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Foreword 

 
In sound reproduction systems, such as home stereo, what we hear is colored by the individual 
responses of every component in the system along with the response of the room.  Audiophiles and 
home stereo enthusiasts spend countless hours attempting to tune and tweak their setup to achieve 
that perfect sound.  Unfortunately, the scientific rigor of such activities is almost always lacking 
making these adjustments difficult at best.  Therefore, a system that is capable of making detailed 
response measurements of the audio system and the acoustic environment is needed.  This system 
must also provide a method for correcting the system response. 
 
This project serves as the major design experience (MDE) for EECS 452 – Digital Signal 
Processing Laboratory.  The scope of this project is to implement a proof-of-concept single channel 
measurement and correction system.  Because of the pressing need for such a system, and the 
challenges of the design, it was felt that this project meets the requirements and the spirit of the 
MDE.  There are a number of possible uses for this project ranging from consumer to professional 
to academic use.  Similar products exist on the market but are very costly, hard to use and are not 
expandable. 
 
The block diagram in Figure 1 below shows the basic operation of the system.  A microphone is 
used to record and measure the response of the audio system and environment at the listening 
position.  This can be used by the digital signal processor to pre-correct the program material 
through equalization to make up for errors in the audio system.  The system could also display the 
measured response information directly for external analysis. 

Room

Speaker
Microphone
@ Listening

Position
AMP

DSP56307EVM

Program Source
Material

 
Figure 1 - Ideal Block Diagram 

As this project progressed, the scope was modified to support new research and ideas, as the 
specifications were refined.  There are a number of methods available for carrying out each sub-task 
each with its own benefits and disadvantages.  A large portion of this project was extensive research 
and careful selection of design choices. 
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Objectives 
 
The objectives of this project went through an evolution as the design process and implementation 
were underway.  Certain aspects became non-essential, such as real time filter updates, in response 
to the shift from live-performance to home-theater applications.  The major objectives that remained 
constant throughout the design were: 
 

• Implement a system impulse and/or frequency response measurement prototype on a DSP. 
• Implement an on-chip real-time filter for equalizing program material to correct the 

frequency and/or impulse response. 
• Use RS-232 serial communication between the DSP and a computer for transferring impulse 

response and filter coefficient data and displaying results. 
• Generate inverse filter coefficients using functions in MATLAB. 

 
 
Resources 
 
Digital Signal Processor 
 
The initial decision we faced was choosing the DSP that would most adequately suit our needs. 
From the DSP evaluation modules we had to choose from, all are integer-processing units, so our 
project will be guided by this constraint.  Because we wished to use MATLAB to display response 
plots, store data and generate inverse filter coefficients, an interface between the DSP and a 
computer was needed.  The Motorola DSP56307EVM has on-board RS-232 serial port that allows 
for serial communication between the PC and DSP.  The Texas Instrument's TMS320C5402 DSK 
also has on board RS-232 serial, however it lacks a high quality audio codec.  Furthermore, the 24-
bit word size of the 56303 and 56307 allows for greater precision.  The 56307 has significantly 
more memory than the 56303 and a faster processor.  This is important for the making system 
response measurements where large memory arrays are needed.  Another advantage to the 56307 is 
its Enhanced Filter Co-processor (EFCOP), which allows for automated parallel computation of a 
filter with main program code. 
 
Support Hardware 
 
The design (see Figure 1) required a few other pieces of hardware.  These included a loudspeaker, 
an audio power amplifier, a computer with two RS-232 ports, and a microphone.  These items were 
mostly available, either through the lab resources or personal items owned by members of the team.  
The one piece of hardware that could most improve the system would be the microphone.  We used 
a cardioid pattern dynamic microphone from Radio Shack, but a high quality studio microphone 
with an omni-directional pattern would significantly improve the results without any other direct 
changes to the design.  Because of the low quality of the microphone, the measurement is only 
useful over a limited range.  The cable used for the RS-232 serial interface required some work to 
function properly.  It was necessary to solder the cable to three pins, one each for transmit, receive, 
and ground.   
 



©2003 6

Support Software 
 
The project required a number of software applications.  MATLAB, Debug-56K, and a text editor 
were the programs used in project development.  These were already installed on the computer used 
in lab, which proved very convenient.  MATLAB was also used in the planning and design stages to 
simulate different design choices. 
 
 
Procedure 
 
The initial group meetings were brainstorming sessions to establish ideas for procedures.  These 
ideas were not tested until later in the term, and, at first, only in MATLAB simulations.  Meeting 
minutes were kept for almost every group session involving more than half the members.  
 
Our ideal project goal was to be able to make a system response measurement while listening to 
program material without significantly interrupting or degrading the programmatic material.  
However, it was obvious that ensuring we had a valid response measurement system was more 
important than playing program material and making measurements at the same time.  A few weeks 
into the project, when we shifted our market focus to home theater applications, it was decided that 
concurrent listening and measurement was not needed and could even be met with resistance or 
rejection.   
 
We broke the project into four segments, as seen below in Figure 2.  The labels show details of our 
final implementation, but the four segments remained the same: response measurement, display & 
storage of response, computation of filter coefficients, and real time equalization filtering. 
 

 

Response 
Measurement 

Equalization Coefficient Generation & 
Display 

 
Figure 2 - Overall System Flow Diagram 

 
Measurement Subsystem 
 
Initial System Response Measurement Methods 
 
We began our search for a system response measurement function based on a magnitude frequency 
response approach.  At first, only concerned about the frequency response, our methods focused on 
directly measuring frequencies.  To reduce measurement time and the need to listen to swept sine 
waves, as used by other measurement systems like SigLab, we tried to use Gaussian white noise to 
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make our measurement by using a Fast Fourier Transform (FFT) on the recorded output.  Our initial 
block diagram used in our proposal is shown below in Figure 3.  However, when we ran MATLAB 
simulations, we found that because white noise is by definition non-deterministic it was 
unreasonable to achieve flat frequency content of the noise over a limited time scale and therefore 
making measurements with white noise would not work.  Additionally, we needed an enormously 
long FFT to get better than 1/3 octave resolution in the lower octaves.  It is unfortunate we did not 
realize how close we were to our final solution and we wasted a lot of time simulating in MATLAB 
what could not work as we wanted it to.  It appeared that a drastic change was necessary in the room 
response measurements. 
 

 
Figure 3 - Preliminary Block Diagram using FFT for measurement 

 
As a result, we started looking back into swept-sine waves or possibly groups of sine waves.  We 
could generate these on chip easily.  The difficulty was in making accurate measurements, again 
due to noise or FFT size limitations.  If we didn't use the FFT, we would need a swept matched 
filter and power detector.  This was further complicated by the desire to only focus on 1/3rd octave 
frequency bands, which made using the direct FFT overly 'brute force' with still limited low 
frequency resolution. 
 
We were also limited bed these methods because in measuring the frequency response directly, only 
the steady-state response of the system will be known.  No transient information or time 
information can be ascertained from the results and therefore cannot be corrected for.  In seeking 
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help with Professor Metzger, we were re-introduced to some fundamental concepts and given a new 
direction. 
 
Impulse Response and M-sequences 
 
The ideal way to characterize an audio system is measure its impulse (or time) response.  In fact, 
almost all professional audio equipment and software make use of the impulse response.  With the 
impulse response, it is possible to actually see the effects of reflections of sound from walls, or time 
differences in signals from different drivers or speakers.  However, the difficulty of measuring an 
impulse response directly is in the energy content of the signal.  Given a true impulse is an infinitely 
short pulse with infinite amplitude, any attempt to create an impulse in a real system results in 
miniscule signal energy.  This means the impulse measurement would be overpowered by 
background noise.  For example, crude impulse response measurements of acoustic spaces were 
made with gunshots in the past. 
 
What is needed is a way to time-spread the impulse, play it through the system under test and then 
compress that signal back together in post-processing.  M-Sequences, also known as Maximal-
Length Sequences (MLS) or Pseudo-Noise (PN) are a simple to generate time-spread signal that can 
be used to measure impulse response.  An MLS is a binary sequence with values 1 and –1 that has 
significant similarities to white noise, with somewhat equal frequency content over the band.  The 
difference is that an MLS is generated with a Shift Register Generator (SRG) and is completely 
deterministic.  This means that we always know what the sequence is at all times and therefore we 
always know the frequency content of the sequence.  For a SRG with N registers (order N) an MLS 
sequence has length 2N-1.  A 4th order MLS is shown in Figure 4 below with length 24-1 = 15. 
 

 
Figure 4 - MLS of order 4 

 

z-1 + z-1 + z-1z-1 +

c1 c2 c3
c0

Modular Shift Register Generator

XOR
z*2-1

 
Figure 5 - Modular Shift Register Generator of Order 4 

 
An MLS has an impulse-like two-valued circular cross-correlation function, as shown in Figure 6.  
Putting an MLS m(t) through a system results in an output signal s(t).  The theory, as described by 
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Rife and Vanderkooy, shows that the system impulse response h(t) can be de-convolved from the 
system response by circular cross-correlation of m(t) and s(t).  A diagram of this process is shown 
below in Figure 7 provided by Vorlander and Kob.  There are alternate mathematical algorithms to 
perform the de-convolution.  One is to take the DFT of s(t) and remove the DFT of m(t) from it and 
use the IDFT to get back to the system impulse response.  Despite the relative ease of taking the 
FFT, the operations to go back and forth use a lot of memory and time.   
 

 
Figure 6 - Circular Cross Correlation of MLS of 4th Order 

 

Vorlander & Kob 1997  
Figure 7 - Using MLS measurement to find Impulse Response 

The solution to the long computations required by direct correlation and complex math required by 
the frequency domain method is described by Cohn and Lempel as the Fast M-Sequence Transform.  
Because of the nature of the M-sequence, the circular cross-correlation can be simplified to a matrix 
multiplication between an M-sequence matrix.  Of course, the matrix has a size that is a square of 
the length of the sequence and would be too large to implement on chip.  The Fast M-Sequence 
Transform (FMT) relies on the inherent determinism of the M-sequence matrix.   
 
Instead of the matrix multiplication, the FMT uses three steps that can all be computed with 
minimal memory overhead and computation time.  First the data to be transformed is reordered or 
scrambled according to the sequence generator.  Then the Fast-Walsh Hadamard Transform is 
computed in-place.  This transform is nearly identical to the FFT except only additions and 
subtractions are used and no exponential or multiplications are computed.  Finally the data is 
reordered or unscrambled according to a converse sequence generator.  Using the FMT is by far the 
most efficient and most elegant method for de-convolving the impulse response from an MLS 
excited audio system. 
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Final Implementation of Measurement Subsystem 
 
As it turns out, we ran into some difficulty generating the permutation vectors needed to scramble 
and unscramble the data for using the Fast M-Sequence Transform.  Therefore, we settled on using 
a circular cross-correlation algorithm.  Although this takes much longer in terms of computation, it 
is still robust and only requires twice as much memory as the length of one sequence.  Furthermore, 
we can generate the sequence 'on-the-fly' instead of storing it.  In this sense we have traded 
computation time for memory.  On a different DSP with more memory we might have gone in the 
other direction. 
 
One important task that needed to be dealt with was normalization of the data.  As each data point 
in the output of the cross-correlator is computed by multiply-and-accumulate instructions into the 
full 56-bit accumulator, when storing the final value into a 24-bit word, some bits in the 
accumulator must be discarded.  Because we cannot know the peak value of the output of the 
impulse, it is important to only throw away (or truncate) data when absolutely necessary or else the 
results will be to noisy to be useful.  Therefore, we use a memory mapped register to store the 
amount of normalization, or shifts, used on each store.  By using a comparison operator, if bits must 
be thrown away the cross correlator stops and renormalizes all previously computed values.  This 
gives us maximum dynamic range regardless of the input levels or system response.  Alternately, 
we could not use this method using the Fast Walsh Hadamard Transform because the computation 
is carried out in-place. 
 
The largest block of memory on the DSP56307 EVM is 64kwords of off chip RAM.  Furthermore 
the maximum size of a circular array pointer is 32768.  Therefore, we set the sequence length at 
32767, with an SRG order of 15.  This results in a sequence length of 0.667 seconds at a sampling 
rate of 48kHz.  In most average size rooms without long-term reverberations, this is more than 
adequate.  It gives a large enough number of points to generate accurate frequency and time domain 
information.  To save on memory and computation time, a Modular Shift Register Generator 
(MSRG) was used as shown above in Figure 5 using one word and a right shift function. 
 
Because the analog to digital converter (ADC) has 16 bits of resolution and the word size in the 
DSP56307 EVM is 24 bits, we have 8 bits of headroom to play with.  A further advantage of the 
MLS is that because it is deterministic and periodic with length 2N-1, it can be coherently averaged 
over time to increase the signal to noise ratio.  In our case, we pre-shift the ADC samples down by 8 
bits and then sum 256 series to ensure we loose no information on the recording.  This gives a 3dB 
increase in the signal to noise ratio fro every doubling of averages.  It allows for measurements in 
non-ideal conditions.  Some researches have even used such techniques of coherent averaging to 
make system response measurements during an orchestral concert without disrupting anyone 
listening. 
 
Measurement Subsystem Operation 
 
The measurement operation was written in assembly for the Motorola DSP56307 EVM.  The 
operational block diagram is shown below in Figure 8.  On run, the MSRG is initialized and the 
circular record buffer is cleared.  One full sequence length of an MLS is played out to the speaker, 
generated one sample at a time in order to excite the system into a "steady-state" and eliminate end-
effects.  Then 256 lengths of the sequence are played and recorded by the ADC and coherently 
averaged using sample at a time methods for simplicity and coherency.  The interrupts are switched 
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off for processing and the circular cross-correlation is performed on the recorded data.  When 
completed, interrupts are enabled and the DSP sends the resultant impulse response time reversed 
over RS-232 serial to MATLAB as discussed below. 
 
Given the linearity of this code, it would be relatively simple to increase the sequence length or 
number of averages to increase noise immunity.  The one major caveat of using M-Sequences for 
impulse response measurement is that the system cannot tolerate non-linearity.  Any significant 
non-linear distortion in the system will manifest as a complete loss of measurement capability.  
Because most audio reproduction systems are meant to behave linearly if levels are kept low enough 
there shouldn't be a problem under normal conditions. 
 

 
Figure 8 - Final Implementation of Impulse Measurement Function 

 
Serial Communication & MATLAB Software 
 
Sending Impulse Response to MATLAB 
 
The next major obstacle to overcome was the RS-232 serial communication.  These represented real 
world issues of interfacing between different types of hardware.  The RS-232 serial communication 
was also much more intricate than we initially thought.  Motorola has multiple tutorials on this 
subject.  However, they are not the easiest manuals to understand because of their lack of examples.  
We learned by trial and error mostly – inputting the code they gave in the manuals and seeing what 
type of response it generated.  We experimented with using Terra Term Pro, a terminal emulator, to 
receive I/O via the RS-232, instead of MATLAB.  We transitioned to MATLAB from Terra Term 
Pro early on, as MATLAB was part of our actual project implementation.  Progress came in 
increments.  First, any sign that data had been transmitted or received was great news.  Then, we 
attempted to send ASCII text, followed by strings of digits, and finally followed by long arrays of 
data, as would be necessary in the actual implementation.  
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In the final implementation, the DSP sends the impulse response of the room to MATLAB.  We 
recorded 32767 samples, 215 – 1, and sent these to MATLAB.  Serial communication works with 8-
bit words. The samples were in the form of 24-bit words on the Motorola DSP56307, and therefore 
each required 3 transmissions.  This ended up totaling 98301 transmissions for the 32767 samples.  
Sending nearly 100,000 transmissions over serial communication was a major factor in the time of 
processing in the final implementation.  
 
Generating the Inverse Filter 
 
Upon receiving the impulse response of the room, MATLAB takes the FFT of this data.  The FFT is 
then truncated from 100 Hz to 10 kHz, due to equipment limitations inherent to the microphone we 
were using.  This is easily upgradeable by using a better microphone with a wider frequency 
response.  The FFT data was normalized using a mean value of 0 dB.  After the normalization the 
FFT was inverted and frequencies outside the 100 Hz to 10 kHz range were not affected.  Next, 
MATLAB’s fir2() function, which uses the Remez exchange algorithm, was used to create the 
inverse filter.  In this manner, MATLAB generates an inverse filter that corrects only for the stead-
state magnitude frequency response between 100 Hz and 10kHz.  Our research indicated that 
generating a proper time-domain inverse filter is a project in and of itself, so we used this to 
demonstrate a proof-of-concept that the overall system would work. 
 
Experimentation was done using 256, 512, and 1024 taps.  The number of taps used had a very large 
impact on the accuracy of the inverse filter.  Using 512 taps seemed to create a filter output that 
looked smooth and sounded the best.  This processing did not account for phase or timing of the 
system as a time-domain generated filter would.  It also doesn’t account for psycho-acoustic factors.  
A representation of the desired and actual inverse filters generated by our MATLAB code with 512 
taps is shown below in Figure 9. 
 

 
Figure 9 - Example of Ideal and Actual Inverse Filter Frequency Response 
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Sending Filter Coefficients to the DSP 
 
MATLAB then sends the coefficients through the RS232 to the DSP.  As before, each of the 
coefficients was sent in three, 8-bit segments to the DSP.  The DSP then receives the coefficients, 
converts the 8-bit segments into the 24-bit coefficients, and places them into an on-chip data array.   
 
Equalization Filtering 
  
One of the advanced feature sets of the Motorola DSP56307 is the Enhanced Filter Coprocessor 
(EFCOP).  This was a major reason in our initial choice of the 56307.  The idea was to have the 
EFCOP processing coefficients “behind the scenes”, leaving the DSP to process the rest of the 
program, such as making response measurements.  This would reduce our computation time for real 
time updating of coefficients, possibly moving the coefficient generation algorithm to the DSP.   
 
The scope of the project evolved from a focus on real time updating of coefficients to room 
response measurement and constant filter implementation.  It became apparent during the testing 
stages of the project that use of the EFCOP was beyond the scope of work to be done on this project 
due to deadlines and time constraints.   
 
A modified version of LAB56B.asm was instead used to create the on-chip inverse-filter.  The 
modifications required for this code included the conversion from the DSP56303 to the DSP56307 
and the location from which the coefficients are read.    A functional block diagram is shown below 
in Figure 10. 
 
 

 
Figure 10 - Final Implementation of Equalizing Filter Function 
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Summary of Accomplishments 
 
The final implementation used a plethora of techniques to accomplish all major objectives set out 
during the initial project planning.  The chain of events runs as follows: 
 

1. M-sequences are formed using a modular shift register (MSRG) of order 15. 
2. One sequence is played to stabilize the system. 
3. The Motorola DSP56307 plays 256 M-sequences through the speaker. 
4. M-sequences are recorded and averaged to create a 32767 (215 - 1) array of samples. 
5. Recorded data is circularly cross-correlated while normalized "on-the-fly" to generate 

impulse response. 
6. This impulse response is transmitted to MATLAB via the RS-232 serial communication 

with circular buffering. 
7. MATLAB is used to take the Fast Fourier Transform (FFT) of this impulse, find an inverse 

and put the result into the FIR2 code to yield the filter coefficients. 
8. These filter coefficients are transmitted back to the DSP via the RS-232 serial 

communication with circular buffering. 
9. The DSP is then used to generate and implement the FIR filter on the board 

 
We were fully successful at implementing all the above processes, which meet our original 
definition of success.  Furthermore, the system is successful at making impulse response 
measurements, generating inverse filters and real-time filtering of programmatic material. 
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Results  
 
The following plots are the raw outputs from the MATLAB software and are impulse response and 
frequency response plots of various acoustic environments.  The following data sets were made 
using one ADS Model L620 3-way Loudspeaker (modified), an integrated Technics SA-290 
amplifier, and an audio-technica ATR20 cardioid pattern dynamic microphone.  A sequence length 
of 32767 was used. 
 
Anechoic Chamber 
 
The anechoic chamber is a large enclosed space in the Radiation Laboratory in the EECS 
department.  It is a horn style chamber meant for microwave studies and measures approximately 60 
feet by 20ft by 20ft.  The walls are covered with thick foam absorber.  It's not a perfect acoustic 
chamber but it works well.  For these measurements, the loudspeaker was set at the far narrow end 
of the chamber and the microphone placed on a platform in the center of the wide section, 
approximately 50 feet away. 
 
In Figure 11, the full impulse response is shown as returned from the DSP.  In the chamber, there 
are minimal reflections so the immediate direct sound is seen.  A zoomed in impulse is shown in 
Figure 12.  As one can see, it is nowhere near a perfect impulse or even a nice sinc function.  The 
frequency response is shown in Figure 14. 
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Figure 11 - Anechoic Chamber - Full Impulse Response 

 
 



©2003 16

0.042 0.044 0.046 0.048 0.05 0.052 0.054 0.056

-3

-2

-1

0

1

2

3

4

x 10
6

 
Figure 12 - Anechoic Chamber - Zoomed Impulse Response 
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Figure 13 - Anechoic Chamber - Front End of Impulse Response 
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Figure 14 - Anechoic Chamber - Non-Normalized Frequency Response 

 
 
1001 EECS Classroom 
 
The following measurements were made in the 1001 EECS Classroom.  The speaker was set on the 
front table facing towards the back of the room while the microphone was placed on the table 
approximately 15 feet away. 
 
In the impulse response (Figure 15) the first reflection is very clear and occurs a few milliseconds 
after the main impulse with what appears be the same phase.  Based on a rough estimation of 
distances, this looks like the first reflection off the ceiling.  The measurement is also much more 
noisy due to all the other reflections taking place.  Consequently, the frequency response is very 
different and much more noisy.  No 1/3rd octave graphic equalizer or real time analyzer could come 
close to actually measuring and correcting these problems. 
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Figure 15 - 1001 EECS - Impulse Response – Zoomed 
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Figure 16 - 1001 EECS - Frequency Response 
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Experimental Accuracy  
 
The following frequency response plots were made using a small omni-directional electret 
microphone and a cheap computer speaker placed approximately one foot apart.  One measurement 
was made with the A2REq system and one was made with a SigLab swept-sine analyzer.  Do note 
that the A2REq measurement agrees with the SigLab measurement but is much more detailed and 
excluding processing time, completes much faster with less audible irritation. 
 

 
Figure 17 - A2REq - Frequency Response 

 
 

 
Figure 18 - SigLab - Frequency Response 
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These plots are a zoom in on a smaller frequency range.  The A2REq measurement just required a 
change in the plot axis.  However to get an adequate frequency response in SigLab, a new 
measurement was needed with more points. 

 

 
Figure 19 - A2REq - Frequency Response (Zoom) 

 
 

 
Figure 20 - SigLab - Frequency Response (Zoom) 



©2003 21

Future Work 
 
Many facets of the project’s scope had to be sacrificed or changed in some way in order to yield a 
workable prototype by the deadline.  The real-time equalization updating of the system could not be 
achieved without further research and testing.  Many ideas that were placed aside could have been 
utilized, but time constraints and imposing deadlines loomed.  
 
During the planning stages of the project, extensive research was done on the Fast M-Sequence 
Transform (FMT) using the Fast Walsh-Hadamard Transform (FWHT).  This idea was placed aside 
as the scope of the project was reduced due to time constraints, hardware constraints, difficulty in 
theory and looming deadlines.  Implementing the FMT will decrease the computation time of the 
impulse response significantly as it is analogous to doing the FFT instead of the direct DFT 
 
Another current limitation on our project is that of the equipment.  The microphone we used has a 
rough frequency range of 100 Hz to 10 kHz.  By upgrading to a better microphone with a wider 
frequency range, the measurement system will be more robust.  Furthermore the system is currently 
monaural.  This project could come closer to marketability if a stereo measurement system was 
implemented such as the one proposed by Xiang and Schroeder. 
 
The required hardware to make this project run is quite formidable and costly.  Making this into a 
stand-alone system would be critical for any attempt at marketing this product.  This would include 
transferring from MATLAB, a costly software package not always available, over to something 
more mainstream, such as C++.  
 
The impulse response room measurement system using M-sequences delivers a tremendous amount 
of information about the room or listening environment being tested.  Not only is information about 
the frequency response available, but also about the phase response and time alignment.  The 
current inverse filtering system only corrects for frequency response variation, and does nothing 
along the lines of correcting phase.  This would definitely be the next step in the process of 
developing a real world version of the audio adaptive room equalization system. 
 
This summer, a few of the A2REq project team plan to continue work on this project.  Our first three 
main tasks will be to: 1) migrate the operation to an alternate DSP platform, possibly a TI C5510 or 
an Analog Devices Shark-Melody DSP, with preference given to floating-point systems, 2) fully 
implement the Fast M-sequence Transform on the DSP of choice, and 3) increase the noise 
immunity of the system by increasing the length of the sequence and the number of coherent 
averages used, possibly even allowing for a reduced amplitude used for characterization. 
 



©2003 22

Appendix I - Assembly Code for DSP56307 EVM 
There were two assembly programs written for the A2REq project that operate separately for the 
measurement (aareq1.asm) and the equalizing filter functions (filtr.asm).  The measurement 
program also needs two support macros: mlsgen.asm and normstore.asm.  Finally both 
programs require a few support files relating to the audio codec and interrupt support: 
ada_equ.asm, ada_ini.asm, ioequ.asm, intequ.asm, and v_init.asm.  These 
support files were not significantly modified beyond ada_ini.asm to support dual channel input 
circular buffers and simultaneous sample at a time input/output. 
 

  

         

          

 

 

 
 

 

 

 

 

 

 

James Glettler
Removed for Publication
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Appendix II – MATLAB CODE 

A number of MATLAB programs were written for testing and simulation of various aspects of this 
project in the design phase.  However, the final system uses one MATLAB program to receive and 
send data to the DSP and to compute the required inverse filter coefficients (matser.m).  
Simulation scripts can be provided on request. 
 

James Glettler
Removed for Publication
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Appendix IV - Executive Summary 

John Bemesderfer 
 
I am a senior engineering student with one class left 
for my undergraduate degree in Electrical Engineering, 
and I also have a degree in English.  I was involved 
with research into and implementation of the impulse 
measurement system, MATLAB simulations, and 
extensive debugging. 
 
I hope to continue work on this project to expand its 
usefulness to the consumer, particularly the audiophile.  
I am currently accepted and plan to attend the 
University of Michigan Master's program in Systems 
Electrical Engineering. 
 
James Glettler 
 
I am a third year electrical engineering undergraduate 
with one remaining semester.  I have been most 
involved in this project with designing and 
implementing the impulse response measurement 
subsystem.  I also have helped out with debugging the 
other various aspects of this project. 
 
This summer I hope to continue working on this 
project and bring it to commercial readiness.  I also 
will be applying to graduate school.  I hope to get a 
Ph.D. in signal processing and create a high-fidelity 
sound research and development firm, Elysian Audio 
(http://www.elysianaudio.com). 
 
Eric Hatty 
 
I am a fourth year electrical engineering student, 
graduating in April 2003.  My involvement in this 
project includes RS-232 serial communication 
between MATLAB and the DSP, as well as research 
into the DSP56307’s Enhanced Filter Coprocessor.  I 
was also involved in several stages of debugging and 
testing of the final design.   
 
I will begin my career with NEC Automotive 
Electronics this May as a Field Applications Engineer.  
I hope to continue my education with a master’s 
degree in Business Administration after gaining more 
work experience.   
 

Oz Pearlman 
 
I am a graduating senior with a B.S. in electrical 
engineering.  I have been most involved in this project 
in implementing the RS-232 serial communication, 
creating the presentations, and writing this technical 
report.  
 
This summer I will be moving to New York City to 
work for Merrill Lynch in Global Technology 
Services.  I am also planning to continue my magic 
career.  My website is www.watchmagic.com and I am 
releasing two magic DVD’s to the market in the 
upcoming weeks. 
 
Bill Stewart 
 
I am a graduating senior with a B.S. in electrical 
engineering.  I have been most involved in this project 
in implementing the RS-232 serial communication, 
creating the MATLAB inverse filter code, and 
debugging assembly code. 
 
I am currently looking for a job in the electrical 
engineering field.  I hope to continue my education 
with either a masters in engineering or business.   
 
Landry Tientcheu 
 
I am a graduating senior student at the University of 
Michigan (Michigan) with a Bachelor of Science in 
Electrical Engineering and Mathematics.  For my 
senior design project, I decided to be part of the 
Adaptive Audio Room Equalizer team to nourish my 
interest in acoustic music and enhance my knowledge 
of Audio equalizers. 
 
For this project, I essentially worked on the 
implementation of circular buffers.  I was also 
involved with the Enhanced Filter Coprocessor FIR 
filter (EFCOP) and of course the writing and 
debugging of the working code.  I will be going to 
graduate school next school year to complete a 
Master’s degree in Electrical Engineering and another 
one in Business Administration.  Eventually, I would 
love to make a career in the music industry. 




