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Abstract Climate change is an issue of risk management. The most important causes for
concern are not the median projections of future climate change, but the low-probability,
high-consequence impacts. Because the policy question is one of sequential decision
making under uncertainty, we need not decide today what to do in the future. We need only
to decide what to do today, and future decisions can be revised as we learn more.

In this study, we use a stochastic version of the DICE-99 model (Nordhaus WD, Boyer J
(2000) Warming the world: economic models of global warming. MIT Press, Cambridge,
MA, USA) to explore the effect of different rates of learning on the appropriate level of
near-term policy. We show that the effect of learning depends strongly on whether one
chooses efficiency (balancing costs and benefits) or cost-effectiveness (stabilizing at a given
temperature change target) as the criterion for policy design. Then, we model endogenous
learning by calculating posterior distributions of climate sensitivity from Bayesian
updating, based on temperature changes that would be observed for a given true climate
sensitivity and assumptions about errors, prior distributions, and the presence of additional
uncertainties. We show that reducing uncertainty in climate uncertainty takes longer when
there is also uncertainty in the rate of heat uptake by the ocean, unless additional
observations are used, such as sea level rise.

Climatic Change (2008) 89:67–85
DOI 10.1007/s10584-008-9406-0

M. Webster (*)
MIT Joint Program on the Science and Policy of Global Change, Massachusetts Institute of Technology,
E40-408, 77 Massachusetts Avenue, Cambridge, MA 02138, USA
e-mail: mort@mit.edu

L. Jakobovits
Technology and Policy Program, Massachusetts Institute of Technology, Cambridge, MA, USA

J. Norton
Department of Statistics and Operations Research, University of North Carolina at Chapel Hill, Chapel
Hill, NC, USA



1 Introduction

Climate change is a problem with a time scale of centuries and significant uncertainties.
Current debates over appropriate greenhouse gas emission reductions, both over potential
US domestic action and future international accords after the Kyoto commitment period
ends in 2012, focus on the overall level of reductions needed. Arguments for undertaking
only very minimal steps (e.g., $7–12 per ton CO2)

1 or delaying reductions altogether
remain prominent in these debates. Among the justifications for the delayed approach is
that we should wait until the uncertainty about the climate system is reduced.

While the actual policies implemented will ultimately be political decisions, to the extent
that they are informed by science, the level of near-term emissions reductions should be
guided by a long-term risk2 management perspective. In the absence of uncertainty,
efficient emissions reductions today would be determined by what is needed to meet the
long run target, however that target is chosen. Under uncertainty, the level of reductions
today should be a hedge between the policies that would be chosen under certainty for all
possible states of the world. We will show that the optimal level of this hedge depends
critically on both the amount of uncertainty and on whether the uncertainty can be expected
to be reduced (see also Manne and Richels 1995; Kelly and Kolstad 1999).

In this study, we explore the effect of reducing uncertainty about the climate on near-
term optimal greenhouse gas reductions. We adopt a Bayesian framework for updating
knowledge and beliefs about uncertainty. We start with the simple case of observations
only, and assume no cost to this learning. In reality, there is a cost to continuing
observations, and to improving the resolution of the observational network. This study can
provide a basis for value-of-information calculations. Hopefully scientific research will
make progress faster than can be made by passively observing the evolution of climate, but
the value of this additional information should be calculated as incremental to the learning
from observations. Thus, as a first step, we explore the rate of costless learning from
observing temperature change over the next several decades (for an estimate of the potential
costs of climate observations, see Keller et al. 2007; Baehr et al. 2007). In reality, learning
does not necessarily reduce the variance or even narrow in immediately on the “truth”
(Oppenheimer et al. 2008; Henrion and Fischoff 1986). In this paper, we will use the term
‘learning’ to refer only to the idealized process of narrowing uncertainty.

Our approach to estimating future learning builds on several previous studies. In a
seminal study of the time needed to learn about climate sensitivity, Kelly and Kolstad
(1999) use a first-order autoregressive model of temperature change to solve both
analytically and numerically for the number of decadal observations necessary to reject
alternative sensitivities with high confidence. They estimated that 9 to 16 decades are
needed for 95% confidence, and 11–20 decades are needed for 99% confidence. Leach
(2007) performed a similar calculation, and showed that adding an additional uncertainty in
the persistence of shocks could extend the time required to learn the climate sensitivity with
95% confidence to several centuries. Kolstad (1996) explored the effect of the rate of
learning in an optimal growth model with abatement and damage costs. This study showed
that if abatement capital is fully reversible, the learning rate has virtually no effect on near-
term abatement, but if capital is not reversible, faster rates of learning make lower control
rates optimal in the near-term.

1 Nordhaus 1994; Nordhaus and Boyer 2000, Yohe et al, 2004, U.S. Senate 2007.
2 Here, we define risk as consequence times probability.
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In the current paper, we build on the results of these earlier studies by showing the effect
of an additional uncertainty on the rate of learning. First, we review the effects of learning
on near-term optimal policy as compared with the case where learning will not occur. We
show in this context that whether learning matters depends in part on the framing of the
policy questions; expectation of future learning has a stronger effect if the goal is
temperature stabilization as opposed to economic efficiency (see also Keller et al. 2008).
We also show that what matters for policy is how soon we will reduce uncertainty, and how
much we will reduce it. We then calculate the rate of learning that would occur based on
observations of temperature change. Bayesian updating calculations are performed using a
two-dimensional climate model of intermediate complexity that explicitly represents
feedbacks between different climate processes: atmosphere, ocean, biosphere, sea–ice, the
carbon cycle, and heat fluxes. We show with our analysis that the presence of additional
uncertainties in these physical processes increase the time needed to reduce uncertainty, but
also show that observations of additional climate variables, such as sea level rise, can
decrease the time to learn.

To decide what we should do today, conditional on what we expect to learn, it is useful
to decompose this issue into two distinct questions. The first question is: how much do we
need to learn and by when for today’s policy to differ from what we would do without
learning? The second question is: how much and by when can we expect to reduce
uncertainty about climate sensitivity by observing temperature change? After addressing
each of these questions, we synthesize the results to determine whether and how expected
learning should affect the stringency of today’s policy.

In Section 2, we describe the stochastic optimization model used to explore the effect of
reducing uncertainty on near-term optimal emissions reductions. We compare the effect of
learning on optimal carbon taxes under cost–benefit optimization and under temperature
stabilization for several temperature targets. Calculations of how much uncertainty in
climate sensitivity will be reduced under various assumptions are given in Section 3.
Discussion of the results and conclusions are in Section 4.

2 Effect of learning on near-term emissions reductions

We first examine how policy should adjust to the expectation of learning. The effect of
learning on optimal policy choice is calculated using a stochastic version of the DICE-99
model (Nordhaus and Boyer 2000). The DICE-99 model is a Ramsey growth model
augmented with equations for CO2 emissions as a function of economic production, the
carbon-cycle, radiation, heat balance, and abatement cost and climate damage cost
functions. The model solves for the optimal path over time of the savings/consumption
decision, and also the emissions abatement decision that balances the cost of emissions
abatement against damages from increased temperatures.

We modify DICE-99 to perform stochastic optimization3 (Yohe et al (2004); Nordhaus
and Popp 1997; Kolstad 1996) by simultaneously representing different states of the world
(SOW), each with a different parameter value and probability of being obtained. Decisions
before learning are simulated by constraining policy to be the same across all SOWs.
Decisions after learning are simulated by removing this constraint. Using stochastic

3 In operations research, stochastic optimization refers to the choice of control variables that maximize the
expected value of an objective function, given a probability distribution over one or more parameters in the
model. In this usage, “stochastic” does not mean that the model output will vary for the same input.
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programming, we solve for the optimal intertemporal path of emissions reductions that
maximize the expected net present value of utility.

We assume for this initial example that the only uncertainty is the climate sensitivity.
This uncertainty is represented with the discrete four-valued prior probability distribution
given in Table 1. The assumed prior is a discrete distribution based on current estimates of
the probability distribution of climate sensitivity using historical temperature change and
radiative forcing (Andronova and Schlesinger 2001; Forest et al. 2001);

2.1 Effect of learning on efficient policy choice

When considering the effect of reducing uncertainty on the choice of optimal policy, it is
important to first compare the policy chosen under three simpler cases:

& Perfect Information – the true state of nature is known with certainty. A different
optimal policy path may be chosen for each SOW.

& Never Learn – knowledge of the true state of nature is never obtained. A single policy
path, which maximizes the expected utility under the prior probability distribution, is
chosen for all SOWs.

& Learn Perfectly – The true state of nature becomes known with certainty in a specified
time period. Before learning occurs, decisions are made based on the prior distribution.

None of these assumptions are realistic, but they bound the range of policy choice across
all possible assumptions about learning, and thus are a useful departure point for analysis.

We first examine these three scenarios under the efficient policy choice in DICE, which
minimizes the sum of abatement and damage costs. The results are described below and
shown in Fig. 1. If the climate sensitivity is known with certainty (Perfect Information) all
along, different carbon taxes and emissions abatement will result for each value of climate
sensitivity, with greater carbon taxes/abatement for higher climate sensitivities (black solid
lines in Fig. 1). If the uncertainty in climate sensitivity as given by the prior in Table 1
never changes (Never Learn), then the optimal taxes will be slightly higher than for the case
with climate sensitivity of 3° (blue dashed line in Fig. 1). This case is also sometimes called
the certainty equivalent case. If decisions are made under the prior until 2040, after which
the true climate sensitivity is revealed with certainty (Learn Perfectly), the optimal taxes
before learning follows almost exactly the never learn case, and after revelation the policy
reverts to the perfect information case (red dashed lines with circles). The carbon tax path

Table 1 Prior and posterior probabilities for partial reduction of uncertainty, assuming a 14% reduction in
the coefficient of variation from the prior

True state Most likely sensitivity after observation Prior probability

1.5 3 5 8

1.5 0.75 0.11 0.07 0.07 0.25
3 0.15 0.75 0.13 0.13 0.45
5 0.05 0.07 0.75 0.04 0.15
8 0.05 0.07 0.04 0.75 0.15
Coefficient of variation 0.789 0.499 0.384 0.380 0.596
Average 0.513
Reduction from prior 13.9%

70 Climatic Change (2008) 89:67–85



before learning occurs (2000–2040) is the “hedging” policy under the uncertainty, as
demonstrated by Manne and Richels (1995).

The relevant question for policy is: what should the carbon tax be today given what we
expect to learn? The effect of learning can be measured by the difference between the
optimal policy if learning is expected to occur in the future, and the optimal policy if
learning will never occur. Although the efficient level of taxes for a near-term period, 2015
for example, do depend on whether and when learning will occur, this dependence is
negligible (Fig. 2, Table 2). The reason for the weakness of the effect of learning on near
term policy has been shown elsewhere to be a result of the absence from models such as
DICE of a strong relationship between marginal costs or damages in one period and policy
choices in previous periods (Webster 2002), or equivalently of the absence of a binding
irreversibility (Kolstad 1996). In the absence of such inter-period dependencies, the
expectation of future learning has no significant effect because decisions before and after
learning are essentially independent in terms of the marginal costs and benefits. This
contrasts with the results of Keller et al. (2004), where learning had a strong effect in the
presence of a threshold. Because a partial reduction in uncertainty would necessarily result
in an optimal policy level between those chosen under the “never learn” and the “learn
perfectly” cases, there is no reason to further explore the effect of learning under the
economic efficiency framework in this model4.

2.2 Cost-effectiveness and avoiding temperature thresholds

An alternative decision-making framework to the economic efficiency approach used above
is to choose a minimum cost path of abatement that avoids some threshold level of climate
impact. The concept of stabilization is established in the Framework Convention on
Climate Change (UN 1992), and continues to be a focus in policy discussions of long-term
mitigation targets. One common proposal for a threshold is to stabilize global mean surface
temperature at some specified level above preindustrial levels, such as 2°C or 3°C (Yohe et
al. 2004; Toth et al. 2003). The proposed target of the European Union is stabilization of 2°
(European Council 2005).

2000 2020 2040 2060 2080 2100

C
a
rb

o
n
 T

a
x
 (

$
/t

o
n

)

0

50

100

150

200

Perfect Information
Never Learn
Complete Resolution in 2040

CS=8.0

CS=5.0

CS=3.0

CS=1.5

Fig. 1 Efficient carbon taxes
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black lines), never learning
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4 In a different model with processes not represented in DICE-99, such as endogenous technical change
(Popp 2004) or nonlinear ocean dynamics (Keller et al. 2004), learning will have a greater effect on policy
choice.
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Under the cost-effectiveness framework5, the expectation of learning can have a
significant impact on near-term policy choice. Figure 3 and Table 3 show the optimal
carbon taxes required to remain below a threshold of 2° warming under perfect information,
along with the hedging policies that would result from learning perfectly in different
periods. In these simulations, we assume that the temperature constraint must be met with
probability 1.0. If the uncertainty in climate sensitivity could be completely resolved by
2020, the optimal path would be between those under certainty for 3° and 5° climate
sensitivity. If learning is expected in 2030, the optimal path is between those for 5° and 8°
climate sensitivity. If the learning does not occur until 2040 or later, then until learning
occurs, the optimal hedging path is roughly the same as when climate sensitivity is known
to be 8°. If we discover after 2040 that the true climate sensitivity is less than 8°, the tax
level will thereafter be lowered.

The cause of this behavior is the threshold target. If the information can be obtained far
enough ahead of time to change course and still avoid the threshold, then a less stringent
policy will be optimal in the near term. However, if the learning occurs too late to avoid the
threshold in the worst case, then the optimal hedge will be chosen as if the true state of
nature is the worst case. To do any less would make it impossible to stay below the
threshold with probability one. If it later turns out that climate sensitivity is lower and the
abatement was excessive, the foregone growth is irreversible. This result is consistent with
studies that have shown the effect of learning in the presence of irreversibilities (Arrow and
Fisher 1974; Kolstad 1996; Ha-Duong 1998). Keller et al. (2004) and O’Neill et al. (2006)
have also shown the effect of a threshold on learning with similar results to those shown
here.

Figure 4 shows the cost-effective tax in 2015 for several temperature targets with
learning occurring in different periods. Note that less stringent temperature targets allow
learning to matter if it occurs later than 2040, but conversely that under more stringent
temperature targets the ability to avoid high carbon taxes by learning is greater.

5 Note that we neither advocate nor reject a cost-effectiveness framework with a temperature change
stabilization target. Our goal here is to illustrate the effect of learning under different analysis frameworks.
While stabilization at 2 degrees is here shown to have costs which outweigh the benefits, proponents of
threshold targets justify them on the large uncertainties in abatement costs and climate damages.
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Temperature targets above 4°C result in the same optimal taxes as in the cost-benefit
version above, since in this model the efficient solution keeps temperature change below 4°
for all climate sensitivities. Thus, the expectation of learning does change the choice of
cost-effective policy under a temperature stabilization target, but only if the target is fairly
stringent and only if the learning will occur quickly; i.e., within two to four decades. The
effect of learning in the presence of a threshold target is greatest during the decades just
before the threshold is reached. When the threshold is several decades away or it is too late,
learning has almost no effect.

2.3 Partial reduction in uncertainty under a temperature target

As shown above, optimal near-term carbon taxes will depend on whether we expect to
resolve uncertainty if the goal is to stabilize temperature change. The question then
becomes whether it is also optimal to set a lower near-term carbon tax if we only expect to
reduce, but not completely resolve, the uncertainty. How much do we need to learn in order
for near-term policy to be less stringent than if we would never learn?

To model partial reduction in uncertainty, we modify the stochastic DICE model. Here
we maximize the expected utility within the temperature change constraint across 16
SOWs, which consist of four subsets of four SOWs each. Each subset represents one
possible observation that results in a new posterior distribution over climate sensitivity, and
within a subset, each of the four states has a different climate sensitivity as its true state and

2000 2020 2040 2060 2080 2100

C
a
rb

o
n
 T

a
x 

($
/t

o
n
)

0

100

200

300

400
Perfect Information

Learn in 2020

Learn in 2030

Learn in 2040

Never Learn

CS=8.0
CS=5.0

CS=3.0

CS=1.5

Fig. 3 Cost-effective carbon tax-
es to stabilize global temperature
change at 2° above preindustrial.
Perfect information cases shown
as solid lines and dashed lines
show the hedging policy before
learning occurs in each of several
different periods. Carbon taxes
after learning occurs not shown
(see Table 3)

Table 2 Value of Information from learning in different periods under efficient case

Optimal Tax in
2015 ($/ton CO2)

NPV Consumption
(in 2005 trillion $)

Value of Information
(in 2005 billion $)

Value of Information
(% NPV Consumption)

Learn in 2020 17.47 208.0593 23.937 0.0115
Learn in 2030 17.48 208.0548 19.387 0.0093
Learn in 2040 17.49 208.0494 14.037 0.0067
Learn in 2050 17.51 208.0433 7.909 0.0038
Learn in 2060 17.52 208.0368 1.392 0.0007
Never learn 17.60 208.0354
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a posterior probability that this state obtains. Table 1 shows the posterior probabilities for
one case in which the standard deviations of the posteriors are on average reduced by 14%
from the prior. Each column shows one posterior distribution, and the total probability of
each state is the product of the prior and posterior probability.

We solve for the optimal carbon tax in 2015 for three different temperature targets
(2, 2.5, 3) and for two different assumptions per target about the period in which learning
occurs. The chosen learning periods differ for each temperature target, and reflect the time

Time When Learning Occurs

20
20

20
30

20
40

20
50

20
60

20
70

20
80

20
90

21
00

ne
ve

r

O
p

ti
m

a
l 
T

a
x 

in
 2

0
1

5

0

20

40

60

80

100

120

140
Temp <= 2.0

Temp <= 2.5

Temp <= 3.0

Temp <= 3.5

Fig. 4 Cost-effective carbon tax
in 2015 to achieve temperature
targets and the effect of complete
resolution of uncertainty in dif-
ferent periods

Table 3 Optimal carbon prices with learning under cost-effective 2° target

Optimal carbon price ($/ton)

CS 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100

Perfect info 1.5 5.2 6.8 8.5 10.3 12.4 14.8 17.4 20.4 23.6 27.3 31.4
3 15.9 21.8 29.1 38.4 50.6 66.7 88.0 116.6 154.4 201.7 247.8
5 33.9 48.0 66.6 91.5 124.9 169.5 228.8 263.0 264.0 266.3 269.7
8 69.4 101.3 144.4 203.4 270.4 265.8 263.5 263.0 264.0 266.3 269.7

Learn 2020 1.5 26.3 37.5 8.4 10.3 12.4 14.7 17.4 20.3 23.6 27.2 31.3
3 26.3 37.5 28.8 38.0 50.0 65.9 86.9 115.0 152.2 198.7 244.8
5 26.3 37.5 67.6 92.9 126.9 172.5 233.0 263.0 264.0 266.3 269.7
8 26.3 37.5 180.0 255.3 270.4 265.8 263.5 263.0 264.0 266.3 269.7

Learn 2030 1.5 47.6 70.2 101.6 10.1 12.2 14.6 17.2 20.2 23.4 27.0 31.0
3 47.6 70.2 101.6 35.9 47.1 61.8 81.1 106.7 140.4 183.3 229.1
5 47.6 70.2 101.6 85.1 115.6 156.3 210.2 263.0 264.0 266.3 269.7
8 47.6 70.2 101.6 277.8 270.4 265.8 263.5 263.0 264.0 266.3 269.7

Learn 2040 1.5 64.8 96.5 140.8 203.7 11.8 14.2 16.9 19.8 23.1 26.6 30.4
3 64.8 96.5 140.8 203.7 41.1 53.3 69.2 89.8 116.8 151.9 195.5
5 64.8 96.5 140.8 203.7 93.7 125.2 166.5 219.6 264.0 266.3 269.7
8 64.8 96.5 140.8 203.7 270.4 265.8 263.5 263.0 264.0 266.3 269.7

Never learn All 64.9 96.4 140.5 203.1 270.4 265.8 263.5 263.0 264.0 266.3 269.7
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period over which learning will influence the optimal hedging policy (see Fig. 5). To
achieve a 2° target, learning matters only if it occurs before 2040; for a 2.5° target, learning
must occur before 2060; for a 3° target, learning must occur before 2080. We assume for all
temperature targets that perfect information is obtained at this time (i.e. 2040, 2060, 2080
respectively), and assess the effect of obtaining revised posteriors 20 years or 10 years prior
to this date.

The revised posteriors assume a constant level of confidence across all four SOWs (e.g.,
75%), with the remaining probability (e.g., 25%) divided across states in accordance with
the ratio in the prior. The reduction in the coefficient of variation from the prior is then
assessed for all states and averaged, to provide a measure of the reduction in uncertainty (as
in Table 1). The results are given in Table 4 and Fig. 5. If the uncertainty in climate
sensitivity is reduced by 20% or less, there is relatively little change in the optimal carbon
tax relative to the “Never Learn” solution. If the reduction in uncertainty is greater than
40%, however, the optimal tax is nearly as low as the case in which all uncertainty is
resolved in 2020. There appears, in this model, to be a critical reduction in the level of
uncertainty necessary to affect policy, a reduction of at least 20–40% in the coefficient of
variation.

In summary, the results from the stochastic optimization model indicate that while the
economically efficient policy is not significantly influenced by the expectation of future
learning, the cost-effective policy to achieve temperature stabilization is influenced by the
expectation of learning. In the latter case, the effect on policy depends critically on how
soon the learning will occur, and on how much the uncertainty will be reduced. If the
uncertainty in climate sensitivity can be reduced by 20–40% within the next 20 years, a
lower carbon tax and lower carbon abatement will be cost-effective in achieving
temperature targets of 2° to 3°. However, if this much learning is not expected within a
few decades, the cost-effective target for temperature stabilization is the same as if we never
expected to learn, which entails a significantly higher level of abatement.

3 Bayesian learning about climate sensitivity

The previous section has shown that to remain below an increase of 2°C to 2.5°C global
mean temperature change, the cost-effective level of carbon taxes over the next decade
depends on whether we can reduce the uncertainty in climate sensitivity by 20–40% within
the next few decades. We now turn to a more detailed model of the climate system to
estimate the amount of uncertainty that could be expected to be reduced by hypothetical
future observations of climate.

3.1 Methods and models

Unlike the 4-state discrete distribution in the previous section, here we approximate the
continuous uncertainty in climate sensitivity with a 100 bin discrete distribution. We
measure the amount of learning for each posterior in terms of the reduction in the
coefficient of variation, which is equal to the standard deviation normalized by the mean
and provides a measure of variance independent of the mean of the distribution. Since
different posteriors result from different sets of observations, each conditional on a different
sensitivity being the “true state of nature”, we use the average reduction in the coefficient of
variation, relative to the prior, of four possible true states: 1.5°C, 3.0°C, 5.0°C, and 8.0°C.
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Our model for projecting future temperature changes and sea level rise is a reduced-form
model that has been statistically fitted to the MIT two-dimensional climate model (Sokolov
and Stone, 1998; Webster et al. 2003). The MIT climate model consists of a two-
dimensional (2D) zonally-averaged land–ocean resolving atmospheric model, coupled to an
atmospheric chemistry model, a 2D ocean model consisting of a surface mixed layer with
specified meridional heat transport, diffusion of temperature anomalies into the deep ocean,
an ocean carbon component, and a thermodynamic sea–ice model (Sokolov and Stone
1998; Wang et al. 1998, 1999; Prinn et al. 1999).

The reduced-form model reproduces the global and zonal temperature changes and sea
level rise from the MIT model, based on over 1500 simulations with the 2D model, and
exhibits less than 1% error over a wide range6 of its input parameters: greenhouse gas
emissions over time, climate sensitivity, deep ocean heat uptake, and aerosol forcing. The
reduced-form model consists of third-order expansions for decadal average temperature
change and decadal sea level rise, as a function of the above uncertain input parameters.
The reduced-form model has been documented in detail elsewhere (Webster et al. 2003;
Webster 2002). Use of the MIT climate model enables us to consider two additional factors:
the effect of uncertainty in the deep ocean heat uptake, and the additional learning from
combining sea level rise observations with temperature observations.

Learning is modeled as Bayesian updating according to Bayes’ Law:

P CS $Tjð Þ ¼ P $T CSjð ÞP CSð Þ
Pn

i¼1
P $T jCSið ÞP CSið Þð Þ

ð1Þ

Equation 1 expresses Bayes’ Law in terms of the specific problem here: what is the
posterior distribution for climate sensitivity (CS) given an observed temperature change
trajectory (ΔT)?

The Bayesian updating calculation is performed by Monte Carlo Integration. First, a
value for the “true” climate sensitivity is assumed. Then the MIT climate model is used to
generate a time series of observations for the years 2000–2100 that could result from that
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true sensitivity. The third step is to calculate the likelihood of the observation P(ΔT|CS) for
successive intervals of 0.1°C over the range of possible values for sensitivity based on a
conditional Monte Carlo simulation with 4,000 samples. The final step is to calculate the
posterior probability distribution P(CS|ΔT), by multiplying the prior distribution and the
likelihood, and renormalizing to integrate to one. We repeat this calculation for each of four
possible “true” values for climate sensitivity: 1.5°C, 3.0°C, 5.0°C, and 8.0°C.

A critical assumption in these calculations is the level of error or “noise” between
observations and the model. In the calculations here, the error is modeled as independently
and identically normally distributed with mean zero and a standard deviation σe, which we
vary in sensitivity testing. The error is discussed further in section 3.3 below.

3.2 Updating climate sensitivity from observations of temperature change

We begin with the simplest case, using observations of decadal average global mean surface
temperature change to revise the probability distribution of climate sensitivity. Figure 6
shows the revised probability distributions for climate sensitivity from the updating
calculations outlined above, using one possible set of assumptions about the prior
distribution and magnitude of error. The figure shows the posterior distributions for four
possible “true” values of climate sensitivity that would be learned by 2020 and 2040,
respectively. Note that by 2020 under these particular assumptions, the change is small,
mainly reducing the likelihood of very high sensitivities in the 1.5 case, and of very low
sensitivities in the other cases. By 2040, in contrast, the posterior PDFs are substantially
different from each other, except for the difference between the 5.0 and 8.0 cases, as will be
explained below.
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The rate at which uncertainty is reduced will also depend on the “true” climate
sensitivity that generates the observations. Figure 7 shows the reduction in the coefficient of
variation by decade, for the case where the errors have a standard deviation of 0.3K. Note
that if the true sensitivity is low (1.5K), the rate of learning is slower.

3.3 Sensitivity of learning rate to error and prior distribution

One of the key determinants of the rate of learning is the assumed error or noise in
matching observation to model. If there were no sources of error or variability at all, and if
climate sensitivity was the only uncertainty, then one observation would be enough to know
the climate sensitivity perfectly. There are several different sources of the divergence
between observations and model. The first and best known source is the natural variability
of the climate system (Folland et al. 2001), estimated at 0.09°C/decade. However, natural
variability is not the only or even necessarily the largest source of error. A second source
for which there are less precise estimates is the error in a model’s ability to match
observations. This second source includes the effects of both model bias and model
variability. A third source of error is observational or measurement error. While not
negligible, this error is likely not as large as the other two sources.

The sum of all these sources of error must be accounted for in the Bayesian updating
calculations. Figure 8 shows the effect of different magnitudes of total error on the rate of
learning, measured as the average reduction in the coefficient of variation. For example, the
time until the uncertainty is reduced by 40% ranges from 2020 if the error is 0.1°C (natural
variability only) to 2065 if the error is 0.8°C. The greatest effect of the error is on the
amount of learning in the first few decades.

In order to estimate the total error between model and observations, we compare 500
model simulations of 20-century climate from the MIT 2D model (Forest et al. 2006) to the
Hadley Center observation dataset (Brohan et al. 2006; Jones et al. 1999; Rayner et al.
2003, 2006). The deviations in decadal average global mean surface temperatures over
1860–2000 have standard deviations that range from 0.2K to 0.3K.

For the calculations shown here, we assume that the error is independent and identically
distributed (iid). It has been shown that the error in surface temperature change is
autocorrelated (Andronova and Schlesinger 2001) and that autocorrelated errors will slow
the rate of learning (Keller and McInerney 2007; Zellner and Tian 1964). Thus, all results
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here are likely biased towards more rapid learning than might be expected. However, the
relative rates of learning for one uncertain parameter vs. two parameters below, would
likely remain qualitatively unchanged with autocorrelated errors.

A second assumption that significantly affects the rate of learning is the prior probability
distribution. We consider here three alternative priors (Fig. 9). The simplest assumption is a
uniform distribution between 0.0 and 10.0K. Two other priors from the literature are from
Forest et al. (2001, 2002), one developed from a uniform prior before 20-century
observations were used to constrain the distribution, and one based on an expert prior. The
expert prior from Forest et al has the smallest variance of the three probability distributions.

There are two distinct effects of using a prior with a smaller variance. In general, a lower
variance for the prior will result in more rapid decreases in posterior variances (Fig. 10a).
Thus, one might expect that the rate of learning, measured by the reduction in the standard
deviation, can be accelerated by assuming more confident priors.

However, narrower priors increase the risk of overconfidence which may slow the
convergence of posteriors to the true value. This problem occurs when the true value in
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nature generating the observations is given a very low likelihood in the prior. As an
example, consider the case where the true climate sensitivity is 8.0K. Although the uniform
prior gives equal weight to this possibility as all others, the other two priors assign a very
low likelihood. As a result, many more observations are required before the 90% bounds of
the posterior even include the true value. In this example, even after a century of
observations, the true value lies outside the 90% bounds (Fig. 10b).

3.4 Updating joint distribution of climate sensitivity and ocean uptake

There is a third critical factor that determines the rate at which we will reduce uncertainty
about climate sensitivity: the presence of other uncertainties about the climate system. If
climate sensitivity were the only uncertainty, learning would be more straightforward and
might progress more rapidly. Unfortunately, there are several critical uncertainties7 about
the system that are not independent of each other (Forest et al. 2001, 2002, 2006). One of
the most important of these is the rate of heat uptake by the deep ocean (Sokolov and Stone
1998; Forest et al. 2006). The combination of the uncertainties in ocean uptake and climate
sensitivity presents a difficulty for reducing uncertainty, because for any observed
temperature change, there are many combinations of climate sensitivity and heat uptake
that are consistent with it.

Here we extend the above procedure to perform Bayesian updating on the joint
distribution of climate sensitivity (CS) and deep ocean heat uptake8 (Kv). The procedure is

7 Another important uncertainty is the radiative forcing strength of sulfate aerosols. Including this third
uncertainty is beyond the scope of this study.
8 The version of the MIT climate model used in this study has a 2D ocean: zonal and vertical layers. The Kv
parameter does not correspond to the vertical eddy diffusivity in a 3D ocean model. Rather, it represents
global scale heat diffusivity between the mixed layer and deeper layers. Specifically, the vertical diffusivity is
proportional to the square root of Kv.
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the same as above except that now the likelihood function is developed for all possible
combinations of CS and Kv. When temperature change is used as the set of observations to
update the joint distribution, learning is slower than it is for climate sensitivity only
(Fig. 11). The reason for this is that the range of climate sensitivities that can result in a
given temperature change is wider if heat uptake is simultaneously adjusted. A higher
climate sensitivity could be consistent with an observation if the additional heat was
absorbed into the deep ocean (faster heat uptake). Conversely, a lower climate sensitivity
could be consistent with the same temperature observation if less heat is mixed into the
deep ocean (slower heat uptake). If the posterior distribution resulting from updating on
temperature alone is overlaid on contours of temperature change as a function of sensitivity
and heat uptake, one can see how the high likelihood portion of the posterior clusters along
the observed temperature change contour (Fig. 12b).

Thus, an additional observation is needed to distinguish between different combinations
of CS and Kv that give similar surface temperatures. The difference between such pairs will
be reflected by the amount of heat stored in the ocean, and one measure of this is the sea
level rise from thermal expansion. Therefore, we repeat the calculations assuming true
values for climate sensitivity and for heat uptake, and using joint observations of surface
temperature change and sea level rise. Sea level rise from thermal expansion is similarly
determined by the MIT climate model, and we assume an independent and identically
distributed error of ±30% based on Church et al. (2001). Using the combined observations
more effectively constrains the posterior distributions and results in more rapid learning
(Figs. 11 and 12c).

4 Conclusions

From the calculations in this study, it appears that a substantial reduction in uncertainty in
climate sensitivity, of up to 20–40%, could be possible within the next two to five decades
as a result of the additional climate observations. The rate of learning would be accelerated
by considering multiple climate variables simultaneously. In addition to global mean
surface temperature and sea level rise, temperatures at various heights in the atmosphere
and depths in the ocean and zonal mean surface temperatures may further constrain possible

2020 2025 2030 2035 2040 2045 2050

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Year of Update

R
e
d
u
c
tio

n
 in

 A
v
e
ra

g
e
 C

o
e
ff
ic

ie
n
t 
o
f 
V

a
ri
a
tio

n

Update CS only, use temp only

Update CS & Kv, use temp only
Update CS & Kv, use temp & slr

Fig. 11 Rate of learning from
updating climate sensitivity only,
joint distribution of climate sen-
sitivity and heat uptake using
temperature observations only,
and joint distribution of climate
sensitivity and heat uptake using
temperature and sea level rise
observations. These updates as-
sume an error of 0.3K and use the
Forest et al. uniform prior

82 Climatic Change (2008) 89:67–85



values, although smaller scales of aggregation will also be associated with larger errors. In
general, the rate of learning will depend strongly on the magnitudes of natural variability,
model errors, and observational errors. A misspecification of these errors could even lead
beliefs temporarily away from the true state of nature (Oppenheimer et al. 2008).

In terms of the effect of expected learning on the appropriate stringency of greenhouse
gas reductions in the near-term, the estimates in this study suggest that uncertainty could be
reduced enough in the next few decades to justify a somewhat lower carbon tax (or less
stringent emissions cap) than if we did not expect to learn, but not as low as if we expected
to know for certain within a few decades. However if the goal is to meet a stabilization

Fig. 12 Joint prior and posterior probability distributions for climate sensitivity and deep ocean heat uptake;
a prior and posterior uptake from temperature observations 2000–2040 when true climate sensitivity is 5.0K
and true heat uptake is 2.5 cm/s1/2; b posterior from temperatures only through 2040 and contours of
temperature change from MIT 2D climate model; c prior and posterior joint distributions, updated on
observations of temperature change and sea level rise 2000–2040
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target, the delay in reducing these uncertainties argues for a somewhat precautionary
approach with greater near-term emissions reductions. Under a wide range of alternative
assumptions with the model shown here, the expectation of future learning never justifies a
carbon tax below the range of $15–20 per ton of CO2 for the next decade or two, and may
justify higher. In addition to climate thresholds, there are other reasons that future learning
might affect near-term policy, such as the possibility of significant endogenous technical
change within the energy system.

Much work remains to refine estimates of how quickly we might reduce uncertainty, and
even more importantly, to better identify what observations and what research could
accelerate the learning. Bayesian learning techniques, like the ones used here, can be used
to focus on both what climate variables and at what locations and resolution would most
efficiently reduce the uncertainty about the climate system. The value of information of
such additional observations would likely more than justify their costs if they can reduce
the uncertainty enough to avoid either unnecessary climate damage or unnecessary
regulation.
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