Go to the previous, next section.

Sections and Relocation

Background

Roughly, a section is a range of addresses, with no gaps; all data "in" those addresses is treated the same for some particular purpose. For example there may be a "read only" section.

The linker ld reads many object files (partial programs) and combines their contents to form a runnable program. When as emits an object file, the partial program is assumed to start at address 0. ld assigns the final addresses for the partial program, so that different partial programs do not overlap. This is actually an oversimplification, but it suffices to explain how as uses sections.

ld moves blocks of bytes of your program to their run-time addresses. These blocks slide to their run-time addresses as rigid units; their length does not change and neither does the order of bytes within them. Such a rigid unit is called a section. Assigning run-time addresses to sections is called relocation. It includes the task of adjusting mentions of object-file addresses so they refer to the proper run-time addresses. For the H8/300 and H8/500, and for the Hitachi SH, as pads sections if needed to ensure they end on a word (sixteen bit) boundary.

An object file written by as has at least three sections, any of which may be empty. These are named text, data and bss sections.

When it generates COFF output, as can also generate whatever other named sections you specify using the `.section' directive (see section .section name, subsection). If you do not use any directives that place output in the `.text' or `.data' sections, these sections still exist, but are empty.

When as generates SOM or ELF output for the HPPA, as can also generate whatever other named sections you specify using the `.space' and `.subspace' directives. See HP9000 Series 800 Assembly Language Reference Manual (HP 92432-90001) for details on the `.space' and `.subspace' assembler directives.

Additionally, as uses different names for the standard text, data, and bss sections when generating SOM output. Program text is placed into the `$CODE$' section, data into `$DATA$', and BSS into `$BSS$'.

Within the object file, the text section starts at address 0, the data section follows, and the bss section follows the data section.

When generating either SOM or ELF output files on the HPPA, the text section starts at address 0, the data section at address 0x4000000, and the bss section follows the data section.

To let ld know which data changes when the sections are relocated, and how to change that data, as also writes to the object file details of the relocation needed. To perform relocation ld must know, each time an address in the object file is mentioned:

In fact, every address as ever uses is expressed as

(section) + (offset into section)
Further, most expressions as computes have this section-relative nature. (For some object formats, such as SOM for the HPPA, some expressions are symbol-relative instead.)

In this manual we use the notation {secname N} to mean "offset N into section secname."

Apart from text, data and bss sections you need to know about the absolute section. When ld mixes partial programs, addresses in the absolute section remain unchanged. For example, address {absolute 0} is "relocated" to run-time address 0 by ld. Although the linker never arranges two partial programs' data sections with overlapping addresses after linking, by definition their absolute sections must overlap. Address {absolute 239} in one part of a program is always the same address when the program is running as address {absolute 239} in any other part of the program.

The idea of sections is extended to the undefined section. Any address whose section is unknown at assembly time is by definition rendered {undefined U}--where U is filled in later. Since numbers are always defined, the only way to generate an undefined address is to mention an undefined symbol. A reference to a named common block would be such a symbol: its value is unknown at assembly time so it has section undefined.

By analogy the word section is used to describe groups of sections in the linked program. ld puts all partial programs' text sections in contiguous addresses in the linked program. It is customary to refer to the text section of a program, meaning all the addresses of all partial programs' text sections. Likewise for data and bss sections.

Some sections are manipulated by ld; others are invented for use of as and have no meaning except during assembly.

ld Sections

ld deals with just four kinds of sections, summarized below.

named sections
text section
data section
These sections hold your program. as and ld treat them as separate but equal sections. Anything you can say of one section is true another. When the program is running, however, it is customary for the text section to be unalterable. The text section is often shared among processes: it contains instructions, constants and the like. The data section of a running program is usually alterable: for example, C variables would be stored in the data section.

bss section
This section contains zeroed bytes when your program begins running. It is used to hold unitialized variables or common storage. The length of each partial program's bss section is important, but because it starts out containing zeroed bytes there is no need to store explicit zero bytes in the object file. The bss section was invented to eliminate those explicit zeros from object files.

absolute section
Address 0 of this section is always "relocated" to runtime address 0. This is useful if you want to refer to an address that ld must not change when relocating. In this sense we speak of absolute addresses being "unrelocatable": they do not change during relocation.

undefined section
This "section" is a catch-all for address references to objects not in the preceding sections.

An idealized example of three relocatable sections follows. The example uses the traditional section names `.text' and `.data'. Memory addresses are on the horizontal axis.

as Internal Sections

These sections are meant only for the internal use of as. They have no meaning at run-time. You do not really need to know about these sections for most purposes; but they can be mentioned in as warning messages, so it might be helpful to have an idea of their meanings to as. These sections are used to permit the value of every expression in your assembly language program to be a section-relative address.

ASSEMBLER-INTERNAL-LOGIC-ERROR!
An internal assembler logic error has been found. This means there is a bug in the assembler.

expr section
The assembler stores complex expression internally as combinations of symbols. When it needs to represent an expression as a symbol, it puts it in the expr section.

Sub-Sections

Assembled bytes conventionally fall into two sections: text and data. You may have separate groups of data in named sections text or data that you want to end up near to each other in the object file, even though they are not contiguous in the assembler source. as allows you to use subsections for this purpose. Within each section, there can be numbered subsections with values from 0 to 8192. Objects assembled into the same subsection go into the object file together with other objects in the same subsection. For example, a compiler might want to store constants in the text section, but might not want to have them interspersed with the program being assembled. In this case, the compiler could issue a `.text 0' before each section of code being output, and a `.text 1' before each group of constants being output.

Subsections are optional. If you do not use subsections, everything goes in subsection number zero.

Each subsection is zero-padded up to a multiple of four bytes. (Subsections may be padded a different amount on different flavors of as.)

Subsections appear in your object file in numeric order, lowest numbered to highest. (All this to be compatible with other people's assemblers.) The object file contains no representation of subsections; ld and other programs that manipulate object files see no trace of them. They just see all your text subsections as a text section, and all your data subsections as a data section.

To specify which subsection you want subsequent statements assembled into, use a numeric argument to specify it, in a `.text expression' or a `.data expression' statement. When generating COFF output, you can also use an extra subsection argument with arbitrary named sections: `.section name, expression'. Expression should be an absolute expression. (See section Expressions.) If you just say `.text' then `.text 0' is assumed. Likewise `.data' means `.data 0'. Assembly begins in text 0. For instance:

.text 0     # The default subsection is text 0 anyway.
.ascii "This lives in the first text subsection. *"
.text 1
.ascii "But this lives in the second text subsection."
.data 0
.ascii "This lives in the data section,"
.ascii "in the first data subsection."
.text 0
.ascii "This lives in the first text section,"
.ascii "immediately following the asterisk (*)."

Each section has a location counter incremented by one for every byte assembled into that section. Because subsections are merely a convenience restricted to as there is no concept of a subsection location counter. There is no way to directly manipulate a location counter--but the .align directive changes it, and any label definition captures its current value. The location counter of the section where statements are being assembled is said to be the active location counter.

bss Section

The bss section is used for local common variable storage. You may allocate address space in the bss section, but you may not dictate data to load into it before your program executes. When your program starts running, all the contents of the bss section are zeroed bytes.

Addresses in the bss section are allocated with special directives; you may not assemble anything directly into the bss section. Hence there are no bss subsections. See section .comm symbol , length , see section .lcomm symbol , length.

Go to the previous, next section.