms of each
other. When no confusion is possible, we shall refer simply to the primi-
tive notions of a theory, but in all cases it will be perfectly obvious how
such language may be replaced by the more correct phrase ‘primitive
notions of a model for the theory’.

If the formalization of a theory in first-order predicate logic is compared
with its axiomatization by defining a set-theoretical predicate, it will be
noticed that almost always the latter requires one more primitive notion
than the former does primitive symbols. Namely, there is added the
primitive notion of a set corresponding to the domain of a model of the
formalized theory. For example, the set A in a group (4, o) corresponds
to no primitive symbol in the corresponding axiomatization given in § 5.2.
The reasons for the additional primitive notion grow clear if we reflect that

* Each axiom should say something intuitively significant about the theory. The
assertion, for instance, that a given primitive notion is a binary relation hardly satisfies
this requirement and thus should not be labeled an axiom.

1 It is customary to refer to the primitive notions rather than the primitive symbols of
a theory axiomatized by defining a set-theoretical predicate, for (literally speaking) in
defining the appropriate predicate no new primitive symbols are added to the language
of set theory.
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when the axioms for groups are formalized in first-order predicate logic,
the variables are interpreted to range over the elements of the group; but
in the set-theoretical framework of this section the variables range over
all individuals and sets, and the new primitive notion is needed to “rela-
tivize” the variables to range over the elements of the group. Thus in
the formalized theory, we have simply:

¢)) zo(yoz) = (zoy)og,
but here (1) is replaced by:
zcA&ycAd&zecd 5 z0(yoz)=(zoy oz,
where (4, o) is a group.

The exact way in which the basic set of elements is required to be re-
lated to the other primitive notions affects both its independence as a
primitive notion and the truth or falsity of certain simple statements. For
example, on the basis of Definition E, for any group {4, o) the set 4 may
be defined as the set whose Cartesian product is the domain of definition
of the binary operation o. By a slight reformulation of the general set-
theoretical requirements, the basic set A may be made independent of the
other primitive notion. This may be illustrated by reformulating Defini-
tion E for groups. The two essential changes are to drop the requirement
that o be a binary operation from 4 X A to A, and to add the closure
ariom that if x, y € A then z0y € A. An algebra (A, o) is now defined
to be simply a non-empty set A and a binary operation o, with no restric-
tion on the relation between A and o, and we define groups by:

DeriniTiON J. An algebra A = (A, o) i3 a group if and only if for
every z,y,andzin A

Al. z0y cA.
A2 zo(yoz)=(zoy)oaz
A3. There i3 a w in A such that

T =yow,
A4, There is a w tn A such that
z = woy.

The following two groups satisfying Definition J show that A is inde-
pendent. Let + be the set of ordered triples of integers (z, ¥, z) such that
z4+y =12 Let A; be the set of integers and let A; be the set of even
integers including zero. Then (A,;, +) and (4, +) are both groups in
the sense of Definition J and by application of Padoa’s principle (see Chap-
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ter 8) it is clear that these two groups establish the independence of A as
a primitive notion. Yet the obtaining of independence of primitive notions
is not sufficient to justify use of Definition J rather than Definition E.
In fact, many algebraists prefer E. Some fundamental reasons will be
forthcoming in the next section. On the other hand, one advantage of J
is mentioned in the exercises. Note that we have defined quasi-orderings
in a manner analogous to J rather than E.

In many contexts—one of them is exemplified in the next section—it is
convenient to have a group be an ordered quadruple rather than an ordered
couple. And we introduce algebras which are ordered quadruples (4, o,
—1, ¢), where o is a binary operation from 4 X 4 to 4, —! is a unary
operation from A4 to 4, and e is an element of A. Corresponding to the
axioms for groups given in the text of § 5.1, we then have:

DerintTioNn K. An algebra A = (4, o, 71, e) is a group i and only
if for every z, y, and z tn A

Al. zo(yoz2) = (zoy oz
A2, z0e=2z.
A3. zoz l=ce.

On first reflection it might seem that the addition of Definition K intro-
duces an ambiguity in our use of the predicate ‘is a group’. However,
notice that both Definition E and Definition K are disguised conditional
definitions, a point made explicit by Definition F. And the appropriate
hypotheses of the two definitions are mutually exclusive, so that any set-
theoretical entity satisfying the one cannot satisfy the other. In particu-
lar, the hypothesis of Definition E is that % is an ordered couple (4, o),
and the hypothesis of Definition K that ¥ is an ordered quadruple (4, o,
=1 ¢). The following theorem relates the two definitions in an exact way,
which we make use of in the next section. The proof is left as an exercise.
(The word ‘algebra’ in the hypothesis of the theorem is used in the sense
defined just before Definition E.)

TagoreMm 2. If (4, o) is an algebra, then (A, o) is a group (in the
sense of Definition E) if and only if there is a unary operalion =1 from
A to A and an element e of A such that (A, o, 71, €) is a group (in the
sense of Definition K).

In § 12.4 and § 12.5 we turn to two examples of axiomatizations which
follow the ideas laid down in the present section. The first example is
concerned with probability, and the second with mechanics. Neither of
the two has a simple and natural formalization in first-order predicate
logic. Consequently each is intended to exemplify the relative power and
flexibility of the axiomatic approach which consists of defining an appro-
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priate set-theoretical predicate. Before turning to these two examples,
the important notion of isomorphism of models for a theory is introduced
in the next section.

EXERCISES

1. Axiomatize the theory of Boolean algebras discussed in § 9.9 (see particularly
Exercise 9) by defining the appropriate set-theoretical predicate

(a) in the style of Definition A;

(b) in the style of Definition E;

(c) in the style of Definition J (be sure to include closure axioms in this
case).

2. Axiomatize the theory of the measurement of mass discussed in Exercise 9
of § 4.5 by defining the appropriate set-theoretical predicate.

3. Using Definition A decide which of the following are true. If any is true,
prove it. If false, give a counterexample.

() If {4, R1) and (A, R;) are quasi-orderings then {4, R; U R;) is a quasi-
ordering.

(b) If {4, Rl) and (4, R») are quasi-orderings then {4, Ry ~ R;) is a quasi-
ordering.

(c) If (4, Rl) and (4, R;) are quasi-orderings then (4, R:/R;) is a quasi-
ordering.

(d) If {4, R) and (4, R) are quasi-orderings then (4; N A4,, R) is a quasi-
ordering.

(e) If (4, R) and (4, R) are quasi-orderings, then (4; U A, R) is a quasi-
ordering.

) If {4, Rl) and {(A4,, R:) are quasi-orderings then (4; N Ay, By N R;)
i8 & Quasi-ordering.

(&) If (4, R1) and (A, Rs) are quasi-orderings then (4 X 4, By X Ry)is a
quasi-ordering,.

4, One of the fundamental problems of welfare economics and political theory
is the optimal method of aggregation of individual preferences to determine pref-
erences for the social unit. For both individuals and social units we define: *
9 is a weak preference patiern if and only if there 18 a set A, and binary relations P
and I such that A = (A, P, I) and

Axiom 1. P s transitive in A.
AxioMm 2. I 13 transitive sn A.
Axiom 3. For any x and y in A, exaclly one of the following: zPy, yPz, zly.

(For an intuitive interpretation see Exercise 6 of § 10.5.)

Let us now consider a social unit consisting of just two individuals with weak
preference patterns (A, Py, I1) and (4, Py, I;) (for some fixed set A of alternatives
facing the unit).

(a) Is {4, P, N Py, I, N 1) a weak preference pattern (for the unit), i.e., are
the three axioms satisfied?

* We use the adjective ‘weak’ because the axioms do not say very much about the
theory of preference. For an extensive discussion of this problem in the style of this
exercise, see K. J. Azrow, Social Choice and Indsvidual Values, New York, 1951.
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(b) Define forz, y c 4:
Py« [zPiy&(zPiyvazlay)l vizPay&(z Pry vz Iiy),
zlye ~(zPy &~y Pz).

Is (A, P, I) a weak preference pattern for the unit?

(c) Formally describe, in the manner of (b), the method of aggregation which
you think most closely corresponds to the method of majority vote for a social
unit of three individuals.

5. Following the developments of Exercise 5 of § 5.2, it is not difficult to justify
the addition of the following two definitional equivalences to the axioms for groups
of Definition J:

e=yo @)zecd >zoy=z&yor =12),
2 l=y e zoy=e

(In other words, we introduce by these definitions the identity element and the
inverse operation of a group.) We now define: If { = (4, 0) isagroupand BC A
then (B, o) s a subgroup of A if and only if for every z and y in B

(i) zoyeB

(ii) ec B
(iii) 2~ € B.

(Note that the definition of subgroup must be ecomplicated if Definition E for
groups is used, since the operation o is not an operation from B X B to B.)

(a) Prove that if B A and B < A then (B, o) is a subgroup of ¥ if and only
if for every x and yin B, zoy € B and 2! € B.

(b) Prove that if (By, o) and (Bs, o) are subgroups of %, then (B; N By, 0) is a
subgroup of .

(c) If {By, o) and {Bs, o) are subgroups of ¥, is (B, U B, o) a subgroup of %?

(d) For B;C A and B: & A, define:

BioB;=C e (@zcC o (Az)(Ay)zcBi&yecBi&kzoy = 2).
Prove that if (By, o) and (B, o) are subgroups of ¥ then {B; o By, o) is a sub-
group of A if and only if B;o By = B0 By,

6. Referring to the preceding exercise, define the notion of subgroup when Defi-
nition E is used for groups (and thus the notion of an algebra corresponds to that
defined immediately prior to Definition E). Also define the notion of subgroup
for groups (4, o, ™, e) satisfying Definition K.

7. Prove Theorem 2,

§ 12.3 Isomorphism of Models for a Theory. The separation of the
purely set-theoretical characterization of the structure of models for a
theory from the axioms proper is significant in defining certain important
notions concerning models for a theory. For example, the notion of two
groups being isomorphic is often said to be axiom-free, since the definition
of isomorphism for groups depends on none of the axioms. In fact, the
definition is really for isomorphic algebras and applies to algebras which
are not groups. A cursory inspection of the definition, which we now
state, verifies these remarks. (In the definition, an algebra is understood
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to be an ordered couple (4, o) such that o is a binary operation from
A X A to A, which is the first of the senses of ‘algebra’ introduced in the
preceding section.)

Derinrrion 1. An algebra % = (A, o) s isomorphic to an algebra
A = (4’, o') if and only if there is a function f such that

(@) D(f) = A & R(f) = 4,
(ii) f ¢s a one-one function,
(iii) #f z, y € A then

fzoy) = f(z) o' f).

The intuitive idea is, of course, that two algebras are isomorphic just when
they have the same structure. The properties required of the function f
make precise the idea of same structure. The relation of isomorphism be-
tween algebras is an equivalence relation, i.e., it is reflexive, symmetric,
and transitive. (We leave showing this as an exercise.) An example of
two distinet groups which are isomorphic is afforded by the following.
Let A be the set of integers, let A’ be the set of even integers and, let -+’
be addition of even integers (where zero is counted as an even integer).
Then (4, +) is isomorphic to (4’, 4’), for it is easy to find a function f
with properties (i)-(iii). Let f be the function such that for any integer n

f(n) = 2n.

Then we verify at once that D(f) = 4, J(f) = A’ and f is a one-one
function, Furthermore, for any two integers m and n

fm +n) = 2(m + n) = 2m +' 2n = f(m) +’ f(n),

which verifies (iii).

If an algebra is defined as an ordered couple (4, o) where the operation
o need have no connection with the set A, Definition 1 must be modified,
gince z o y may not be in the domain of f. Emphasizing that the opera-
tions o and o’ are sets of ordered triples, we replace (iii) of Definition 1 by:

(i) Ifz,y,2 A then
(2,9, 2) €0 & (f(2), f), f2)) €.
We may rewrite (iii’):
(iii”) If z,y, 2z € A then
zoy =z o f() ' fly) = f().

When algebras in this second sense are considered, care must be exercised
in finding out when performing the operation o on two elements of the set
A results in an element of A. Moreover, only under the most trivial cir-
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cumstances can we determine if two algebras are identical, since the binary
operations of any two algebras can have any sort of structure outside of
the set A X A X A. In the exercises at the end of this section we con-
sider only algebras (4, o) in the first sense, that is, where the operation o
is from A X A to A.

A satisfactory general definition of isomorphism for two set-theoretical
entities of any kind is difficult if not impossible to formulate. The standard
mathematical practice is to formulate a separate definition for each gen-
eral kind of ordered n-tuple. When the n-tuples are complicated as in the
case of models for the theory of particle mechanics, it is sometimes difficult
to decide exactly what is to be meant by two isomorphic models; but for
algebras or simple relation structures the choice of the appropriate condi-
tions is clearer. To illustrate the condition on binary relations we state
the definition of isomorphism for simple relation structures.

DerintTION 2. A simple relation structure (A, R) is isomorphic to a
simple relation structure (B, S) if, and only if, there 18 a function f such
that

(@) D(f) = A & R(f) = B,
(ii) f ts a one-one function,
(iii) If =, y € A then zRy & f(z) Sf({y).
(In place of ‘{B, S)’ we could as well have written ‘(4’, R')’ with corre-
sponding changes in (i)—(iii).)
Using this definition the relation structure

({1, 2}, {{1, 2), (2, 2)})
is isomorphic to the relation structure

({3, 4}, {(4,3), (3,3)}),
for we may take as an appropriate function f:
J) =4
f(2) = 3.

The notion of isomorphism has important applications in all domains of
modern mathematics,. When the special situation obtains that any two
models for a theory are isomorphic, then the theory is said to be cate-
gorical.* Simple counterexarmples may be found to show that neither the
theory of quasi-orderings nor the theory of groups is categorical. For

* This notion originates (1904) with the American mathematician Oswald Veblen. It
may be of some interest to philosophers to know that the word ‘categorical’ was sug-

gested to Veblen by John Dewey (see T'ransactions of the American Mathematical Society
Vol. 5 (1904) p. 346).
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example, in the case of quasi-orderings, we may take two quasi-orderings
(4, R) and (B, 8) such that the set 4 has two elements and the set B
three elements. Then there is no one-one function whose domain is 4
and range is B. This is trivial. It is a little more interesting to exhibit
two quasi-orderings (4, R) and (B, S) such that A and B have the same
number of elements and yet (4, R) is not isomorphic to (B, S). Let

A=1{1,2}
B = {(1, 1), (2, 2), {1, 2)}
B = {3, 4}

8 = {(3,3), (4, 4)}.

Then if the appropriate f for isomorphism of (4, B) and (B, 8) existed,
from
1R2
we would infer
» F(1) 81(2).

Since f is a one-one funection, f(1) 5= f(2), but the relation S does not hold
between any two distinct elements. Consequently there can be no such
function f.

Some simple examples of categorical theories are given in the exercises.*
When a theory is not categorical, an important problem is to discover if
an interesting subset of models for the theory may be found such that any
model for the theory is isomorphic to some member of this subset. To
find such a distinguished subset of models for a theory and show that it
has the property indicated is to prove a representation theorem for the
theory. Such a theorem may be proved for groups; namely, every group
is isomorphic to a group of transformations. Roughly speaking, a group of
transformations may be described as follows. Let M be a non-empty set,
and let B be a set of one-one functions whose domains and ranges are M
(such a function is called a transformation on M). Then if B is appro-
priately chosen (B, o) will be a group of transformations, where o is com-
position of functions. Thus if M = {1, 2}, and B = the set of all trans-
formations on M, then there are two functions f; and f; in B:

fi(1) =1&f(2) = 2,
fo(1) = 2&75(2) = L.
The function f; is the ¢dentity transformation, since it maps each element

* The theory of the real numbers and the theory of the positive integers are probably
the two most important examples of categorical theories.
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of M into itself. We also note that both f; and f; are identical with their
inverses, that is,

At =h
Ll =fa

We may now check that (B, o) is a group of transformations (where o is
composition of functions). In making such a check it is convenient to
use Theorem 2 of § 12.2; that is, we show that the algebra 8 = (B, o) is
a group by showing that there is an inverse operation ~ and an identity
element e such that (B, o, ~1, e) is a group. We see at once that the
identity element of 8 is the identity transformation f1, since

fiofa=faofi = fi.

And the group inverse element of a function in B is just the function in-
verse, whence immediately

ficfit=fiTlofi=fi
faofat=filofa = fu.
We now prove the representation theorem mentioned.*
TaEOREM 2. Every group is tsomorphic lo a group of transformations.

PROOF. Let A = (4, o) be an arbitrary group. For each z in 4 we
define a funetion f, which maps 4 into A as follows: for every y in A

(1) @) =zoy.

From the left-hand cancellation law for groups (§ 5.2, Exercise 4, Theorem
5) it follows that f is a one-one function. For suppose it were not. Then
there would be elements  and g’ in 4 such that y = 3’ and

L@) = £0);

zoy=zoy,

but then by (1)

and by the cancellation law
y=v,
which is absurd.
From Axiom A2 of Definition E it follows that for any 2z in A there is a
y in A such that
(@) = 2.

Thus the range of f; is A, whence f, is a transformation.

* Readers interested in a further development of group theory and related topics of
modern algebra will find useful G. Birkhoff and S. MacLane, A Survey of Modern Alge-
bra, rev. ed., New York, 1953.
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Now to show that the set of all such transformations f. form a group with
respect to the operation of composition of functions. (To avoid econfusion
between the operation of composing functions and the group operation of
¥, we denote composition of functions by juxtaposition in this proof.) We
use Theorem 2 of § 12.2. Let ¢ be the identity element of U; then f, is
the identity transformation on A, since

fo(z) = eozx =1z.

Jefo = Jefz = fa.

Moreover, since for any z in 4, f, is 1 to 1, the inverse function f, ! exists
and we have at once

Whence,

fzfz—l = fz_lfz = fe.

Finally, to complete the proof of our theorem we need to show that the
group of transformations on A that we have defined is isomorphic to 9.
For this, we first need to observe that for any z and y in 4

f:rfv = fzom

since for any z in 4

(@  fafu(®) = folyo2) =z0(yo2) = (zoy)oz = f,,,(2).

Now for the function demonstrating the isomorphism of the two groups,
we use, as would be expected, the function ¢ such that for any z in 4

#(x) = fo

Obviously the domain and range of ¢ are what they should be. To see
that ¢ is a one-one function, we notice that if z = y then

Ja(e) # fu(e);
for if f, = f, when z # y then
z=z0e=f(e) =fye) =yoe=y.

To establish (iii) of Definition 1 we use (2) to infer that
(oY) = froy = fofy = o(@)e(y). Q.ED.

The notion of a representation theorem, and thereby the notion of iso-
morphism, has important applications in the philosophy of science. The
primary aim of the theory of measurement, for instance, is to show in a
precise fashion how to pass from qualitative observations (‘This rod is
longer than that one,’ ‘the left pan of the balance is higher than the
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right one’) to the quantitative assertions needed in empirical science
(“The length of this rod is 7.2 centimeters, ‘the mass of this chemical
sample is 5.4 grams’). In other words, the theory of measurement should
provide an exact analysis of how we may infer quantitative assertions
from fundamentally qualitative observations. Such an analysis is pro-
vided by axiomatizing appropriate algebras of experimentally realizable
operations and relations. A partial example for the measurement of mass
constituted Exercise 9 of § 4.5. Given an axiomatized theory of measure-
ment of some empirical quantity, the mathematical task is to prove a
representation theorem for models for the theory which establishes, roughly
speaking, that any model is isomorphic to some numerical model for the
theory. The existence of this isomorphism justifies the application of
numbers to things. We cannot literally take a number in our hands and
“apply” it to a physical object, say. What we can do is show that the
structure of a set of phenomena under certain empirical operations and
relations is the same as the structure of some set of numbers under certain
arithmetical operations and relations. The definition of isomorphism in
the given context makes the intuitive idea of same structure precise, as has
already been remarked. The great significance of finding such an iso-
morphism of structures is that we may then use all our familiar knowledge
of computational methods, as applied to the arithmetical structure, to
infer facts about the isomorphic empirical structure.

Unfortunately most of the proofs of representation theorems in the
theory of measurement are too long to include in either the text or exer-
cises. To illustrate the methods, we shall consider a very simple set of
axioms for measuring perceived or felt differences in various classes of
phenomena, like differences in pitch or loudness of a set of sounds, differ-
ences in intensity of pain of a set of stimuli, differences in visual bright-
ness of a set of color stimuli, and differences in value (or utility) of a set of
economic goods. The axioms are based on three primitive notions: the
set A of objects or stimuli, the binary relation P which represents the
ordering of the stimuli, and the quaternary relation E which represents
equality of difference of pairs of stimuli.

Suppose, for example, we wanted to develop a numerical scale for pitch.
Then A would be a certain set of sounds. For two sounds z and y in 4,
zPy if and only if the pitch of z is judged lower than y. For four sounds
z,y, %, and v in A, z, y E u, v if and only if the (algebraic) difference in
pitch between z and y is judged to be the same as that between u and v.
We say algebraic difference, since E takes account of ordering; that is, if
z, Y, %, and v were numbers then we would have:

s, yBu,v o z—-y=u—uo

Generally speaking, our objective is to state axioms on 4, P, and E such
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that we can prove there is a real-valued function ¢ defined on 4 such that
zPy © ¢(z) < o),
5, yEu,v © o) — ¢y) = o(u) — o).

We now systematize our ideas. With applications in psychology in
mind, we call any ordered triple (4, P, E), where 4 is a set, P a binary
relation and E a quaternary relation, a difference structure. To emphasize
that the appropriate definition of isomorphism is axiom-free, we may state
it prior to considering the axioms of our theory of measurement.

DeriniTioN 3. A difference structure (A, P, E) ts isomorphic to o dif-
Serence structure (A’, P’, E') if and only if there is a function f such thai

() D(f) = A & R(f) = 4/,
(ii) f 8 a one-one function,
(i) If z, y € A then zPy « f(z) P’ f(y),
@) If z,y, u,v € A then 2, y Eu, v & f(z), f(y) E' f(u), f().

This definition is simply an extension in a natural way of Definition 2.
‘We now turn to the axioms which a difference structure must satisfy in order
to be an equal difference structure. The intuitive idea of the axiomatiza-
tion is to require that we order the stimuli according to pitch, intensity of
visual brightness, or some other characteristic, and then demand that any
two stimuli adjacent in the ordering have the same difference in intensity
as any two other such adjacent stimuli. Moreover, we restrict ourselves
to finite sets of stimuli. A set of five stimuli would have to be arranged
like
I I

L

a b ¢ d e

to be an equal difference structure. Obviously we may assign the number
1 to a, 2 to b, ete. Our axioms state sufficient conditions to guarantee
that such an assignment is always possible.

Before stating the axioms, a defined notion needs to be introduced which
it is convenient to use in both axioms and theorems. Moreover, the
introduction of this defined notion may serve to illustrate some pertinent
points regarding the proper form of definition for such defined notions.

DErintTION 4A. If 2,y € A, then
2Jy « [Py & )z c A &zPz —» y =z v yP2)).

The intuitive interpretation of the binary relation J is that zJy if and
only if y is the unique immediate successor of z with respect to the relation




268 FOUNDATIONS OF THE AXIOMATIC METHOD

P. Obviously Definition 4A is not a proper definition in general set theory
for the definiens contains the free variables ‘A’ and ‘P’ which do not occur
in the definiendum. The definition would be proper only if ‘A’ and ‘P’
were constants rather than variables. A proper definition is:

DerintTION 4B. If (A, P, E) 13 a difference structure and if z, y € A,
then

zJ(A, P)y «> [zPy & (2)(zc A & 2Pz — y = z v yP2)].

Also, since the variable ‘E’ does not occur in the consequent of 4B, we can
as well write:

DerintrioN 4C. If there 18 an E such that (A, P, E) is a difference
structure and if z, y € A then

zJ(A, P)y & [zPy & )z c A & zPz — y = z v yPz)].

But since for any set A and binary relation P there is an E such that
(A, P, E) is a difference structure, we may as well simplify the definition
and refer only to simple relation structures (4, P).

DerintrioN 4D.  If (A, P) is a simple relation structure and if z,y € A,
then

2J(A, P)y & [Py & (2)(z c A & 2Pz —> y = z v yP2)].

For 4B, 4C, and 4D the rule for conditional definitions of relation symbols
is satisfied, and ‘J’ is a defined quaternary relation symbol of set theory.
But this result seems slightly artificial. We expect ‘J’ to have the same
status as ‘A’ and ‘P’, which are variables. For this reason, the universal
practice is to use 4A and to explain away its shortcomings in the following
manner. Basically the definition of the J relation is the sort of definition
we could add as a definitional axiom to whatever list of axioms we impose
on difference structures. If our theory of measurement were axiomatized
in first-order logic, then ‘A’ and ‘P’ would be primitive symbols and J’
would be a defined binary relation symbol properly introduced by 4A.
Such definitions (i.e., 4A) are labeled ‘elementary’ with respect to the theory
being considered, and are used constantly to avoid the troublesome nota-
tion required by definitions in general set theory like 4B, 4C, and 4D.
When considering some fixed theory, we shall label definitions like 4A with
a prefix ‘E’ to indicate their elementary character.* The same labeling is

* All of these remarks apply to the definition of the identity element and inverse
operation for groups (4, o). Thus when a definition in general set theory is used the

identity element e is denoted by a binary operation symbol ‘e(4, o)’: If an algebra
{4; o) is a group then

6(4;0) my « Z)xCA - zoy=a2)
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used for elementary theorems, which are theorems derivable from the
axioms of the given theory and which hold for any model for the theory.
(This point will be returned to.)

We return to our main task, development of the theory of measurement
for finite equal difference structures. The relation J is referred to in the
final axiom of the basic definition which we now state.*

DerFINITION 5. A difference structure (A, P, E) s a finite equal differ-
ence structure if and only if A is a finite set and for every z, y, 2, u, v,
and w in A the following nine axioms are satisfied:

Axiom D1. If zPy then not yPz.

Axiom D2. If 2Py & yPz then zPz.

Axiom D3. If x 7 y then 2Py or yPx.

AxioM D4, z,zE y, y.

AxiomD5. Ifz,yEu,vihenu,vEz,y.

AxiomD6. Ifz,yEwu,vthenz, uE y,v.

AxioMm D7. Ifz,yEu,v &u,v Ez wthenz,y E 2z, w.
Axiom D8. If Py & z, y E u, v then uPv.

Axtom D9. If xJy & uJv then z, y E u, v.

Remembering the empirical interpretation discussed above, we can grasp
the intuitive interpretation of each axiom. For example, the first three
axioms just require that P be a strict simple ordering of A. The next four
axioms state properties of E only. For example, Axiom D4 says that the
difference in pitch between any sound z and itself is the same as the dif-
ference in pitch between any other sound y and itself. On the basis of
the whole set of axioms we may prove that this difference is zero as would
be expected. The numerical interpretation of D4 is just that

z—z=y—9,

a trivial arithmetical truth for any numbers z and y. The final two axioms
relate P and E. It is Axiom D9 that imposes the equal difference spacing
on stimuli. Regarding experimental application of these axioms, it should
be noticed that D9 has a different status from Axioms D1-D8. We might
expect a careful subject approximately to satisfy D1-D8 for any set of
stimuli with respect to some characteristic such as pitch or visual bright-
ness or value. But it would be surprising indeed to find D9 satisfied by an
arbitrarily selected set of stimuli. The appropriate set of stimuli must be

* A related set of axioms is to be found in D. Davidson and P. Suppes, “A Finitistic
Axiomatization of Subjective Probability and Utility,” Econometrica, Vol. 24 (1956)
pp. 264-275. A set of axioms for infinite difference structures is given in P. Suppes and
M. Winet, “An Axiomatization of Utility Based on the Notion of Utility Differences,”
Management Science, Vol. 1 (1955) pp. 259-270.
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carefully selected by the experimenter in order to find a model satisfying
D9.*

The elementary theorems which we need to prove our representation
theorem for finite equal difference structures are listed in the exercises at
the end of this section. From the preceding remarks on elementary defini-
tions, it should be clear how one may convert any elementary theorem
about finite equal difference structures into a theorem of general set theory.
For instance, the first theorem is:

TaeoreM El. Ifz,y,zcAandifz,yEx, 2, theny = 2.
This may be formulated as a theorem of general set theory as follows.

TeeorREM. If (A, P, E) is a finite equal difference structure, if z, y, z
cA,andifz,yE x, 2, theny = 2.

Regarding the elementary theorems, it is common practice to omit the re-
quirement in the hypothesis that z, y, z ¢ A. Thus we come to the simple
formulation:

TaeoreM El'. Ifz,yEz, z, theny = 2.

which is the style followed in the exercises; but it should be understood
that literal correctness demands an addition to the hypothesis—that the
elements considered belong to A.

To state the representation theorem, we need to define numerical equal
difference structures.

DzerFINtTION 6. Let N be a finite set of numbers such that differences
between numbers adjacent under the natural ordering < are equal. Let
W be the quaternary relation such that for any numbers z, y, u, and v,

L, yWuy,v o z—y=u—o
Then (N, <, W) 18 a finite numerical equal difference siructure.

TrEOREM 3 (REPRESENTATION THEOREM). If a difference structure is
a finite equal difference structure, then it ts isomorphic to a finite nu-
merical equal difference structure.

Some hints concerning the proof of this theorem are given in the exercises.

For a theory of measurement we demand not only a numerical repre-
sentation theorem but also a theorem concerning the uniqueness of the
representation. For our example we have the following.

* The two major weaknesses of the axioms from the standpoint of the kind of judg-
ments or responses individuals actually make regarding felt or perceived differences of
some characteristic of stimuli are the following: (i) judgments of order and of differ-
ences are not perfectly transitive; (ii) at different times different responses will be given
to the same stimulus presentation. Methods for changing the axioms to accommodate
either of these phenomena are too complicated to discuss here.
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TarEorEM 4 (UNIQUENESS THEOREM). Any two finile numerical equal
difference structures 1somorphic to a given finite equal difference siructure
are related by @ linear transformation. That 1s, if (N, <, W) and
(N', <, W) are the two numerical structures, then there is a positive
number a and a number 8 such that for any z in N, there i3 an unique
2’ in N’ such that

2 =ax+B.*

The second major application in the philosophy of science of the notion

/7 of a representation theorem is to the problem of showing that one branch

of science may be reduced to another. For example, it is known that a
large portion of classical thermodynamics may be derived from statistical
mechanics, in the sense that many laws of thermodynamics may be derived
from various fundamental laws of statistical mechanics. To show in a
sharp sense that thermodynamics may be reduced to statistical mechanics,
we would need to axiomatize both disciplines by defining appropriate set-
theoretical predicates, and then show that given any model T of thermo-
dynamics we may find a model of statistical mechanics on the basis of
which we may construct a model isomorphic to 7. Substantive examples
of such a reduction are too complicated to include in the text.f

EXERCISES

1. Using Definition 1 prove:

(a) Any algebra is isomorphic to itself.

(b) If an algebra % = (4, o) is isomorphic to an algebra A’ = (4’, o’), then
9’ is isomorphie to .

() If an algebra % = (4, o) is isomorphic to an algebra A’ = (A’, o') and if
9’ is isomorphic to an algebra A" = (4", o”’), then ¥ is isomorphic to A"

2. Let 9 = {4, o) be an algebra which is a group, and let % be isomorphic to
an algebra I’ = (4’, o’). Prove in detail that %’ is a group.

3. Give an example of two groups which are not isomorphic, and prove that
they are not.

4. Let {4, R) and (B, 8) be simple relation structures. Prove any of the fol-
lowing statements which are true. For those which are false, give counterex-
amples.

(a) §A, R) is isomorphic to (4, R).
(b) {A X B, R X 8) is isomorphic to (B X 4,8 X R).

* Naturally, different sorts of uniqueness are obtained for different kinds of measure-
ment. For instance, in the theory of measurement of mass we get uniqueness up to a
similarity transformation; that is, from one of two numerical models isomorphic to a
given mode] for the theory, one can obtain the other by multiplication by a positive
number (which intuitively corresponds to a change in the unit of mass measurement).
With respect to uniqueness the kind of measurement we get for finite equal difference
scales is like that obtained for longitude or ordinary temperature measurements. An
arbitrary unit and origin are selected.

1 A detailed and exact analysis of the reduction of rigid-body mechanics to particle
mechanics is to be found in Ernest Adams, Aziomatic Foundations of Rigid Body Me-
chanics, dissertation, Stanford University, 1955.
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(¢) If R = S then (4, R) is isomorphic to (B, 8).

(d) If R 5= S then (A, R) is not isomorphic to (B, S).

(e) If A C B then {4, R) is not isomorphic to (B, S).

() If (A, R) is isomorphic to (B, S) then §A, R/S) is isomorphic to (B, S/R).

() If (4, R) is isomorphic to (B, S) then (4, R/R) is isomorphic to (B, S/S).

5. We define: An algebra % = (4, o) is utterly trivial if and only if for every z
and y in A, z=y. Prove that the theory of utter triviality is categorical. (Re-
member that if (4, o) is an algebra, then 4 is a non-empty set.)

6. We define: A simple relation structure (A, R) is a simple ordering of order n
if and only if the following five axioms are satisfied:

Axtom 1. The set A has exactly n elements.
AxioMm 2. R 18 reflexive in A.

Axiom 3. R s antisymmetric in A.

AxioMm 4. R 13 transttive in A.

Axiom 5. R 3 connected in A.

Prove that the theory of simple orderings of order n is categorical. .

7. Let M be a non-empty set. Prove that the set of all transformations on M
is a group with respect to composition of functions.

8. Prove the following elementary theorems for finite equal difference structures.
Those proofs which require use of the principle of mathematical induction are in-
dicated.* The inductions are in fact always on powers of J, which we now define.
(This recursive definition is actually the appropriate one for powers of any binary
relation.)

zJly o zJy
(1) zJ*Hy o (3F2)(ad"z & 2Jy),
or in terms of relative product:
2y — z2Jy

zJ*Hy & I/ Jy.

One set-theoretical point needs to be emphasized. The theorems are actually con-
cerned with powers of J restricted to 4, so (1) needs to be replaced by:

zJ* 1y o (F2)z c A &I 2 & 2Ty).

Remember that it is tacitly understood that all elements referred to in the ele-
mentary theorems belong to 4.

TuporeM El. Ifz,y Exz, 2, theny = z. (EINT: Use particularly Axioms D5,
D6, and D8 and give an indirect proof.)

TeeoremM E2. Ifz,2 Eu, v, then u = v,

Teeorem E3. Ifz,yEu,v, theny, s Ev, u.

ToeoreMm E4. Ifz,yEu,v&y,zEv, w, thenz,zE u, w.
* This fundamental principle may be formulated symbolically:
@ e(1) & m)(p(n) — oln + 1)) — (r)e(n).

To prove that a formula ¢ holds for all n, we need only establish the hypothesis of (I),
namely that ¢ holds for 1, and that #f ¢ holds for n then it holds for n + 1.
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Turorem E5. If zJmy, then zPy. (mINT: Use induction on n.) *
TreoreM E6. If zPy, then there i3 a (positive integer) n such that zJ™y.
Trerorem E7. If zJ7y & xJ"z, then y = 2. (@INT: Use induction on n.)
TreoreM E8. If zJ™y & yJ"z, then zJ™t"z. (minT: Use induction on n.)
TreoreMm E9. If xJ™y & xJ™ 1"z, then yJ"2. (mINT: Usé induction on n.)

Tarorem E10. If zJ™t7y, then there 18 a z (in A) such that xJ™z. (BINT:
Use induction on m.)

Note that Theorems E5-E10 depend only on Axioms D1-D3.
TaeoreM El11. If zJ™y & uJm™, then z, y E u, v. (minr: Use induction on n.)
Treeorem E12. 2,y Ezx, 9.

Note that Theorem E12 and Axioms D5 and D7 together assert that E is an equiv-
alence relation on A X A.

Terxorem E13. If z, y Eu, v, then either An such that zJ"y & uJ™, or
A n such that yJrx &oJ™u,or z = y & u = 0.

9. Prove the representation theorem for finite equal difference structures (Theo-
rem 3). HinT: Let z* be the first element of A with respect to the ordering P.
Define the numerical function ¢ on A as follows for every z in A:

1 if z=2*

@) = {n+1 i 2T

Then using the elementary theorems prove:

(i) zPy « o(2) < ¢(y)
i) z, ¥y Eu, v <> o(z) — oy) = o(u) — o(1).

Prove (ii) by considering the three cases listed in Elementary Theorem E13.

10. Prove the uniqueness theorem for numerical representations of finite equal
difference structures (Theorem 4). LetR; = (N1, <, W) and Ny = (N3, <, W)
be two finite numerical difference structures isomorphic to a given finite equal
difference structure {4, P, E) and let ¢; and ¢, be appropriate isomorphism func-
tions for 91 and N, respectively, that is, D) = Dles) = 4, Fp1) = N1, Rlew)
= N, etc. Now define for every z in A two functions &, and h,.

oi(r) — e1(z*)
o1(z**) — i(2%)

= po(x) — o2®)
ha(z) @a(z**) — oo(2*)’

where z* is the first element of A under the ordering P and z** the second element.
Show then (i) A; is a linear transformation of ¢; and ks is a linear transformation of

hy(z) =

* The proofs by induction needed for these elementary theorems are all extremely easy.
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@2, and (ii) Ay = hs. It is then easy to prove that ¢, is a linear transformation of
3, i.e., there are numbers a, 8 with @ > 0 such that for every z in A

¢1(z) = ap(z) + B.
The proof of the identity of h; and hs requires use of induction.

§ 12.4 Example: Probability. In this section we want to exemplify the
axiomatic methods described in the preceding sections. We have chosen
the elementary theory of probability spaces because development of this
theory calls for numerous direct and simple applications of set operations
and relations. Additional reasons for this choice are the importance of
probability theory in all areas of empirical science and the historically
close connections between the foundations of probability and logic. It is
not possible within the limitations of this section to discuss the general
foundations of probability, but some attempt will be made to relate the
formal developments to foundational problems.

Our axiomatization of probability proceeds by defining the seb-theo-
retical predicate ‘is a finitely additive probability space’. The axioms are
based on three primitive notions: a non-empty set X of possible outcomes,
a family § of subsets of X representing possible events, and a real-valued
function P on §; for E € §, P(E) is interpreted as the probability of E.
These three notions may be illustrated by a simple example. Let X be
the set of all possible outcomes of two flips of a coin. Then

X = {(H’ H): (Hr T)) <T: H); <T1 T>}~

Let § be the family of all subsets of X. The event of getting at least one
head is the set
4= {<H; H)) <Hl T): (T: H)}-

The event of getting exactly one head is the set
E = {(H; T), (Tr H)})

and so on. The important basic idea is that any event which could occur
as the result of flipping the coin twice may be represented by a subset of
X such that the subset of X has as elements those possible outcomes, the
occurrence of any one of which would imply the occurrence of the event.
Thus the event of getting at least one head occurs if both flips are actually
heads, the first is head and the second tail, or the first tail and the second
head.
If the coin is fair, then for each z in X

P({z}) = }4.

And the probability of any other event may be obtained simply by adding
up the number of elements of X in the subset. Thus the probability of
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getting at least one head in two flips of the coin is P(4) and
e)) = P({(H, H)}) + P({{H, T)}) + P({T, H)})
=Y+Uu+h=3%

The additive property exemplified by (1) is one of the fundamental proper-
ties of probability which we postulate as an axiom: the probability of
either one of two mutually exclusive events is equal to the sum of their
individual probabilities, that is, if A (1 B = A then

P(4 U B) = P(A) + P(B).

Since throughout this section we apply probability language to sets
which are interpreted as events, it will be useful to have a table relating
the set-theoretical notation and probability terms. Thus, the assertion
that A € § corresponds to asserting that A is an event; the assertion that
A N B = A to the assertion that events A and B are incompatible. In

this table and subsequently we use a compact notation for the intersection
or union of a finite number of sets:

NA:i=4,N4,N...N 4,

fm=]

QIA;=A1 U4,U...U 4,
Correspondingly, later we shall use sums:
‘ﬁ; P(A)) = P(Ay) + P(42) +...+ P(4,)
or more generally for any numbers a;, 1 =1, ..., n

Zai=a1+a2+...+a,..

imal

Also if X is a finite set, and f is a numerical function defined on X, then
2 J@
X

is just the sum of the values of f for all elements in X. Thus if X =

{a, b, c}
é‘; f(z) = f(a) + f®) + f(c).
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SET-THEORETICAL NOTATION AND PROBABILITY TERMS

Ser THEORY ProBariLiTy THEORY *
(8) A c§ (a) A is an event.
B)ANB=A (b) Events A and B are incompatible.
() ;N A; =Aforis=j (c) Events Aj, A, ..., A, are pairwise incom-
1<¢,j<n patible.
(3
(d) n A;=B (d) B is the event which occurs when events
s=1 Ay, A, ..., A, oceur all together.
n
(e) U A;=B (e) B is the event which occurs when at least
=1 one of the events 4, ..., 4, occurs.
6 ~A (f) The event which occurs when A does not.
® A=A (g) Event A is impossible.
hA=X (h) Event A is inevitable or certain.
i) BC A (i) If event B occurs, then 4 must oceur.

In (f), complementation is, of course, with respect to X. Thus if 4 is the
event of getting at least one head, in our example ~A is the event of get-
ting no heads, and

~A=X~A={{T,T)}.

The relation expressed by (i) is important. Set-theoretical inclusion of
events corresponds to the occurrence of one event implying the occurrence
of another. Thus in our example the occurrence of the event of getting
exactly one head implies the occurrence of the event of getting at least
one head, and we easily see that E C A.

Some further intuitive remarks justifying the particular primitive no-
tions selected are interspersed with the formal developments. Our first
axiom on probability spaces will be that § is a field of sets on X, which
notion we now define.}

DerFintTioN 1. § 48 a field of sets on X if and only if § is a non-empty
SJamily of subsets of X and for every A and B in §

F1. A U B ec§;
F2. ~A ¢ §.

In other words, a field of sets on X is a non-empty family of subsets closed
under union and complementation. The proof of the following theorem
about elementary properties of fields of sets is left as an exercise.

* This table and much of the material in this section is derived from Chapter 1 of
A. N. Kolmogorov’s classic work, Foundations of the Theory of Probability, English edi-
tion, New York, 1950.

T We say that § is a field of sets on X rather than that (X, §) is a field of sets in def-
erence to the usage in the literature.
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ToeorEM 1. If §§ 3 a field of sets on X then

(@) X e,
(i) A €8,
(i) If A cF&BcG, thn A N Bc§,
(iv) fAcF&Bc§ thnA~Bc§.

As we see from Theorem 1, fields of sets are also closed under intersection
and difference of sets. Furthermore, the impossible event A and the cer-
tain event X both belong to the field. It should be clear that for ordinary
applications of probability theory an arbitrary family of events would be
difficult to work with and something like & field is necessary. For example,
it would be extremely awkward not to be able to treat the intersection of
two events as an event, or the complement of an event as an event. When
X is finite, we usually consider the field which is the family of all subsets
of X. This is, of course, the largest field on X. The smallest field on X
is the trivial one which has as members just X and the empty set.

We now define the basic concept of this section. The reason for the
adjectival phrase ‘finitely additive’ will shortly be given. Note that in the
definition we assume the set-theoretical structure of X, §, and P already
mentioned: X is a non-empty set, ¥ is a family of subsets of X, and P is a
real-valued function on {, i.e., a function whose range is a set of real
numbers. Thus the definition applies to ordered 4riples (X, §, P), which
we shall call set function structures, since P is a function on & family of sets.

DEeFINTTION 2. A set function structure £ = (X, §, P) 18 a finitely addi-
tive probability space if and only if for every A and B in §

Pl. § i3 a field of sets on X.

P2. P(4) =2 0.

P3. PX) = 1.

P4. If A A B = A, then P(A U B) = P(4) 4 P(B).

X is often called the sample space and P the probability measure. The first
axiom, P1, has already been discussed. The second simply requires that
the probability of any event be a non-negative number, and the third
that the probability of the certain event be one. The final axiom states
the additivity assumption already made. On the basis of P4 we may prove
that the probability measure P is finitely additive; that is, we may prove
that for 4;, ..., 4, pairwise incompatible events

P(O Ai) = Z”:P(Ai)-

f==] o]l

However, in the general theory of probability for several fundamental rea-
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sons it is desirable to have that if (4,, 4,, ..., 4,) is a sequence * of
pairwise incompatible events then

0 a0
@ P(U4)= = pp.

T=m] 3==1
A probability measure satisfying (2) is said to be countably additive. Equa-
tion (2) cannot be derived from Definition 2; this is the reason for the re-
strictive phrase ‘finitely additive’. However, if § is finite, (2) holds. In
the applications considered here we shall in fact restrict ourselves to finite
sets X. Some further remarks concerning countable additivity follow
Theorem 3.

Some elementary consequences of Definition 2 are listed in the following
theorem. Since the basic entities under discussion in this section are
finitely additive probability spaces, subsequent theorems and definitions -
referring to an arbitrary finitely additive probability space are indicated
by a letter ‘E’ and no explicit reference in these elementary theorems and
definitions will be made to the basic space under consideration. As was
remarked in the preceding section, such an elementary theorem or defini-
tion may be converted into a general theorem or definition of set theory
by adding the hypothesis: if (X, P, A) is a finitely additive probability
space, and making certain other appropriate minor changes.

In formulating elementary theorems we use probability language when
possible rather than set-theoretical language. For instance, we say ‘for
every event A’ rather than ‘for every set 4 in §’.

TraeoreM E2.
(i) PQA) =0.

(ii) For every event A, P(A) 4+ P(~A) = 1.
(iii) If the events A; are patrwise incompaiible for 1 < ¢ < n, then

) P(U 4) = 3 Pay.
fuxl Tl
PROOF. We only prove (iii), which requires use of mathematical induc-
tion.t For n = 1, clearly
P(4,) = P(4y).

Our inductive hypothesis for n is that

n n
P(U 4) = T P,
Tl tam]
* A sequence is just a function whose domain is the set of positive integers.
t See footnote to Exercise 8 of § 12.3 for a formulation of the principle of mathematical
induction (p. 272).
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()

faml

Now consider

Since
n41 n
2 U4 =U4:U 4.,
fml =1
we have:

P (U A.-) =P (0 A; U A,.+1) By (2)

[0S Sl

= P (U A.-) + P(An41) By P4 and hypothesis
il of the theorem

= > P(4) + P(An ) By inductive hypoth-
n+1

= 3 P(4) QE.D.

fuml

The above proof is not entirely satisfactory, since a prior discussion of set-
theoretical identities like (2) has not been given. However, it is intuitively
clear that (2) is true. In the present section all needed elementary proper-
ties of set and arithmetical operations are assumed known.

We now define the notion of a probability distribution on a finite set.
The notion can be extended to infinite sets under certain restrictions which
will not be discussed here.

DerinrrioN 3. If X 18 a finite, non-empty set, then a probability dis-
tribution on X 18 a non-negative real-valued function p defined on X such

that
2 p@) =1.
X

For example, consider the coin tossing above in which X = {(H, H),
(H, T), (T, H), (T, T)}. Then for any z € X, p(z) = ¥4, assuming a
fair coin.

Probability distributions on finite sets and finitely additive probability
spaces are related by the following theorem. (Note that this theorem has
no prefix ‘E’ before its number, since it is not a theorem about an arbitrary
finitely additive probability space.)

Tarorem 3. Let X be a non-empty, finite set, let p be a probability dis-
tribution on X, and let § be a family of subsets of X such that § is a
field on X. Let P be a real-valued function defined on § such that &f
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A c§ then P(A) = Y p(z). Then (X, §, P) is a finitely additive
probability space. =<4

We leave the proof as an exercise.

Since probability distributions appear to be so much simpler to define
than finitely additive probability spaces, it might be thought that they
should be the basic entities discussed in this section. Fields of sets could
be dispensed with entirely, and the probability of any set would be obtained
by summing over the probabilities of its individual elements. Unfor-
tunately this simplicity disappears when infinite sets are considered, and
many problems arise. It is beyond the scope of this section on elementary
probability theory to discuss the mathematical methods actually used to
deal with infinite sets. Suffice it to say that it consists of a natural and
relatively simple extension of our concept of a finitely additive probability
space to that of a countably additive probability space where the under-
lying field of sets is also countably additive in the sense that if each mem-
ber of a sequence of sets (43, A3, ...) is in § then

00
U4:cs.
T==1
The countable operations are required to permit various important limiting

operations to be well-defined.
We now define the important notion of conditional probability.

DeriniTioNn E4. If A and B are events and P(4) > 0, then
P4 N B)
Py(B) = -(———
P(4)

The symbol ‘P, (B)’ is read ‘the conditional probability of the occurrence
of event B given the occurrence of event A’y or often, for brevity,
‘the conditional probability of B given 4’. A second notation for condi-
tional probability is also useful, and we shall use either interchangeably.

Derinimion E5. If A and B are events, then
P(B|A) = P4(B).

As an example, let us consider the situation in which a fair coin is flipped
three times.

X={(HHH),(H,HT),HT H),{HT,T),
(T,H,H),({T,H, T),(T, T,H),{T, T, T)}
& = set of all subsets of X
P({x}) = ¥4 forall z in X.
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Let A be the event of at least one head in the last two tosses, and let B
be the event of exactly two tails in the three tosses. Then

A={HHH),HHT),(HTH)T H H),
(T,H, T), (T, T, H)}
B={{HTT),(T,HT),(T, T, H)}
ANB={T,H7T),(T,T, H)}

P(4) =34
P(B) = 3§
P(A N B) =14,
and therefore, PUNE X
4
P(B|A) =—P_(A)—~=§);=%'
PANB
P(A4|B) =—(F(E—)=i7§=%.

Thus if we know that in three flips of a fair coin at least one head occurred
in the last two tosses, then the probability of exactly two tails having oc-
curred is 14. The intuitive idea is simply that two of the six outcomes in
A arealsoin A N B. On the other hand if we know that exactly two tails
occurred in the three flips, the probability of at least one head in the last
two tosses is 24. As this example shows, in general

P(B|A) > P(4|B).

The elementary properties of conditional probabilities are summarized
in the following theorem, the proof of which is left as an exercise.

TaroreMm E4. If A, B, and C are events and P(A) > 0, then:

(i) Pa(B) > 0.

(i) P4(X) = 1.

(i) P4(4) = 1.

(iv) If BN C = A, then P4(B U C) = P4(B) + P4(C).
(v) If P(B) > O, then Pp(A) = P(A)P4(B)/P(B).

(vi) If A N B = A, then P4(B) = 0.

(vii) If A C B, then P4(B) = 1.

We may use the various parts of Theorem E4 to prove that given the
knowledge of an event A with positive probability, we may generate a
new finitely additive probability space from the given one,
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TaeoreM E5. If A is an event and P(A) > 0, then (X, §, P4) s a
Jinitely additive probability space.

PROOF. We need to show that (X, §, P4) satisfies the four axioms of
Definition 2. It is already given that § is a field of sets on X, since (X, §,
P) is a finitely additive probability space and thus Axiom P1 is satisfied.
From part (i) of Theorem E4 it follows that Axiom P2 is satisfied, from
part (ii) that Axiom P3 is satisfied, and from part (iv) that Axiom P4 is
satisfied. Q.E.D.

The following theorem is extremely useful in applications; it expresses
the probability of an event as a sum of certain products. It is often called
the Theorem on Total Probability.

TreoreM E6. If X = |J A; and if the events A; are pairwise incom-
i=1

patible and P(A;) > 0 for 1 < ¢ < n, then for every event B

P(B) = 3. P(B|4)P(4)).
=1
ProOF. Using the hypothesis of the theorem and the fact that intersec-
tion of sets is distributive with respect to union of a finite number of sets,
we have:

) B=BﬂX=Bﬂf}A,-=fJBﬂA.—.
Hence ':1 =
2 P(B) = P(U BN A.-)-
=1

Since by hypothesis 4; N A; = A for 1 > j, we may apply our previous
result on finite additivity part (iii) of Theorem E2, to (2) and obtain:

@) P(B) = 3 P(B N 4).
$am]
But by Definition E5
@ P(B N A;) = P(B|A)P(A))

and our theorem follows immediately from (3) and (4). Q.E.D.

An example of the application of the theorem on total probability within
a scientific theory may be described in qualitative terms by considering
statistical learning theory as developed in the last few years by W. K.
Estes, R. R. Bush, F. Mosteller, and others. We are concerned with an
experimental situation in which on any trial a subject may make one of
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two responses. For instance, a left or right turn in a T-maze by a rat, or
the prediction by a human subject that a left or right light will flash.
Furthermore, according to some pattern fixed upon by the experimenter
the subject is rewarded for making certain responses on certain trials. The
general problem of the theory is to predict what response a subject will
make on any trial, the rough idea being that a subject learns to make those
responses which are more often rewarded. The axioms of the theory make
precise this rough idea by stating how the response probabilities change:
(i) given a rewarded response; (ii) given an unrewarded response with sub-
ject observing that the other response would have been rewarded; (iii) given
an unrewarded response and subject observing that no response would have
been rewarded. There is an axiom for each of the three cases, exactly one
of which must occur on any trial. Thus we may use the learning axioms
and the theorem on total probability to evaluate the probability of a left
response, say, on trial n. (A more exact characterization of statistical
learning theory would constitute too lengthy a digression.)

We next state and prove Bayes’ theorem, the applications of which have
been the source of endless controversies. The proof is relatively trivial.

TuaroreMm E7. If
X= U H,',
i=1
and if the events H; are pairwise tncompatible and P(H;) > 0 for 1 <4
< n, and if B 18 an event such that P(B) > 0, then

P(Hi|B) = ”P(BIH.-)P(H.-)

> P(B|H)P(H,)

facl
PROOF. By part (v) of Theorem E4
P(B|H;)P(H;)
P(B)

1) P(H;|B) =
But by Theorem E6
2 P(B) = 3 P(B|H,)P(H)).

i=1
The desired conclusion follows at once from (1) and (2). Q.E.D.

The terminology ordinarily used in connection with Bayes’ theorem should
be noted. The events H; are called hypotheses, which are, of course, pair-
wise incompatible and exhaustive. One of the hypotheses should offer a
“best explanation” of the event B. The probability P(H;) is called the
a priori probability of the hypothesis H;. These a priori probabilities are
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the center of most of the controversy concerning applications of the the-
orem. The conditional probability P(B|H;) is called the likelihood of H;
when B is observed.* The conditional probability P(H;|B) is called the
a posteriori probability of the hypothesis H; given the observed event B.

A simple example will illustrate some of the problems which arise in ap-
plications of probability, particularly in application of Bayes’ theorem.
Suppose there is an urn containing four balls about which we know that
either one of the following may be true:

Hy: All four balls are white.
H,: Two balls are white and two balls are black.

Suppose further, that & ball is drawn at random and is seen to be white.
Our concern is to compute the a posteriori probabilities of Hy and Hj.
Three problems have to be met in an exact analysis of the situation:

(i) What is the correct sample space X?
(i) What is to be said about the a priori probabilities of H; and H,?
(iii) What is to be said about the likelihoods of H; and Hy?

Turning to the first problem, we see at once that the preceding defini-
tions and theorems in the theory of probability yield no exact rule for con-
structing the sample space. A little reflection indicates that it can be con-
structed in such a manner that four consecutive selections without replace-
ment of balls from the urn will necessarily determine H; or Hy as true
and thus having probability 1. Let us designate this particular sample
space by ‘X;’. Knowing that either Hy or Hj is true, X; is simply the
following set of ordered quadruples:

X, = {(W,W,W,W),{W,W, B, B), (B, B, W, W), (W, B, B, w),
(B, W, W, B), (W, B,W, B), (B, W, B, W)}.
It will then be observed that H; and H are the following subsets of X.
Hy={{W.W,W, W)}
H, = {(W,W,B,B),{B,B,W,W),(W,B,B,W),{B,W, W, B),
(W, B, W, B),{B,W,B, W)} = ~Hi.
If E is the event of getting a white ball on the first draw, then
E = {(W,W,W,W),{W, B,W, B), (W, W, B, B), (W, B, B, W)}.

* This likelihood terminology, common in modern statistics, reverses the natural con-
ditional probability language: the probability of B given H; The reasons for this
inversion should become clearer in the sequel.
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The set X; is not, however, the only correct sample space for the analysis
of our urn problem. It is clear that which hypothesis is correct could be
completely decided on the basis of only three draws without replacement.
Thus, we might use:

X3 = {<W’ W, W); (W’ W, B)» (Wr B, W); (Br w, W); (B: B, W):
<B; W, B); (W: B, B)}

Observe that the number of elements in X, is equal to that in X;. That
is, their cardinality is the same. If X, is the basic sample space then Hjy,
H,, and E are the following sets:

Hy = (W, W, W)}
H; = {(W, W, B), (W, B, W), (B, W, W), (B, B, W), (B, W, B),
(W, B, B)} = ~H,;
E= {((W,W,W), (W, W, B), (W, B, W), (W, B, B)}.

On the other hand, if unordered sets are used as elements of the sample
space, then difficulties arise. For instance, if we used:

X8 = {{Wl; W2) Ws, Wi}: {er W2’ Bl; B2}}'
Then
H, = {{Wb W2; WS) W4}}

H2 = {{Wh W2) Bl: Bz”,

but there is no appropriate subset of X3 to represent the event of drawing
a white ball. Yet X; and X, do not constitute the only legitimate possi-
bilities. For several reasons many statisticians would prefer the following
-sample space:

Xy = {(4’ W): (21 W)’ (2’ B>}:
and thus

Hy = {{4, W)}

H; = {(2, W), (2, B)}
E = {<41 W); (21 W)}-

The number which is the first member of each ordered couple indicates the
total number of white balls in the urn on the given hypothesis (H; or Hy).
The second member indicates a possible outcome of drawing one ball. An
advantage of X4 over X; and X is that X, has just three elements. The
reduction of the number of elements is a consequence of the fact that X,
expresses the possible outcomes of exactly one drawing, whereas X, indi-
cates the possible outcomes of four samples without replacement, and X,
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of three samples without replacement. The sample space X, is tailored
to our particular urn problem in a way in which X; and X, are not.
Fixing upon X, as our sample space, we may turn to our second prob-
lem, how to determine the a priori probabilities P(H;) and P(H;). Itisa
happy characteristic of textbook problems (as opposed to real-life prob-
lems) that they may be artificially and so completely prescribed. In the
description of our urn problem, absolutely nothing was said about H; and
H, except that exactly one of them is true. To a situation of this charac-
ter we may apply what is without doubt the most controversial rule of ap-
plication in the field of probability, namely, the principle of indifference: *
If there is no evidence for regarding one event as more probable than a
second, assign them equal probabilities. This principle yields that

P(H,) = P(H;) = k.

The closely related but more palatable principle of maximum likelihood is
discussed below.

Our third problem concerns the likelihoods P(E|H,) and P(E|H,). Al-
though a rule of application is needed to evaluate these likelihoods, it is
not nearly so much disputed as the various rules proposed for evaluating
a priori probabilities. The rule we have in mind may be called the principle
of (simple) random sampling. Roughly speaking, the idea of the principle
is that we use a procedure of sampling such that if H is the true hypoth-
esis, any possible outcome of sampling compatible with H is as probable
as8 any other such outcome. Thus here

P(E|Hy) = 3%
P(~E|Hj) = 14.

Of course, independent of any sampling principle, in the urn problem being

considered:
P(E | Hl) = 1.

The computation of the a posteriori probabilities P(H,|E) and P(H;|E)
is now straightforward by use of Bayes’ theorem:

P(E|H,)P(H,)
P(H,|E) =
P(E|H,)P(H,;) + P(E|H3)P(H3)
R N
1- 4+ 15-3%
= %’
and similarly, we find that

P(H,|E) = 3.

* Usually credited to James Bernouilli, Ars Conjectandi, Basel, 1713; but its prom-
inence in the history of probability is due more to the use made of it by Pierre Laplace
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Obviously anyone using the principle of indifference would on the basis of
the sample E favor hypothesis Hj.

It is important to realize that use of the principle of random sampling is
sensitive to the particular sample space fixed upon for the analysis of a
problem. For instance, to change our problem slightly, let Hz be the
hypothesis that three of the four balls in the urn are white, and the fourth
is black. Suppose further, for the moment, that H; and Hj are exhaustive
hypotheses. Analogous to X4 we would have a sample space

X5 = {<4) W)) (3, W); (3: B)}
and
Hy = {{4, W)}

Hy = {(3, W), (3, B)}
E={{4, W), 3 W)}
but in this case we should have the following likelihood value:
P(E|H3) = 34,

gince if Hj is true, of the four balls three are white, and thus the chance of
drawing a white ball is 34.

The unsatisfactory character of the relatively vague methods for apply-
ing the principle of random sampling can be considerably reduced by using
a sample space similar in structure to X4 and X5 but more concrete. The
idea is to assign names to the individual balls (as we tacitly did for the
unsatisfactory space X3). If H, is true, let Wy, Wq, W3, W4 be the four
balls. If Hj is true, let Wy, W3, W3, By be the four balls. Our sample
space is then:

Xg = {(47 Wl)) <4’ W2)i (4’ W3>7 (4: W4)) (3) Wl)y (3; W2):
(3) W3>) (3’ Bl)}!

and it is obvious which subsets of X¢ are Hy, H3, and E. By an afomic
event we mean a unit subset of X. Thus {(3, W)} is an atomic event, for
instance. The principle of random sampling may now be expressed very
simply. Let there be n atomic events included in H. Then the likelihood
given H of an atomic event A included in H is just:

1
P(A|H) =

in his great treatise Théorie analytique des probabilités, Paris, 1812; 2d ed., 1814. The
prineiple of indifference is also called the principle of non-gufficlent reason. It is not
possible here to discuss the relative soundness of the principle nor to analyze any of
the paradoxes which it has given rise to.
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And for X we then have on this basis:

o=l

4 3
P(E|H,) = Z; P({(4, W)} | Hs) + 22 P({(3, W)} | Ho)

=0+%+4+ U
=4,

It will be of some interest to consider a slightly more complicated urn
problem, which we analyze without so many diversions. Suppose again
that the urn contains four balls and either H; or Hj is true, that is, either
the urn has two white balls and two black ones, or three white ones and
one black. Suppose further that a random sample is drawn consisting of
one ball without replacement, and then two balls with replacement, and
that the first ball is observed to be white, and the next two black. We
could take as elements of our sample space ordered quadruples of the form
(2, W,, By, By), but since on the principle of random sampling which we
assume, the order of the balls in the double sample with replacement does
not matter, we may reduce the number of elements in the sample space by
using ordered triples of the form (2, W,, {B;, Bs}), where the last member
of each triple is a set, namely, the set of balls drawn in the double sample
with replacement. Considering all possible combinations of outcomes for
both H; and Hj, we see that the sample space consists of forty-eight ele-
ments:

X; = {<2v Wy, {W2; Bl}): <2; Wi, {W2; B2}>’ (2: Wy, {Bl’ B2}>;
(2) Wl; {W2})7 (2: Wls {Bl}>, <2; Wl) {B2}>: sy
(2; B2) {Bl}>7 (3; Wl) {W2; WB}): ey (3; Bly {WS})}'

Note that an element like (2, W;, {W,}) represents the fact that ball W,
was drawn twice; since
{W2, Wa} = (W3},

we use the unit set.

H, is simply the set of elements whose first members are 2, and Hg
those which are 3. The sample F consisting of a white ball without re-
placement and then two black balls with replacement is the set

F = {<2: Wy, {Bly Bﬁ}): <2; Wy, {Bl}>’ (2’ Wy, {B2});
<2; WB) {Bb BB}), (2; W21 {Bl}>; <2; WB; {BZ}>,
(3; Wl) {Bl}); (3; WB: {B1}>: (3) WS’ {Bl}>}’
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Assuming again the principle of indifference,
P(H3) = P(H,) = 1%.
Moreover, using the principle of random sampling, we easily compute the
likelihoods:
P(F|Hj) = 964 = Y,
P(F|Hj) = 364 = 4.
We then have for the a posteriori probabilities:

P(F|Hy)P(H,)
P(F|Hy)P(Hs) + P(F|Hy)P(Hs)
4y

Y Lu+% Y%
=%,
P(H3|F) = 1 — P(H3|F) = %.

Assuming the principle of indifference the evidence F clearly favors hypoth-
esis H,.

It has not been possible to present here a critique of the principle of in-
difference, but we may mention R. A. Fisher’s principle of mazimum Lkeli-
hood which circumvents the necessity of fixing upon any a priori probabili-
ties. In the case of our urn problems, the principle says that one should
accept that hypothesis whose likelihood is largest, that is, maximum for
the observed sample. For the urn problems considered it is also immedi-
ately obvious which hypothesis has the maximum likelihood. Applica-
tions of the principle to estimating some quantity, like the number of fish
in a lake, on the basis of a sample are more complicated.

In discussing these simple urn problems the construction of an appro-
priate sample space has been emphasized, and the selection of a field of
sets has been ignored, for it has been tacitly assumed that the field of sets
is the set of all subsets of the sample space, which choice is almost always
appropriate when the sample space has a finite number of elements. Simi-
larly, the probability measure P has not been completely specified, but
only for those arguments relevant to the problem at hand. In the prob-
lems considered it is clear that the principle of indifference and the prin-
ciple of random sampling completely determine P, but this is often not
the case. For example, if the principle of maximum likelihood is used,
and the principle of indifference is rejected, in the urn problems given
above it is not possible to determine P completely from the data given.
For this reason even when the sample space X is fixed there are frequently

P(Hy|F) =

and
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many distinct finitely additive probability spaces adequate for analysis of
a given problem. This situation is not peculiar to probability theory, but
usually prevails in application of any exactly formulated theory to prob-
lems described in an intuitive, informal manner.

In this section we have been able to consider only a fragment, of proba~
bility theory, which is one of the richest and deepest subjects in modern
mathematics.* Just as lamentable from a philosophical standpoint is the
omission of any detailed diseussion of the foundations of probability, which
has been one of the most important topics in systematic philosophy since
the eighteenth century. Here we can discuss neither of the two most im-
portant schools of thought: those who hold to the objective view that
probabilities of events are measured by relative frequencies of their occur-
rences, and those who hold to the subjective view that probabilities of
events are first and foremost measures of degrees of reasonable belief that
the events will occur.}

EXERCISES

Prove Theorem 1.

Rewrite Definition 2 in the style of Definition A of Section 2.

. Prove (i) and (ii) of Theorem E2.

. Prove Theorem 3.

. Prove Theorem E4.

. Consider the following situation. We have an urn containing five balls,
We know that one of the following two hypotheses is true:

Hj: Two balls are white and three are black.
Haj: Three balls are white and two are black.

For each of the following construct an appropriate sample space and assuming the
principles of indifference and random sampling, compute the a posteriori proba-~
bilities of the two hypotheses.

(a) We draw a random sample with replacement consisting of two white and
one black ball.

(b) We draw a random sample of the following sort: a black ball without re-
placement, and then a white ball.

(¢) We draw a random sample of the following sort: a sample of two with-
out replacement consisting of a black and white ball, and then a single
sample consisting of a black ball.

* The developments begun in this chapter are carried far in W. Feller, An Introduc-
tion to Probability Theory and Its Applications, Vol. I, New York, 1950. From this
book the reader may go to advanced treatises on the subject of probability.

t For the relative-frequency view, see R. von Mises, Probability, Statistics and Truth,
English translation, New York, 1939; E. Nagel, Principles of the Theory of Probability,
International Encyclopedia of Unified Science, Vol. I, No. 6, Chicago, 1939; H. Reichen-
bach, The Theory of Probability, English translation, Los Angeles, 1949. For the sub-
jective view, see H. Jeffreys, Theory of Probability, 2d ed., Oxford, 1948; L. J. Savage,
Foundation of Statistics, New York, 1954. For a variant of the subjective theory closely
connected with logic, see R. Carnap, Logical Foundations of Probability, Chicago, 1950.
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7. Given the situation of Exercise 6, and permission to draw a random sample of
two balls, which method of sampling would you recommend—drawing the first
ball with replacement, or drawing it without replacement? Justify your answer.

8. Assuming that the probability that a baby is male is 34, construct the ap-
propriate finitely additive probability space for a family of five children. What is
the probability that

(a) All children will be boys?

(b) There will be two boys and three girls?

(¢) There will be at least one boy?

(d) There will be at least one girl, given that there are at least three boys?
(e) There will be exactly two boys, given that there are at least two girls?

9. A classical problem of induction is the following. A man draws at random m
balls with replacement from an urn containing N black and white balls, possibly
with either no blacks or no whites. Suppose he draws m black balls. What is the
probability that on the (m + 1)th draw he will draw a black ball?

(a) Let N =4 and m = 2, and construct the appropriate finitely additive
probability space, assuming the principles of indifference and random
sampling. Note that there are five mutually exclusive and exhaustive hy-
potheses, since there are five possibilities (from zero to four) for the num-

ber of black balls.
(b) Show that the general answer is:
N s m+1
z (%)
e
% (%)

(Tt may be shown that as N increases without limit the probability of a
black ball on the (m 4 1)th draw becomes (m + 1)/(m + 2).)

§12.5 Example: Mechanics. One of the most exact and well-estab-
lished branches of empirical science is the classical theory of particle me-
chanics. Indeed, for a period of almost two hundred years from the begin-
ning of the eighteenth century until the end of the nineteenth century it
was widely held that particle mechanics was the fundamental theory of the
universe. In this section we want briefly to consider an axiomatization of
this theory for the purpose of demonstrating that even a relatively compli-
cated theory can be given a clear and exact formulation within set theory.
Unfortunately our development of mechanics must use certain mathe-
matical notions which it is not expedient to explain ab tnitio here.* At
this point we will define the more important notions needed. An ¢nterval
of real numbers is the set of all real numbers between two numbers, greater
than some one number or less than some one number. More exactly, if a
and b are real numbers, [a, b] is the set of all real numbers z such that
a < z <b. The interval [a, b] is closed since it includes its end points a

* This is the only section with respect to which this book is not mathematically self-
contained.
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and b. Square brackets are customarily used to designate closed intervals,
round brackets to designate open intervals. Thus (a, b) is the open inter-
val which is the set of all numbers z such that a < z < b. As would be
expected (a, b] is a half-open, half-closed interval, etc. (—, a) is the set
of all real numbers z such that z < a, and the interval [a, ) is the set of
all real numbers z such that £ > a. Finally, the interval (—wo, ) is the
set of all real numbers.

A (three-dimensional) vector is an ordered triple of real numbers. Thus
(4, 7, 3) is a vector. The usual physical interpretation of vectors is that
they represent the magnitude and direction of some physical quantity like
velocity or force with respect to three mutually perpendicular spatial
coordinate axes. Binary operations on vectors, or vectors and real num-
bers, are defined in a natural way. Thus if 2 = (z;, 75, z3) is a vector
and a is a real number,

az = a(z1, T3, 73) = {(az;, az,, arz) = za.
If z = (x4, 23, 23) and y = {y1, ¥2, ¥3) are vectors then
z+y = (21, 72, 73) + (Y1, Y2, ¥3) = (21 + Y1, T2 + Y2, Tz + ys)
and
z —y = (21, T3, T3) — (Y1, Y2, ¥3) = {(T1 — Y1, T2 — Y3, T3 — Y3).

Moreover,
—z = —(T1, T3, T3) = (—T1, — T3, —Z3).

The inner or scalar product operation on vectors z and y yields a real
number and is designated by a dot. Thus,

z-y = (1, To, ¥3) - (Y1, Y2, ¥3) = ZT1y1 + T2y + Tays.

The vector or cross product operation on vectors z and y is a vector and is
designated by ‘x’ (not to be confused with the Cartesian product operation
for sets). Thus

z XYy = (21, T2, Z3) X (Y1, Y2, ¥3)
= (Y3 — T3Y2, TaY1 — T1Ys, T1Yz — Z2Y1)-

If z = (21, 23, x3) is a vector then

lz] = Viai? + 25* + 2.

The number |z| is the absolute value of the vector z. Formal properties of
these various operations are stated in the exercises.

Some intuitive remarks about the last three operations may be helpful.
When, for instance, z is a velocity vector, then |z| is the magnitude of
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the velocity (independent of direction). The scalar product has the fol-
lowing geometric interpretation:

zy= lxl Iylcos (:L‘, y)’

where, cos (z, y) is the cosine of the angle between the two vectors. The
magnitude of the vector produet is given by the equation:

|z X y| = |z| |y |sin (z, y)|.

The direction of the vector product is perpendicular to the plane formed
by the vectors z and y. If fis a real or vector-valued function then Df is
the derivative of f. A few remarks on derivatives will not be amiss. Let f
be a function which is defined on an interval T of real numbers and whose
range is a set of real numbers. Then Df is a function whose domain of
definition is a subset of T. If a € T then a is in the domain of Df if and
only if there is a number ! such that for every ¢ > 0 there is a § such that
fzeTl,z#aand [z — a| < § then

J®) — f(a)

r—a

-l <e*

Moreover, when a is in the domain of Df, the function f is said to be dif-
ferentiable at a. If f is differentiable at every point { of T it is said to
be differentiable on T. We have explicitly introduced these definitions to
avoid the usual phrases like ‘the derivative of f exists at @’. Although this
language of existence is perfectly clear to the experienced reader, from a
logical standpoint it is not & happy idiom, and we shall avoid it. The
second derivative of a function f is simply the function D(Df), which we
shall designate: D%f. If the interval T is the domain of definition of a
function f then f is {wice differentiable at a in T if a is in the domain of
D?f, etc. One of our axioms for mechanics is that the position function of
a particle is twice differentiable on the time interval of the mechanical
system.

We now turn to our six primitive notions for particle mechanics. P
and T are sets, s is a binary function, m a unary funection, f a ternary fune-
tion, and ¢ a binary function.

The intended physical interpretation of P is that it is the set of particles.
T is interpreted physically as a set of real numbers measuring elapsed
times. If p ¢ P and ¢ ¢ T then s(p, ) is a vector which is physically inter-
preted as the position of particle p at time ¢. For each p in P it will be
convenient to introduce its position function s,.f Note that the primitive

* This definition is easily extended to vector-valued functions. If a is in the domain
of Df then Df(a) = 1.

t In these contexts ‘point’ is often used as a synonym for ‘number’.

1 Using the lambda notation of § 11.3, we could write: (M)s(p, ) instead of: s,.
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8 fixes the choice of a coordinate system. These first three primitive no-
tions are the kinematical notions of particle mechanics.

If p € P, then m(p) is interpreted as the numerical value of the mass of
the particle p. If p, ¢ € P, and ¢ ¢ T, then f(p, g, t) is the force which
particle g exerts on particle p at time £. Such forces are called the snternal
forces of the mechanical system. If p € P and ¢t € T, then g(p, &) is the
resultant external force acting on particle p at time.f. For instance, con-
sider the two particle systems consisting of the planets Earth and Venus.
Then the internal force on Earth is the gravitational attraction of Venus,
and the resultant external force on Earth is the vector sum of the gravita-
tional attractive forces of all other bodies in the solar system (and the rest
of the universe for that matter). There are good arguments for insisting
that the given external forces on a particle should be primitive rather than
the resultant force, particularly since the latter is definable in terms of the
former but not vice versa. However, it is formally simpler to treat only
the resultant external force on a particle.* The notions of mass, internal
force, and external force are the primitive dynamical notions of particle
mechanics.

We are now ready to state our kinematical and dynamical axioms for
systems of particle mechanies.

DEriniTiON 1. A system P = (P, T, 8, m, f, g) 18 a system of particle
mechanics if and only if the following seven axioms are satisfied:
KINEMATICAL AXIOMS

Axiom P1. The set P s finite and non-empty.

AxioMm P2. The set T is an interval of real numbers.

Axiom P3. For p in P, 8, 1s twice differentiable on T.
DYNAMICAL AXIOMS

Axiom P4. For p in P, m(p) is a positive real number.
Axiom P5. Forpandqin Pandtin T,

e, ¢, 1) = —f(g, p, ¥).
AxioMm P6. Forpandqin Pandtin T,
8(p, ) X f(p, 0, 1) = —s(g, V) X flg, p, 9).
AxioMm P7. ForpinPandtin T,
m(p)Dsp(t) = ,,é:., I, ¢, ) + g, 9.

* For a discussion of this and other such points see J. C. C. McKinsey, A. C. Sugar,
and Patrick Suppes, “Axiomatic foundations of classical particle mechanics,” Journal
of Rational Mechanics and Analysis, Vol. 2 (1953) pp. 2563-272. The axiomatization
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Although a complete discussion of the individual axioms and their physical
interpretation is not possible here, some clarifying remarks can be made.

The condition in the first axiom that P be finite is needed to guarantee
that the mass and kinetic energy of the whole system be well-defined.
Since there is no interest in having P empty, we have followed the tradi-
tion in algebra and made P non-empty. (Remember that in § 12.2 we re-
quired that for {4, o) to be an algebra, A must be non-empty.)

Regarding the second axiom it might be thought simpler to take the
interval of time as the set of all real numbers, but in numerous applica-
tions this is not convenient; for, as Aristotle might put it, particles are
continually coming to be and passing away. Moreover, our axioms are
not adequate to deal with impacts, but we can treat the motion of
particles prior to the instant of impact by selecting the appropriate time
interval.

The philosophical doctrine of conventionalism,* that is, the doctrine
that certain assumptions are made in empirical science for purposes of
convenience only, is illustrated by the second axiom. From the point of
view of empirical testability this axiom could be replaced by the require-
ment that T be the set of rational numbers in some interval. Certainly it
is impossible to build a clock for which the measurement of elapsed times
cannot be represented satisfactorily by rational numbers. On the other
hand, the assumption that T is a set of rational numbers is mathematically
inconvenient, for it blocks direct application of the standard methods of
mathematical analysis—in particular, the methods of the differential and
integral calculus.

The requirement of the third axiom that the position function of a par-
ticle be twice differentiable on 7 is also an idealization, for any set of em-
pirical data on the trajectory of a particle can be approximated arbitrarily
closely by a function which is twice differentiable at no point in 7. A
funection of the latter sort would be utterly intractable mathematically; if
such a function were used to represent the motion of a particle, many of
the simplest problems of mechanics would be rendered extremely difficult
if not impossible to solve. On the other hand, there are workable condi-
tions weaker than that of twice differentiability which may be used.f We
have characterized the first three axioms as the kinematical axioms of me-

given in this paper is closely related to the one given here. For an axiomatization of
relativistic particle mechanics, see H. Rubin and P. Suppes, “Transformations of sys-
tems of relativistic particle mechanics,” Pacific Journal of Mathematics, Vol. 4 (1954)
pp- 563-601.

* The famous French mathematician and philosopher Henri Poincaré (1854-1912) is
prominently associated with this doctrine.

t See, for example, G. Hamel, “Die Axiome der Mechanik,” Handbuch der Physik,
Vol. 5, pp. 1-42. However, Hamel’s axiomatization does not satisfy the set-theoretical
criteria developed in this chapter.
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chanics. Maxwell gives the following succinet characterization of kine-
matics: *

We begin with kinematics, or the science of pure motion, In this division
of the subject the ideas brought before us are those of space and time. The
only attribute of matter which comes before us is its continuity of existence in
space and time—the fact, namely, that every particle of matter, at any in-
stant of time, is in one place and in one only, and that its change of place dur-
ing any interval of time is accomplished by moving along a continuous path.

Neither the force which affects the motion of the body nor the mass of the
body, on which the amount of force required to produce the motion depends,
come under our notice in the pure scienee of motion.

Maxwell’s continuous-path requirement is not strong enough, for there are
functions continuous everywhere but nowhere differentiable. If such a
function were used to represent the motion of a particle, the instantaneous
velocity of the particle would be nowhere defined, since the velocity func-
tion of a particle is the first derivative of its position function.

Axiom P4 requires that the mass of a particle always be positive. If the
mass of some particle were zero then by use of the final axiom, P7, the
acceleration of the particle could not be determined from a knowledge of
the forces acting on the particle. In the theory of rockets, for instance, it
is desirable to permit the mass to vary with time (corresponding to the
consumption of fuel), but by making mass independent of time we have
stayed within the traditional framework of classical mechanies.

Axioms P5 and P6 provide an exact formulation of Newton’s third law
of motion: § To every action there is always opposed an equal reaction:
or, the mutual actions of two bodies upon each other are always equal,
and directed to contrary parts. The fifth axiom corresponds to what
Hamel calls the first complete reaction principle, and the sixth axiom to the
second complete reaction principle.l The intuitive content of the two
axioms should be clear. The fifth axiom requires that the force exerted
by ¢ on p be equal and opposite to that exerted by p on ¢. The sixth
axiom requires that the direction of the two internal forces be along the
line connecting the position of the two particles. That this is expressed
by the vector product equation of P6 may be seen by the following con-

* J. Clerk Maxwell, Matier and Motion, 1920 ed., London, p. 79.

t Isaac Newton, Principia, Cajori translation, Berkeley, Calif., 1934, p. 13. The
Principia was first published in 1687. Next to Euclid’s Elements it has probably been
the most influential work in the history of science. Regarding the third law, Newton
goes on to remark, “Whatever draws or presses another is as much drawn or pressed
by that other. If you press a stone with your finger, the finger is also pressed by the
stone. If a horse draws a stone tied to a rope, the horse (if I may say so0) will be equally
drawn back towards the stone; for the distended rope, by the same endeavor to relax
or unbend itself, will draw the horse as much towards the stone as it does towards the
horse, and will obstruct the progress of the one as much as it advances that of the other.”

} Hamel, op. cit., p. 25.
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siderations. Two vectors z and y are parallel if and only if there is a real
number a such that
ax = y.

(Note the vector (0, 0, 0) is parallel to every vector *.) Consequently,
when two vectors z and y are parallel, the vector product = X y is the zero
vector {0, 0, 0), for

(az1, 6z, ax3) = (Y1, Y2, Ya),
that is,
az; = ¥ for 1=1,2,3,
whence
ZoYs — T3Ys = aTyr3z — ax3rs = 0,

and similarly for the other two components of the vector product. Now
the axiom asserts that

(1) S(Z), t) Xf(p, q, t) = —S(Q7 t) Xf(q, b, t)-

We add to both sides of (1) —s(g, t) X f(p, ¢, t), and use the fact that the
vector product operation is distributive with respect to addition to obtain:

(2) (8(17; t) - S(Q) t)) Xf(p, q, t) = _s(q’ t) X (f(q’ b, t) + f(P, q, t))

By Axiom P5
f(q’ b, t) +f(p; q, t) = (O; 0, 0)!

whence we infer from (2):
(8(1)’ t) - s(Qr t)) Xf(p, q, ) = (0; 0, 0);

that is, f(p, g, £) is parallel to s(p, t) — s(g, 1), which means that the line
of action of f(p, ¢, t) is along the line connecting the two particles. A
similar argument shows that f(g, p, £) is parallel to s(p, t) — s(g, ©). Itis
a consequence of this result that every internal force is either a force of
attraction or of repulsion.

The final axiom, P7, formulates Newton’s second law of motion, which
he originally phrased:  The change of motion is proportional to the mo-
tive force impressed; and is made in the direction of the right line in
which that force is impressed. Some authors { have proposed that we
convert the second law, that is, P7, into a definition of the total force
acting on a particle. There seem to be two serious objections to this pro-
cedure. It prohibits within the axiomatic framework any analysis of the

* Some authors define parallelism only for non-zero vectors.

t Op. cit., p. 13.

{ For instance G. Kirchhoff in his classical work Vorlesungen uber mathematische
Physik, 1: Mechanik, 1878.



298 FOUNDATIONS OF THE AXIOMATIC METHOD

internal and external forces acting on a particle. That is, if all notions of
force are eliminated as primitive and P7 is used as a definition, then the
notions of internal and external force are not definable within the given
axiomatic framework. Secondly, it converts one of the most important
laws of mechanics into a definition, which is something conventionalists
find attractive, but scarcely jibes with an empirically oriented philosophy
of science. With regard to the axiomatization given here, it may be shown
by Padoa’s principle that the notions of mass and internal force are each
independent of the remaining primitive notions. (We leave this as an
exercise.) On the other hand, the notion of (resultant) external force is
definable, since the equation of Axiom P7 may be written:

g(p, t) = m(p)D?s,(t) — ?{.‘,‘Pf(p, 0.

However, if the notion of given external force had been taken as primitive,
it could easily have been shown to be independent. The resultant of the
given external forces was used here to avoid the complication of introducing
the notion of an infinite series (corresponding to an infinite number of given
external forces).

Those readers familiar with the literature on the foundations of me-
chanics may find strange the claim that the notions of mass and internal
force are independent of the other primitives, since definitions of these
notions are so widely discussed. However, these much-discussed defini-
tions, like Mach’s “definition” of the relative mass of two bodies as the
inverse ratio of their “mutually induced” accelerations when they are iso-
lated from other bodies,* are only definitions in some Pickwickian sense
that has little connection with the theory of definition discussed in Chap-
ter 8.

We turn now to some theorems which illuminate various facets of par-
ticle mechanics. The first theorem concerns the center of mass of a system
of particle mechanics (formally defined below) and it is ordinarily formu-
lated in the subjunctive mood: the center of mass of a system moves as if
all the mass were concentrated there, and the resultant of all the forces
acted there. In recent years some philosophers have claimed that use of
contrary-to-fact conditionals and thus use of the non-truth-functional sub-
junctive mood are necessary to properly formulate empirical laws (though
this necessity is not usually claimed for the example given here). How-
ever, I know of no systematic example like the present one which cannot
be satisfactorily reformulated in the indicative mood, and certainly I know
of no theorem in any branch of empirical science whose proof hinges upon
some peculiar non-trutb-functional property of contrary-to-fact condi-

* E. Mach, Science of Mechanics, 5th American ed., LaSalle, Ill., 1942, pp. 264-277.
From a formal standpoint Mach’s book is a mass of confusions.
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tionals.* An elementary formal definition of the center of mass function
for a system of particles is straightforward.

DerinitioNn E2. Ifte T, then
2. m(p)s(p, t)

pEP
0= > mp)

EP

And the appropriate theorem is:
Turorem E1. Iftc T, then
2 m(p)D3c(®) = 3 g(p, ¢).
pEP

PEP

Note that the motion depends only on the external forces, since the internal
forces cancel each other, from which observation together with Axiom P7
and the above definition we immediately infer the theorem.

In the third section of this chapter the notion of two models of a theory
being isomorphic was discussed in some detail, and it was pointed out that
one of the most interesting applications of the idea of isomorphism is to
the establishing of a representation theorem for a theory. Sometimes it is
not possible to prove an interesting representation theorem. When this
situation obtains it is natural to ask if an embedding theorem can be proved
for the theory, that is, to prove that there is an interesting class K of
models such that every model for the theory is isomorphic to a submodel
of a model belonging to K. The exact definition of submodel varies from
one theory to another. If A = (4, o) is an algebra, for instance, that is,
A is a set and o is a binary operation from A X A4 to A, then an algebra
{A', o) is a subalgebra of Y if A’ is a subset of A and o’ =0 N (4’ X A’
X A’) that is, o’ is the operation o restricted to A’. In the case of the
theory of particle mechanics, the relative complexity of the primitive no-
tions entails that several alternative definitions of submodel are natural.
For instance, in a subsystem (i.e., submodel) of a system of particle me-
chanics, should we permit the subsystem to have a smaller time interval?
The rather arbitrary decision made here is to keep the time interval the
same in the subsystem. The crucial part of the definition of subsystems
peculiar to mechanics is the handling of internal forces. The internal
forces on a particle due to particles not in the subsystem are added to the
resultant external force on the particle, a procedure which seems to agree
with the intuitive idea in physics of a subsystem.

* This is not to deny that the logic of the subjunctive mood is of considerable general
philosophical interest.
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DEerintrionN 3. Let B = (P, T, 8, m, £, g) be a system of particle me-
chanics, let P’ be a non-empty subset of P, let ' and m’ be the functions
8 and m with their first arguments restricted to P’, let ' be the function f
with its first two arguments restricted to P’, and let g’ be the function such
that for every pin P’ and tin T

gt = g(p, ) + aCzP;vP' f(p, 9, 9).

Then (P', T, &', m’, f', g’} is a subsystem of PB.

This definition could have been put in more set-theoretical language. We
could have written:
PPCP

P’ 5 A,

[ =fIP"XP XT),
where in general if f is a function f| A is the function & such that
h=fN (4 XR()),

that is, f| A is the function f with its domain restricted to A.
We leave as an exercise proof of the theorem that

THEOREM 2. Every subsystem of a system of particle mechanics is itself
a system of particle mechanics.

Of course, Theorem 2 does not constitute an embedding theorem, and
this is the problem to which we now turn. A philosophically and physically
interesting class of systems of particle mechanies is the class of isolated sys-
tems, that is, those for which the resultant external force on every particle
is zero (more precisely, the null vector {0, 0, 0)).

Derinrrion 4. A system of particle -mechanics P = (P, T, s, m, f, g)
18 vsolated if and only if for every pin Pand tin T

g(p) t) = <O: 0, 0)

The notion of an isolated system is connected with the physicists’ notion
of a closed or independent mechanical system, which, roughly speaking, is
an isolated system with the internal force of any one particle on another
expressible as a function only of the distance between the two particles.
The total mechanical energy of closed systems is constant in time; more
important, when the internal forces do not explicitly depend on time, we
may regard the causal analysis of the motions of the particles as in one
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sense complete. Unfortunately the problem of embedding any system of
mechanics in a closed system is too complicated to discuss here, and we
shall content ourselves with a weaker embedding result concerning isolated
systems. We first define the notion of two systems of mechanics being
equivalent; the intuitive idea is that the systems are identical except for
the individual forces acting on the particles, the resultant force on a par-
ticle being the same in both systems.

DerintrioN 5. Two systems of particle mechanics B = (P, T, s, m,
L9y and P’ = (P, T, ¢, m, [, q') are equivalent if and only if

P=pP
T=1T
s=4
m=m',

Notice that this notion of equivalence is one of several concepts which are
both weaker and stronger than the “natural” notion of isomorphism; * it
is weaker in that two equivalent systems do not have the same structure
of individual forces, but it is stronger in that two equivalent systems must
be kinematically identical and identical in their mass functions.

We leave proofs of the two following theorems as an exercise; they justify
use of the term ‘equivalence’ in Definition 5.

TarorEM 3. The relation of equivalence between systems of particle me-
chanics 13 reflexive, symmelric, and lransitive in the set of all systems of
particle mechanics.

The next theorem precisely formulates the idea that the resultant forces
are identical in two equivalent systems.

THEOREM 4. If$ = (Pr T, m, 8, f: g) and %I = (P" T,y m,’ 8,’ fly g,>
are two equivalent systems of particle mechanics, then for every p in P
andtin T

aé @, 0,0+ glp, t) = E,P a0+ @1

(Note that since P and P’ are equivalent, both sides of the equation are
well-defined.)

The embedding theorem which we want now to prove is that every sys-
tem of particle mechanics is equivalent to a subsystem of an isolated sys-
tem. This theorem is closely related to some historically famous positions
concerning the foundations of physics. For instance, Roger Joseph Bosco-

* Exactly what the natural definition is of isomorphism for systems of particle me-
chanics is a rather complicated question which we shall not try to discuss here.
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vich, the prominent eighteenth-century Jesuit physicist, maintained that
the matter of the universe is composed of a finite number of non-extended
points, and the only forces in the universe are attractive and repulsive
forces acting between the points and satisfying our axioms P5 and P6.
All the observed phenomena of nature are to be explained solely in terms
of the distribution and motion of these points and the forces between them.*
Certainly Boscovich would regard our embedding theorem as a definite
step toward establishing his thesis concerning the nature of the universe.
Naturally we are making no such claims here, for we do not want to assert
that the new particles, added to make up the isolated system in which a
given system is embedded, have any real physical existence.

Our embedding theorem is closest to the analysis of the foundations of
mechanics provided by the great nineteenth-century physicist Heinrich
Hertz, whose Principles of Mechanics was first published in Germany in
1894.1 The basic idea of his approach is that any complicated mechanical
system is to be explained by assuming that it is part of a larger system,
the positions of whose particles account for the complicated character of
the original system in a natural and simple way. It is to be remarked that
Hertz would only consider the embedding of a system in a closed, not
merely an isolated, system as a fully satisfactory result. We turn now to
our theorem.

TarorEM 5. Every sysiem of particle mechanics is equivalent to a sub-
system of an isolated system of particle mechanics.}

PrROOF. For simplicity we consider only a two-dimensional system, that
is, a system for which the third component of all position and force vectors
is zero. Let P = (P, T, s, m, f, g) be an arbitrary such system of me-
chanics. The idea of the proof is to introduce for each p in P three new
particles such that the four particles together are placed symmetrically
with respect to the two coordinate axes. We then resolve the total resultant
force on p into internal forces between the given particle p and two of the
new particles. The remaining new particle is needed to provide an appro-
priate balance of internal forces on the first two new particles.

We now turn to the formal proof. It is eonvenient to introduce two
functions which single out the first two components of a vector. If (z,
%9, T3) 18 any vector, then

e1({z1, 22, 73)) = 71,
¢2(($1, Zg, T3)) = Za.

* Boscovich’s main treatise is his Theoria Philosophiae Naturalis, first published in
Vienna in 1758.

t English translation reprinted in 1956 by Dover Publications, New York.

t This theorem is closely related to Theorem 8 of the paper by McKinsey, Sugar,
and Suppes previously cited.
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For simplicity of notation and without any essential loss of generality we
may suppose that P has exactly two particles, say,

P = {p’ q}

We now use the system P = (P, T, s, m, f, g) to define a new system con-
gisting of eight distinct particles:

P = {p; a9, P1, P25 P35 915 Q25 Q3}

=T
m'(p;) = m'(p) = m(p) for 1=1,2,3
m'(g:) = m'(q) = m(qg) for ©=1,2,3,

and for every ¢ in 7"

§(p, 1) =s(p, 9

8'(p1, ) = (—eils(p, 0], eals(p, V)], 0)
8 (ps, £) = (@ils(p, D], —eals(p, 1)], 0)
§'(p3, £) = (—eils(p, V)], —eals(p, )], 0)
(g, 8) = s(g, V)

§'(q1, t) = (~eils(g, 1)), e2ls(g, ¥)], 0)
§'(g2, 1) = (enls(g, D], —e2ls(g, O], 0)
8'(gs, t) = {—els(g, D], —eals(g, )], 0)

f,(p: ' ) = fI(Q; 2 t) = (01 0, 0)

Fip,t) =g@, )+ 09
F(Qr t) = g(q: t) +f(Q) ¥ t):

that is, F(p, ©) is the total resultant force on particle p at time ¢ in the sys-
tem P. Then we set:

'@, p1, 1) = {e1lF(p, 1)), 0, 0)
oy, p, ) = —f (@, p1, V)

'@, p2, 1) = (0, @:[F(p, 1)}, 0)
2 0, 0) = —f'(p, P2, ¥)

f'®, p3, 9) = f'(p3, 1, 1) = (0, 0, 0)
I'(®1, P2, ©) = f'(pa, P1, 1) = (0, 0, 0)
f'(p1, 3, £) = (0, @3[F (p, 1)], 0)
(@3, p1, &) = —f'(p1, P3, ¥)

I (@2, p3, ) = {anlF(p, )], 0, 0)
I3, D2, 1) = —f'(pa, P3, ¥).

and

Let
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Replacing ‘p’ by ‘¢, ‘p1’ by ‘qi’ ete., in the immediately preceding ten
lines we obtain the new force function f’ for the particles ¢, ¢1, g2, g3.
(There is no need to write down these additional ten lines.) Finally, we
define the external force function g’ so that for all particles in P’ and all
tin T the external force is the null vector (0, 0, 0).

To complete the proof of the theorem two things need to be verified
(which we leave as an exercise):

(i) The system P’ = (P’, T', &', m/, f’, ¢') is a system of particle me-
chanics, that is, satisfies Axioms P1-P7 (if P’ is a system of particle
mechanics, it follows at once from the definition of g’ that it is
isolated).

(ii) P is equivalent to a subsystem of P’. Q.E.D.

The theory of mechanics is like the theory of probability in that many
of the most interesting and difficult problems are concerned with special
classes of models of the theory. Probably the most famous example in
mechanics is the three body problem, that is, the problem of determining
the motion of three bodies when the only forces acting on them are the
mutual attractive gravitational forces varying inversely as the square of
their distances apart. The complete solution of this problem is still not
known. Newton’s solution of the two body problem constituted a deriva-
tion of Kepler's three kinematical laws of motion from the dynamical law
of gravitation. Unfortunately the confines of the present section are too
limited to permit a further systematic development of mechanics. A cer-
tain amount of additional material is included in the exercises.

EXERCISES

1. Using the definitions given at the beginning of this section and familiar facts
about real numbers, such as the axioms and theorems of Chapter 7, prove:

(a) Vector addition is commutative and associative.

(b) Multiplication of a vector by a real number is distributive with respect
to vector addition, i.e., if ¢ i8 a real number and z and y are vectors,
then

a(z + y) = az + ay.

(c) Multiplication of a vector by a real number is distributive with respect
to addition of real numbers, i.e., if @ and b are real numbers and z is a
vector, then

(a + bz = az + bz.

(d) Multiplication of a vector by a real number is associative, i.e., if a and
b are real numbers and z is a vector then

a(bz) = (ab)z.
(e) The scalar product operation is commutative.
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() The scalar product operation is distributive with respeet to vector addi-
tion, i.e., if z, y, and z are vectors, then

z(y+2)=zy+ze

() The vector product operation is distributive with respect to vector ad-
dition, i.e., if z, ¥, and 2 are vectors, then

zX@WY+d=zxXy+zXe

(h) The vector product operation is anticommutative, i.e., if z and y are
vectors, then
TXY=—y Xz

(1) (ScEwaRrz’s INBQUALITY) If 2 and y are vectors, then
lz-y} < [2]|y].

2. The set of all vectors is a group with respect to which of the following opera-
tions (if so prove it, if not, give a counterexample):

(a) Vector addition.

(b) Vector subtraction.

(c¢) Scalar product operation.
(d) Vector product operation.

Rewrite Definition 1 in the style of Definition A of § 12.2.
. Prove Theorem 2.
. Prove Theorem 3.
. Prove Theorem 4.
. Complete the proof of Theorem 5.
. For general three-dimensional systems of mechanics how many new particles
must be added when embedding the system in an isolated system? Prove Theorem
5 for general three-dimensional systems.

9. Using Padoa’s principle prove that the notions of mass and internal force
are each independent of the remaining primitive notions of particle mechanies.

10. Prove by the method of interpretation that each of the dynamical axioms of
Definition 1 are independent of the remaining axioms.

11. Define the moment of a force about a fixed point (points and vectors are
the same entities, namely, ordered triples of real numbers) and prove that the
total moment of the internal forces of a system of particle mechanics is the null
vector.*

12. Define the angular momentum of a system of particles about a fixed point,
and prove that the rate of change of the angular momentum of a system about a
point is equal to the total moment of the external forces about this point.

13. Exactly formulate and derive from the axioms of Definition 1 a form of
Lagrange’s equations for systems of particle mechanics.

14, Derive Kepler’s three laws of motion from the Newtonian hypothesis con-
cerning gravitational forces.

00 =1 O Lv i

* This and the remaining exercises require some intuitive knowledge of particle me-
chanics, but the usual definitions should be reformulated as elementary definitions
- satisfying the rules of Chapter 8.
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Absolute value of vector, 292
Abstraction operator, 242
Adams, E., 271n
Affirming the consequent, fallacy, 24
Algebras, 252, 257
isomorphie, 261
subalgebras, 299
Ambiguous names, 81
interpretation, 84
restrictions on use, 83, 110, 118
subscripts on, 89
And, 31f., 11
Antisymmetric relation, 214
A posteriori probability, 284
A priori probability, 283
Aristotle, xv, 295
Arrow, K. J., 2590
Associative law, for addition, 130
for groups, 105
for intersection, 205
for multiplication, 130
for union, 205
Asymmetric relation, 214
Atomic event, 287
Axiomatic method, xviii, 246 ff.
Axiomatization, xvii, 247 ff.; see also
Axioms
in first~order logic, 248
in set theory, 249
Axioms, 65
for arithmetic of real numbers, 129
for Boolean algebras, 204
for groups, 105, 113, 252 ff., 257, 258
for measurement of mass, 97
for measurement of sensation intensi-
ties, 269 fI.
for particle mechanics, 294
for preference, 169
for probability spaces, 277
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Axioms (Cont.)
independence of, 70
of closure, 257

Bayes’ theorem, 283
Bernays, P., 64n, 107n
Bernoulli, J., 286n
Biconditional, 9
Binary operation, 233
and ternary relation, 234
Binary relation, 211
Birkhoff, G., 264n
Boolean algebra, 204, 207
Boscovich, R. J., 301 ff.
Bound variable, 54
interpretation of, 72
Bourbaki, N., 250n
Bush, R. R., 282

Cancellation law, for addition, 134
for groups, 106
for multiplication, 148
Cantor, G., 181n
Carnap, R., 165n, 200n
Cartesian product of sets, 209
Cases in proof, 149
Categorical theory, 262
Church, A., 69, 242
Class, 177; see also Sets
Closure axiom, 257
Closure property, 77
Commutative law, for addition, 130
for intersection, 205
for multiplication, 130
for union, 205
Complement of sets, 188
Completeness of rules of inference, 24
70, 114
Composition of functions, 238

i
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Concatenation, 126n

Conditional definition, 165

Conditional probability, 280

Conjunction, 3 ff., 11

Connected relation, 216

Consistency, 37, 68

Contradiction, 37

Contrary-to-fact conditional, 298

Conventionalism, 295

Converse of relation, 226

Copi, 1., 81n

Countably additive probability meas-
ure, 278

Counterexample, 69

C.P., 28 fi.

Cross product of sets, 209

Cross product of vectors, 292

Davidson, D., 269n
Decision procedure, 69 ff,
Deduction theorem, 29n
Definiendum, 155
Definiens, 155
Defining division, 163, 166
Defining individual constants, 159
Defining operation symbols, 158, 162
Defining relation symbols, 156
Definition, 151 ff.
and axiomatization, 249 ff.
as identity, 161
conditional, 165
elementary, 268
eliminability criterion, 154
non-creativity criterion, 154
De Morgan, A., 93
De Morgan’s laws, 34, 194, 205
Denying the antecedent, fallacy of, 24
Derivation; see also Inference, Proof
sentential, 28 fI.
Derivative, 293
Derived rule of inference, 40, 114
Description operator, 161n
Dewey, J., 2620
Difference of sets, 185
Difference structures, 267
Differentiable, 293
Disjunction, 5 ff., 11
Distributive law, 130, 131, 205
Domain, of individuals, 64 ff., 187
of interpretation, 71
Dyadic, see Binary

Dynamics, 294

Effective rules, 114
EG, 82 1.
Elementary definition, 268
Elementary theorem, 269
Eliminability eriterion, 154
Embedding theorem, 299
Empty set, 178, 184
Epistemology, 86
Epsilon, 177
Equivalence, 9, 11
tautological, 16
Equivalence class, 218
Equivalence relation, 218
ES, 821,
Estes, W. K., 282
Euclid, 246
Euclidean geometry, 228, 246 ff.
Euler, L., 195n
Euler diagrams, 195 ff.
Event, 274 ff.
atomie, 287
Existential generalization, 82 ff,
restriction on, 90, 92, 93
Existential specification, 80
Extensionality, principle of, 102
of sets, 178

Fallacious derivation, se¢ Fallacious
inference
Fallacious inference, 23 ff., 69, 90 ff., 99,
100, 119, 138 f1.
Fallacy, of affirming the consequent, 24
of denying the antecedent, 24
Feller, W., 290n
Field of sets, 276
Tinitely additive probability measure,
277
Finite sequence, 209
Flagging, 60, 81n, 93
Force, 294
Formula, 52
atomic, 52
consistent, 68
logical equivalence of, 118
open, 103
recursive definition of, 52
universally valid, 67
Free variable, 54, 139
interpretation of, 73, 77



Frege, G., xvi

Function, 229 ff.
composition of, 238
constant, 243
definition, 229 ff.
domain, 233
inverse, 235
mapping, 233
one-one, 236
principal inverse, 238
propositional, 127
range, 233
sentential, 127

Godel, K., xvi, 70
Grammar, 43
Granville, W. A., 229n
Group of transformations, 263
Group theory, 105
axioms, 105, 113, 252 fi., 257, 258
representation theorem, 263

Hamel, G., 295n, 296

Hasse, H., 221n

Hasse diagrams, 221

Hertz, H., 302

Hilbert, D., xvi, 107n, 247
Huntington, E. V., 63, 173, 204n

Idempotency, 205
Identity, 101 ff.
and inference, 104
interpretation of, 107
Identity element, 105, 130, 205
If-then, see Implication
Image, 233
Implication, 6 ff., 11
Inclusion of sets, 181
Incompleteness, 70
Independence of axioms, 70
Independence of primitive symbols,
169 ff.

Individual constant, 67; see also Proper

name
definition of, 159
independence of, 170 f.

Inference, completeness, 24

criteria of, 20
derived rule of, 40, 114
logically equivalent formulas, 118
rules for identities, 104

INDEX

309

Inference (Cont.)
sentential theory of, 22
soundness, 23
summary of rules, 99
Inner product of vectors, 292

Interpretation, and invalid argument, 31

arithmetical, 64

definition of, 67

domain of individuals for, 64

of ambiguous names, 84

of free variables, 65, 76

of operation symbols, 66, 77

of predicates, 74

of proper names, 66, 76

rules of, 71 ff.

sentential, 21

true, 68
Intersection of sets, 184
Interval of real numbers, 291

closed, 291

open, 292
Intransitive relation, 216
Invalid argument, 31, 69
Inverse element, 105, 130
Inverse function, 235
Irreflexive relation, 213
Isomorphism, 260 ff.

and categoricity, 262

and representation theorem, 263

of algebras, 261

of difference structures, 267

of simple relation structures, 262

Jeffreys, H., 290n

Kepler, J., 304
Kinematies, 294, 296
Kirchhoff, G., 297n
Kleene, 8. C., 70
Kolmogorov, A. N., 276n

Lambda notation, 243

Laplace, P., 286n

Law of Absurdity, 34

Law of Contraposition, 34, 205
Law of Detachment, 32

Law of Excluded Middle, 34, 205
Law of Exportation, 34

Law of Identity, 102

Law of Importation, 34

Laws of Absorption, 205
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Leibniz, G., xv
Leibniz’s law, 103
Lesniewski, 8., 153n
Likelihood, 284
maximum, 289
Linguistic entity, 232
Logic, definition, xviii
first-order predicate, 69n
theorem of, 108
with identity, 107
Logical consequence, 22, 67; see also In-
ference
Logical form, xvi, 68
Logical syntax, 253n
Logical validity, see Universal validity,
Validity
Longley, W. R., 229n
Luce, R. D., 228

Mach, E., 172, 208
McKinsey, J. C. C., 170n, 294n, 302n
MacLane, 8., 264n
McNaughton, R., 198n
Many-one relation, 233
Mapping, 233
Mass, 294

center of, 208

definition of, 298

measurement of, 96
Mathematical induction, 272n
Matrix, 78
Maximum likelihood, 289
Mazxwell, J. C., 296
Meaning, 68, 125, 166
Measurement, of mass, 96

of sensation intensities, 266 ff.

of utility, 266 ff.
Mechanics, 291 ff.; see also System of

particle mechanics

Membership, 177
Mention, 121
Metamathematics, 253 ff.
Mises, R., von, 290n
Model, see Interpretation
Model for a theory, 253

and categoricity, 262
Modus ponendo ponens, 32
Modus tollendo ponens, 33
Modus tollendo tollens, 32
Mosteller, F., 282
Mutually exclusive, 184

Nagel, E., 290n

Names; see also Ambiguous names,
Proper names

juxtaposition of, 125

Necessary condition, 9, 146

Negation, 3 ., 11

Negative operation, 143

Newton, L., 296, 297, 304

Newton’s second law of motion, 297

Newton’s third law of motion, 296

Non-creativity criterion, 154

Non-extensional contexts, 102

Not, see Negation

Occurrence of variable, bound, 53
free, 53
One-one function, 236
Only if, 8
Operation gsymbol, definition of, 158,
162, 165
independence of, 170 ff.
interpretation of, 66, 77
Operations, on functions, 234 ff,
on relations, 225 ff.
on sets, 184 ff., 202 fi.
Operator, 233
Or, 5., 11
Ordered couple, 208

P, 28
Pados, A., 169, 170
Padoa’s principle, 169 ff.
Parentheses, 10
Partial ordering, 221
Peano, G., xvi, 161n
Peirce, C. 8., 15n
Pieri, M., 247
Poincaré, H., 295n
Possibility, 17
Postulate, see Axioms
Power of relation, 272
Predicate, 45 fi.; se¢ also Relation sym-
bol
collective, 191
distributive, 191
interpretation of, 74, 75
one-place, 47
set-theoretical, 249 ff.
Prediction, xv
Preference, see Theory of preference
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Premises, 20, 28
consistency of, 36 fi.
Primitive notions, 246, 256; see also
Primitive symbols
Primitive symbols, 256n; see¢ also Primi-
tive notions
independence of, 169 ff.
Principal inverse, 238
Principle of indifference, 286
Probability, 274 fi.
distribution, 279
measure, 277
space, 277
terms, 276
Proof, alternative cases in, 149
conditional, 28 ff.
fallacious, 138
incompleteness, 70
indirect, 38 ff.
informal, 128
of consistency, 38, 68 ff.
of inconsistency, 36 ff.
of independence of axioms, 70
of independence of symbols, 169 ff.
strategy of, 30, 58, 137
Proper names; see also Individual con-
stants
inference, 60, 62
interpretation of, 67, 76
Pseudo-operation, 151, 158
Putnam, H., 87n

Quantifier, 47 ff.
and quotation, 124
existential, 48
interchange of, 87 ff.
rules governing, 115 ff.
scope of, 53
universal, 48, 59, 60

Quasi-ordering, 220, 250

QE.D,, 133

Quine, W. V., 81n, 124n

Quotation marks, 121

R.4.A4., 40

Random sampling, 286

Rational number, 130

Real number, 130

Recursive definition, of formulas, 52
of powers of relation, 272

Reductio ad absurdum, 38 ff.

Reduction sentence, 165n

Reductionism, xvii, 271

Reflexive relation, 213

Reichenbach, H., 200n

Relation, 210 ff.
asymmeftric, 214
binary, 211
connected, 216
converse of, 226
counterdomain of, 212
definition of, 211
domain of, 211
equivalence, 218
field of, 212
intransitive, 216
irreflexive, 213
operations on, 225 ff,
ordering, 220 ff.
properties of, 213 ff.
reflexive, 213
relative product, 226
strongly connected, 216
subrelation, 226
symmetrie, 213
ternary, 211, 234
transitive, 215
universal, 225

Relation symbol, 67; see also Predi-

cate

definition of, 156
independence of, 170 ff,

Relative product, 226

Representation theorem, 263
and measurement, 265 ff.
and reductionism, 271
for groups, 264

Rubin, H., 295n

Russell, B., xvi, 63, 64n

Sample space, 277
Savage, L. J., 290n
Scalar product of vectors, 292
Semantics, 253n
Semi-order, 228
Sentence; see also Formula
atomie, 12
biconditional, 9
conditional, 6
definition of, 54
Sentential connectives, 3
truth-functional, 5, 7
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Sequence, 278n
finite, 209
Sets, 177
complement, 188
difference, 185
empty, 178, 184
extensionality, 178
inclusion, 181
intersection, 184
mutually exclusive, 184
union, 185
Set-theoretical, entity, 232
predicate, 249 ff.
Set theory, xvii, 177
axiomatic, 250
Simons, L., 87n
Simple ordering, 221
Simple relation structures, 252
Smith, P. F., 229n
Strict partial ordering, 222
Strict simple ordering, 222
Strongly connected relation, 216
Subjunctive mood, 298
Subrelation, 226
Subscripts, see Ambiguous names
Subtraction, 146 ff.
Sufficient condition, 9, 146
Sugar, A. C., 204n, 302n
Syllogism, 200 ff.
Symmetric relation, 213
System of particle mechanics, definition,
294

equivalent, 301
isolated, 300
subsystem, 300

T, 28
Tarski, A., xvi, 29n, 70n, 106n, 126n,
129n, 170n
Tautological, equivalence, 16, 34, 88
implication, 15 ff., 28, 34
Tautology, 12 ff., 34 .
and sentential interpretation, 22
definition of, 14
Terms, 43 ff.
Ternary relation, 211, 234
Theory of preference, 63, 70, 80, 169,
223, 228, 259
Transitive relation, 215

Triadic, see Ternary

Truth, and interpretations, 68
and logic, 217
and theorems of logic, 108
functional, 5, 7
tables, 11 ff.
values, 14

UG, 60 ff.
Undefined terms, see Primitive sym-
bols
Union of sets, 185
Universal generalization, 60
restriction on, 91
Universal instantiation, 59n
Universal relation, 225
Universal specification, 59
restriction on, 91
Universal validity, 67 ff., 114
and theorem of logic, 108
Universe of discourse, see Domain of in-
dividuals
U8, 59 ff.
Use and mention, 121 ff.

Valid argument, 20 ff., 64 ff., 114
and truth tables, 23

Validity, 23, 64 ff.; see also Universal

validity

Variable, 43 ff.
bound, 54
bound occurrence of, 53
flagged, 60
free, 54, 139
free occurrence of, 53
numerical, 123
propositional, 123
sentential, 123

Veblen, O., 262n

Vector, 292

Vector product, 292

Vel, 5

Venn, J., 195n

Venn diagrams, 195 ff.

Weak ordering, 222
Whitehead, A. N., 63, 64n
Winet, M., 269n
Wittgenstein, L., 16n



