
high-level abstractions with complex 
operations (for example, Python or Go). 
With each subsequent generation, pro-
gramming languages have described 
richer semantics that enables desired 
functionality to be expressed more 
naturally. Not only has this evolution 
made programming easier, but such 
evolution allows humans to focus on 
what they want to do instead of how 
the machine should be programmed 
to do it. In other words, the evolution 
of high-level semantics has allowed hu-
mans to focus on the intent instead of 
the mechanism.

A similar evolution has occurred in 
computer networking. Early computer 
networks were statically configured 
machines that required manual config-
uration. Over time, network semantics 
evolved into distributed, self-configur-
ing switches and routers. But, with the 
complexity of modern networks (for ex-
ample, large enterprises, data centers), 
such a model became unscalable and 
unsustainable because network opera-
tors had to deal with individual rules 
on switches to configure and debug a 
network.

In recent years, software-defined 
networking (SDN) was developed as an 
answer to this need by capturing richer 

COM PU T ER S Y S T EM S H AV E evolved over decades to 
enable more flexible programmability. Unsurprisingly, 
such programmability has converged more closely 
to how humans think and speak. This is perhaps 
best exemplified in the evolution of programming 
languages: an obtuse set of ones and zeros (machine 
language), small snippets of instructions (assembly 
language), early low-level abstractions with human-
readable syntax (for example, ALGOL or C), and today’s 

Security 
Challenges 
of Intent-
Based 
Networking
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Intent-based networking (IBN) offers 
advantages and opportunities compared 
with SDN, but IBN also poses new and unique 
security challenges that must be overcome.
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 key insights
	˽ Intent-based networking (IBN) allows 

network operators to more easily define 
what they want their network to achieve 
through high-level intents rather than 
worrying about complex, low-level 
configuration details of how the network 
achieves it.

	˽ The separation between high-level intents 
and low-level configuration details 
creates a semantic gap between intended 
network objectives and actual behavior, 
which introduces security (and privacy) 
challenges that threaten the correct 
operation of the network.

	˽ Systematically studying the threats 
facing IBN uncovered several new attack 
vectors not found in legacy networks or 
traditional SDN networks.

	˽ Given the nascent state of IBN adoption 
by industry and vendors, we propose 
several opportunities and directions for 
IBN security research going forward.

https://dx.doi.org/10.1145/3639702
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3639702&domain=pdf&date_stamp=2024-07-02


semantics about network operations. 
SDN separates the control plane (that 
is, the decisions about traffic flow) from 
the data plane (that is, the traffic itself),23 
with an SDN controller that acts as a 
central vantage point. However, such 
separation still requires network opera-
tors to understand their networks’ low-
level protocols and policy rules while 
simultaneously dealing with increased 
complexity, diverse environments, and 
scalable capability demands.

Presently, the next progression in 
network evolution comes from intent-

based networking (IBN). Informally, 
IBN allows a network operator (that is, 
network administrator or network pro-
grammer) to describe their high-level 
intent for what they want to happen in 
the network as opposed to how such 
actions should be achieved with indi-
vidual traffic rules or particular proto-
cols. Such an approach is analogous to 
a higher-level programming language 
that represents a richer set of opera-
tions and instructions.

However, just as with programming 
languages that employ high-level ab-

stractions, such abstraction comes 
at the cost of further widening the se-
mantic gap between the interface pro-
vided to the operator and the actual 
traffic-forwarding rules and protocols 
used in the network. Unfortunately 
(and critically), the potential security 
and privacy implications of this se-
mantic gap have not been explored sys-
tematically to date.

In this article, we provide a brief 
overview of the advantages and op-
portunities that IBN provides. Based 
on those characteristics, we then 
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systematically analyze the unique se-
curity challenges that IBN poses and 
propose several opportunities to tack-
le these challenges. Given the recent 
interest from industry and academia 
in IBN, we posit that a thorough un-
derstanding of the IBN security pos-
ture will foster greater interest and 
deployment in this latest evolution of 
networks.

Background
IBN is best contrasted with traditional 
networks by its ability to allow network 
operators to define what the network 
should do instead of how it should be 
done. While SDN reduces the burden 
of manual configuration efforts, net-
work operators must still build and 
develop custom applications that re-
quire knowledge about lower-level net-
work events (for example, network for-
warding rules, configuration protocol 
limitations, and so on). In such envi-
ronments, operators without domain 
knowledge could construct networks 
incorrectly.

IBN reduces this burden by abstract-
ing away network implementation de-
tails, such as data-plane forwarding 

Figure 1. Intent lifecycle within IBN. Intent properties. IBN’s key feature 
lies in the intent of what the network 
should do. An operator specifies a user-
defined intent as a declarative set of 
general properties or constraints that 
must be met. Previous efforts3,29,31 have 
proposed diverse properties that can be 
incorporated into intents, and extend-
ing properties for expressive policies is 
an active research area.

For instance, some basic network 
properties can be expressed as con-
straints within intents:

	˲ Reachability guarantees connectiv-
ity between nodes in the network (for 
example, “allow a host with an IP ad-
dress of 10.0.0.1 to communicate with a 
host that has an IP address of 10.0.0.2”).

	˲ Waypointing specifies partial or 
complete paths for routing (for exam-
ple, “traffic destined to the database 
server should pass through the firewall 
first”).

	˲ Bandwidth allocates the data-plane 
bandwidth for a particular purpose 
(for example, “traffic destined to the 
database server should be at most 500 
Mbps”).

	˲ Isolation enforces that traffic is 
physically or virtually isolated from 
other traffic (for example, “traffic for 
disaster recovery must use dedicated 
and redundant network slices to avoid 
creating a single point of failure in the 
network”).

Intents can also be used to group 
similar devices together (for example, 
all hosts within a department of an or-
ganization) and can join together mul-
tiple constraints. Intents may include 
stateful constraints (for example, “the 
firewall must mirror traffic with more 
than five failed connections to a moni-
toring server”) or temporal constraints 
(for example, “traffic from the market-
ing team is only allowed from 9 a.m. to 
5 p.m., Monday to Friday”).

In short, intent properties enhance 
the expressiveness of how network be-
havior can be declared without placing 
the focus on lower-level details (for ex-
ample, network topology or network 
configuration protocol). This expres-
siveness also enables the reduction of 
complexity for network operators who 
no longer have to reason about behav-
ior solely through low-level configura-
tion changes.

Intent lifecycle. Once a network op-
erator has declaratively specified an 

The lifecycle includes two main stages, fulfillment and assurance, that ultimately form a feed-
back loop toward automated, semantically rich network functionality.

rules, network configuration protocols 
(for example, OpenFlow, SNMP, OSPF, 
BGP), and the underlying physical (or 
virtual) topology.

IBN has been standardized by the 
Open Networking Foundation (ONF),27 
the Internet Research Task Force 
(IRTF),12 and the 3rd Generation Part-
nership Project (3GPP).1 Although dif-
ferences in terminology exist among 
the standards, all of them have a com-
mon model in which a centralized in-
tent controller (or IBN controller) man-
ages diverse types of intents based on 
an intent lifecycle. The intent controller 
may be realized as a subsystem of a 
network operating system (NOS) or an 
SDN controller.

Within the open source com-
munity, Open Network Automation 
Platform (ONAP), Open Network Op-
erating System (ONOS), and Open-
Daylight (ODL) provide high-level in-
tent interfaces for network operators. 
From industry, multiple commercial 
products officially support IBN, in-
cluding Cisco IBN10 and Juniper Aps-
tra.26 Google has also announced its 
internal use of IBN in its latest SDN-
based environment.14

Fulfillment

Network Operators

Human Intents

Network Intents

Network Objects

Assurance

IDS/IPS

Network Infrastructures

Translation Optimization

Verification

Observation

Compilation

Activation
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Figure 2. IBN workflow and adversarial threats.

phase translates high-level intents to 
low-level network objects following 
three stages: translation, compilation, 
and activation.

Translation. Translation converts 
user-defined intents into network-level 
intents. Translation allows non-expert 
users to simply define their desired 
goals using a human language or a de-
clarative language, and IBN can lever-
age natural-language processing (NLP) 
or a domain-specific compiler to ac-
complish this task.

Compilation. Compilation trans-
forms network-level intents into net-
work objects, which include abstrac-
tions such as device configuration 
information, forwarding rules in the 
data plane, and network topology. To 
bridge the gap between users and net-
work behaviors, the IBN controller uses 
the network-level intents and a global 
network view to calculate viable for-
warding rules that could satisfy the re-
quirements. For example, in Figure 2, 
the IBN controller calculates all paths 
between the marketing team’s hosts 
and the database hosts by referring to 
group information and the underlying 
network topology.

Activation. Activation implements 
and realizes the network objects in the 
underlying network devices. Activation 
can be delegated to the existing respon-
sible system, such as an SDN controller.

A network operator (that is, a user) specifies a high-level network intent that is fulfilled through 
low-level configuration in the data plane. IBN employs network observation to enhance veri-
fication, optimization, and recommendation capabilities. Attacks from network operators (O), 
applications (A), switches (S), and hosts (H) can exploit threats in Table 1.

intent and any associated intent prop-
erties, the operator submits the intent 
to the IBN controller. The intent follows 
an intent lifecycle, as shown at a high 
level in Figure 1.

The intent lifecycle consists of two 
phases: fulfillment and assurance. 
This is analogous to programming 
languages that have compilation and 
debugging phases. The fulfillment 
phase transforms intents from op-
erators into a set of network objects 
applied to network infrastructures. 
The assurance phase confirms the 
correctness of intents by reading 
network behaviors from devices and 
re-interpreting them as high-level in-
tents. During the two phases, the IBN 
controller continuously reconciles the 
inconsistencies between the intents 
and the network; verifies network in-
variants, such as the absence of loops 
or blackholes; and validates the high-
level intent semantics. Since an in-
tent exists in a specific lifecycle stage 
at any given time, IBN can represent 
each stage as an intent state.

Throughout the remainder of this 
article, we use a demonstrative example 
of a marketing team that requests net-
work capabilities within an enterprise 
organization’s network. Figure 2 shows 
the corresponding abstractions and 
events in the intent lifecycle.

Intent fulfillment. The fulfillment 

In Figure 2, the activation stage con-
trols network devices by sending flow 
(forwarding) rules on software switch-
es (for example, switches S1 and S2), 
changing configurations of devices (for 
example, the load balancer LB), and ex-
ecuting remote commands. Activation 
may also modify the executable code 
present on programmable devices (for 
example, a programmable data-plane 
configuration implemented by the data 
plane programming language P4). For 
any errors, such as a flow table overflow, 
the IBN controller will return the error 
message to the compilation stage to 
recompile an intent from which the ob-
ject originated.

Intent assurance. Once an intent has 
been fulfilled, IBN continues with a 
goal of continuous assurances that the 
network performs as expected. Such 
assurances enable greater insight capa-
bilities to proactively optimize and sug-
gest network improvements to the op-
erator. The assurance phase consists of 
three stages: observation, verification, 
and optimization.

Observation. Observation enables 
the construction of a centralized and 
global view of the network. Such ob-
servation occurs by periodically moni-
toring the network and synchronously 
receiving any messages from network 
devices. One goal from observation is 
to measure the network’s performance 
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for large networks and is subject to hu-
man error and misinterpretation.a

IBN summarizes the network’s cur-
rent status and reports key findings, 
which reduces the manual effort re-
quired to diagnose or improve network 
configuration. For instance, in Figure 2, 
the IBN controller reports to a network 
operator that 80% of the traffic destined 
to the load balancer LB via switch S1 
comes from host C. Optimization can 
also automatically produce recommen-
dations and subsequently implement 
them. An IBN-based network can learn 
from such summaries and suggest new 
intents. For instance, in Figure 2, the 
IBN controller suggests a new 300Mbps 
bandwidth constraint that the network 
operator can implement or that the IBN 

a	 According to Cisco, up to 95% of network up-
dates are manual, which increases operational 
costs two to three times.11

goal of the high-priority intent taking 
the highest priority.

To avoid such situations, the IBN 
controller can choose a new path for 
the low-priority intent. Additionally, 
whenever the network state changes 
(for example, link failure), the verifica-
tion process can help select affected 
intents for re-compilation and assess 
the effectiveness of given intents using 
the network statistics gathered during 
observation.

Optimization. Optimization sum-
marizes network behavior and recom-
mends suggested improvements. When 
an issue occurs in traditional networks, 
operators attempt to understand the 
root causes of the issue using a set of 
primitive tools (for example, ping, 
traceroute, and iperf) and check 
that the individual device configura-
tions are implemented as expected. 
Such an approach does not scale well 

to detect possible degradations. For 
instance, a switch in Figure 2 might 
experience a traffic bottleneck; depend-
ing on configuration, the switch may 
proactively notify the IBN controller or 
the IBN controller may reactively detect 
such traffic conditions.

Verification. Verification confirms 
whether given intents are correctly im-
plemented. If the IBN controller deter-
mines that an intent is not activated cor-
rectly after observation, the intent can 
be re-compiled with new parameters.

For instance, if there are two intents 
that compile down to flow rules that use 
the same matching fields (for example, 
a TCP/IP 5-tuple) but that implement 
different actions (for example, forward 
traffic on a particular port) on the same 
switch, the traffic may match success-
fully with the low-priority intent before 
such a match is checked against the 
high-priority intent. That distorts the 

Table 1. IBN threat model overview. Attacks can originate from network operators (O), applications (A), switches (S), or end user hosts (H).

Stage Challenge Security Threat Security Impact Attacker Example(s)

Translation/ 
Compilation

Intent Compiler Trust T1 � Installing incorrectly compiled 
intent

Intent Integrity Violation / DoS O, A CVE-2021-38363

Intent Composability
T2 � Installing overlapping intent Intent Integrity Violation O, A CVE-2022-29944

T3 � Leaking unauthorized intent Information Disclosure O

Intent Linearity

T4 � Installing intent that causes a side 
intent

Covert Traffic / Unauthorized Access O, A

T5 � Exploiting existing side intent Covert Traffic / Unauthorized Access H

Intent Granularity
T6 � Installing coarse intent Covert Traffic / Unauthorized Access O, A

T7 � Exploiting existing coarse intent Covert Traffic / Unauthorized Access H

Compilation App-Intent Interactions T8 � Installing intent from an 
unprivileged app

Elevation of Privilege A

Activation Activation Conflicts T9 � Installing intent that causes object 
conflict

Intent Integrity Violation O, A CVE-2021-38364

Verification

Intent-Forwarding Rule 
Consistency

T10 � Installing intent unsupported by 
network

Intent Integrity Violation O, A CVE-2022-29605

T11 � Exploiting verification vulnerability Intent Integrity Violation / DoS H, (S) CVE-2022-24035

Intent State Correctness

T12 � Installing intent that causes  
inconsistent state

Intent Integrity Violation O, A CVE-2022-29607 
CVE-2022-29609

T13 � Installing intent that corrupts 
state

Intent Integrity Violation O, A CVE-2022-29604 
CVE-2022-29606

Network Degeneracy

T14 � Installing intent that violates  
network invariant

Intent Integrity Violation O, A CVE-2022-29608

T15 � Installing non-functional intent Resource Exhaustion (DoS) O, A

Observation/ 
Optimization

Optimization 
Trustworthiness

T16 � Exploiting optimization 
vulnerability

Unauthorized Access H, (S)

T17 � Sending fake monitoring or 
telemetry data

Covert Traffic / Unauthorized Access H, S
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specific types of intents, they require 
domain-limited, structured inputs 
such as graphs or regular expressions. 
If users’ intents cannot be represented 
in such formats, IBNs cannot apply 
these tools to resolve their conflicts.

Complicating this matter are dy-
namic functions in translation or com-
pilation stages that evolve over time. 
Unlike predefined types of intents, it 
might be infeasible to even define a con-
flict for intents with new conditions and 
parameters created by these functions.

Finally, the multi-tenant nature of 
IBN makes composition a challenging 
security problem because composition 
conflicts and vulnerabilities can arise 
among different tenants’ priorities. For 
instance, a malicious tenant may infer 
information about network utilization 
or other tenants’ intents depending on 
carefully crafted intents that the mali-
cious tenant attempts to install (T3).

Attacking intent linearity. New in-
tents may also trigger “side intents” 
when combined with existing intents 
(T4). A side intent is traffic that is implic-
itly allowed but does not exist in any of 
the intents individually. Side intents 
allow attackers to escalate their access 
privileges to violate availability policies.

Figure 4 shows a violation of intent 
linearity. The first and the second in-
tents try to permit only the marketing 
team (MKT) to connect to the database 
(DB). The third intent tries to allow 
guests to access the customer service 
team (CST) via a NAT middleware box 
(NAT). Data-plane attackers can launch 
link-flooding attacks18 to congest tar-
geted links such as (S22, S33) and (S21, 
S34). When the (S22, S33) link fails, traffic 

exploitable in production-quality im-
plementations, which are marked with 
relevant example CVE identifiers.

Attacking intent fulfillment. Given 
that fulfillment introduces a new ab-
straction layer with new input formats 
to operators and users, the abstraction 
can bring unique challenges related to 
intent translation, compilation, and ac-
tivation that do not exist in traditional 
networks. We highlight several ways at-
tackers can misuse these mechanisms.

Attacking intent compiler trust. Faith-
fully translating intents into forward-
ing rules crucially depends on a unique 
component in IBNs: the compiler. Soft-
ware bugs in the compiler can cause 
not only syntactic errors that are usual-
ly visible to users with a system failure, 
but also semantic errors that often do 
not cause any crash and instead result 
in violating the integrity of how the net-
work should operate (T1).

Semantic errors in IBN can cause 
two types of misbehaviors that attack-
ers can exploit: a desired intent is not 
implemented in the network, or an 
undesired intent is implemented. To 
resolve the former case, the verifica-
tion stage should validate the installed 
intents. However, since there is no gen-
eral sound and complete algorithm for 
the verification problem, practical veri-
fiers often focus on soundness, which 
means they are incomplete.

Attacking intent composability. In-
tents can partially or fully overlap with 
one another with respect to their reach-
ability, bandwidth, and temporal prop-
erties (T2). As a result, IBN may be able 
to fulfill multiple intents when consid-
ered in isolation, but the network may 
not be able to meet the intended prop-
erties when combined. That could re-
sult in a denial of service attack against 
network availability.

Figure 3 shows an example that vio-
lates intent composability. While an al-
ternative path exists for either intent to 
use S13 in the route between both sides 
of the network topology, the IBN con-
troller selects the same path for both 
intents. That causes a bottleneck in S12 
that could have been avoided with prop-
er composability.

Conflicts among intents can be ex-
ceedingly hard to avoid. Intent APIs are 
often quite expressive and sometimes 
leverage a natural language. While 
composition tools3,29,31 can synthesize 

controller implements automatically on 
the operator’s behalf. The overarching 
goal of optimization is to reduce opera-
tional costs and improve the network’s 
utilization, reliability, and security.

Security Challenges
One market survey35 estimates that the 
IBN market had a $1.27 billion valua-
tion in 2021 that will eventually reach 
$5.09 billion by 2026. As organizations 
consider deploying IBN to enhance 
their network’s functionality and to re-
duce their operational costs, they must 
also weigh IBN’s security posture in the 
adoption calculation. Without a clearer 
understanding of IBN’s security chal-
lenges (and opportunities), organiza-
tions may be hesitant to adopt IBN in 
spite of its operational benefits.

To date, no systematization exists on 
the unique and inherent security chal-
lenges within IBN. Our goal in this sec-
tion is to highlight such security chal-
lenges and categorize them according 
to the two lifecycle stages of intent ful-
fillment and intent assurance. We note 
that all the challenges are, in some way, 
attributed to the large semantic gap be-
tween an operator’s network view and 
the low-level implementation in net-
work devices.

Threat model. We consider a threat 
model based on various actors in IBN, 
including network operators, network 
applications, network forwarding de-
vices (for example, switches, routers), 
and hosts (that is, traffic generated from 
end users). Figure 2 shows an overview 
of the attackers and the attack surface.

As shown in Figure 2, even if the in-
tent controller itself is considered trust-
ed, attackers can still attack almost 
all stages in IBN with negative conse-
quences. From the control plane, at-
tackers may be network-operator insid-
ers or malicious network tenants. From 
the data plane, attackers on the net-
work’s hosts can send arbitrary packets 
into the network. Such attackers may 
be able to indirectly exploit controller 
configuration, attack existing network 
devices with known vulnerabilities, or 
deploy malicious network functions 
that interact with the intent controller.

Table 1 provides an overview of 17 
threats, T1–T17, that are explained 
throughout the rest of this section. We 
highlight the fact that about half of 
these threats have been shown to be 

Figure 3. Violation of intent composability.

Intents 1 and 2 can independently meet 
their desired behaviors but may cause 
denial of service if the global view of all 
intents’ constraints is not considered.

1 MKT → DB, 1gbps

CST → WEB, 500mbps2 1gbps

S11 S14

S12

S13

MKT DB
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conflicts in implementation. This can 
occur when the compiled forwarding 
rules overlap, or when competing net-
work configurations in network de-
vices cause unintended consequences 
(T9). When a new intent with a higher 
priority has a conflict with an existing 
intent, the IBN controller should re-
compile the existing intent and try to 
activate it in other ways. If there is no 
way to reconcile these conflicts, the IBN 
controller should notify operators as to 
the unfulfilled intents. Otherwise, al-
lowing activation conflicts will result in 
violating integrity of existing intents.

IBN controllers may be exploited if 
they handle multiple intents with iden-
tical network objects. In such cases, de-
leting one of the intents or changing the 
network configuration may cause un-
wanted behavior. For example, in CVE-
2021-38364, deleting one of two intents 
that shared the same flow rules violated 
the other intent’s integrity.

Attacking intent assurance. Intent 
assurance validates the various layers 
of abstraction in IBN, from high-level 
intents to low-level network objects. As-
surance monitors all network events to 
perform process verification, summa-
rization, and recommendation. How-
ever, the semantic differences between 
user intents and those intents’ low-level 
implementation in the network create 
unique challenges. We highlight sev-
eral ways that attackers can manipulate 
assurances to violate the integrity and 
availability properties of the network.

Attacking intent–forwarding rule con-
sistency. Intents should be consistent 
with underlying network specifications, 
such as device configurations, any sup-
ported protocols, and the network’s to-
pology. Given that IBN abstracts away 
such details from users, users may un-
intentionally request intents that are 
beyond the capabilities of the underly-
ing network (T10).

Improper handling of unsupported 
intents by the IBN controller may cause 
adverse effects on data-plane behavior 
and control-plane processes. For exam-
ple, in CVE-2022-29605, an IBN control-
ler repeatedly attempted to install an 
intent’s IPv6 forwarding rules into leg-
acy switches that did not support IPv6, 
which misleads a network operator by 
showing an in-progress state.

Moreover, intents should be consis-
tent across network changes. For in-

greater connectivity than desired. A 
coarse intent can affect the network in 
unexpected ways and allow undesirable 
communication (T6). Coarse intents 
can conflict with each other because 
they cover larger subsets of the traffic 
space. Coarse intents can arise either 
from operators implementing an un-
der-specified (that is, over-provisioned) 
privilege policy or from the IBN con-
troller incorrectly implementing the 
network’s compilation and activation 
mechanisms.

Figure 5 shows an example of an 
unintended consequence of a coarse 
intent that over-provisions privileges. If 
the network operator simply defines the 
intent to provide connectivity between 
the customer service team (CST) and 
a database (DB), any guest of the CST 
department may gain unauthorized ac-
cess to the database (T7).

Exploiting application–intent interac-
tions. Modern network operating sys-
tems that use SDN allow for external 
network applications to extend the con-
trol plane’s functionality. In SDN, appli-
cations subscribe to events of interest 
so that the applications can consume 
and react to the events. For example, a 
Layer 2 forwarding switch application 
may subscribe to new packets com-
ing from the data plane that have not 
matched existing forwarding rules, and 
the application may choose to install 
new forwarding rules in the data plane.

Similarly, network applications can 
subscribe to intent-related events via 
the IBN controller. That enables exter-
nal network applications to install, re-
configure, remove, or observe intents. 
In such an environment, it is critically 
important to the overall network secu-
rity posture for operators to be able to 
define the privilege model between in-
tent applications and the IBN-enabled 
network.

The effects of granting privileges 
may not be obvious. For instance, an 
attacker that does not have permission 
to request intents may indirectly in-
stall intents by invoking cross-plane34 
network events to which the intent ap-
plications subscribe (T8). This leverages 
triggered events in the complex inter-
dependencies among network objects 
and the event-driven nature of network 
operating systems.

Attacking activation conflicts. In-
tents with different objectives can have 

from MKT to DB must go through S32. 
Similarly, when the (S21, S34) link fails, 
traffic from guests to CST must also go 
through S32. Finally, the guest attackers 
can leverage the two intents’ behaviors 
to access DB by sending a crafted pack-
et that spoofs MKT as the source (T5). 
Since the implicit side intent that is ex-
ploited (that is, connectivity between S31 
and DB) is not explicitly visible in the 
flow table, it is difficult for network op-
erators to detect such conditions.

Attacking intent granularity. One of 
the classic principles of secure design 
is the principle of least privileges.30 For 
IBN, this requires the finest granular-
ity of intent possible to avoid allowing 

Figure 4. Violation of intent linearity.

Switch S32 implements three intents that 
collectively enforce the policies that only 
MKT can connect to DB and that guests 
accessing CST must go through NAT first. 
One result is that a side intent, S, implicitly 
allows traffic from guests posing as MKT to 
access DB.

1 MKT → DB

2 any ↛ DB

3 Guest → NAT → CST

4 Guest (MKT) → DB

failed

S32S31 S34S33

S21 S22

Guest MKT CST DB
NAT

# IN SRC DST OUT

1 S21 MKT DB S22

2 * any DB drop

3 NAT NATed CST S22

3 S21 any CST NAT

Figure 5. Violation of least granularity of 
an intent.

An operator may wish to allow only repre-
sentatives of a customer service depart-
ment (CST) to access a database (DB), but 
how the intent is specified may unintention-
ally allow extra traffic to access DB.

1 CST → DB

Guest WAP CST DB

S41
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regular expressions. Since these tools 
focus on reconciling intents in pre-
deployment, they do not consider any 
malicious intents from either an in-
sider attacker or an attacker in a multi-
tenant network.

Formal network verification. Net-
work verification has long been stud-
ied within the networking community 
in the control plane2,15,28  and the data 
plane.6,13,16,19,21,25,36 Control-plane verifi-
cation tools can verify diverse types of 
policies that described as functions or 
graphs.2,28 However, these tools have 
not been implemented in the context of 
IBN security, which limits the classes of 
attacks they can formally verify.

Root cause analysis. Provenance has 
been proposed as a way to understand 
the causal dependencies of past intent 
and network activities.32 Although such 
tools can observe and track relevant 
network state changes that can aid in 
understanding past attacks, they do 
not sufficiently solve the additional 
challenge of automatically identifying 
undesirable behavior (for example, side 
intents generation).

Vulnerability discovery. Dynamic 
testing tools4,22 have been introduced 
toward discovering vulnerabilities and 
validating network configurations. 
While dynamic testing can reduce pos-
sibilities of novel attacks in IBN, it does 
not provide completeness guarantees 
(that is, absence of vulnerabilities).

Intent assurance. There have been 
several efforts toward automatically 
mining network specifications from 
the low-level network properties9,20 and 
summarizing network behaviors in a 
natural language.8 However, these ef-
forts do not address malicious attackers 
in the data plane, which may generate 
malicious telemetry data to deceive the 
IBN controller. In addition, if the IBN 
system leverages AI models in the intent 
assurance, the system inherits the class 
of general AI-related security threats. 
For instance, security challenges arise 
in AI-driven zero-touch networks from 
poisoning attacks in the training phase 
to evasion attacks in the testing phase.7

Toward Secure Design Solutions 
and Research Directions
We discuss some possible directions to 
mitigate the aforementioned open se-
curity challenges. Most of the solutions 
either do not yet exist or are nascent ar-

mentation allowed an intent with the 
same source and destination addresses 
to be installed.

Exploiting optimization trust. While 
optimization can be useful for ef-
ficiently using all the resources of a 
network, undermining the informa-
tion used in optimization can create 
security challenges. Optimization al-
gorithms and their implementations 
must be correct and trustworthy to 
avoid introducing vulnerabilities. At-
tackers can exploit such vulnerabilities 
to influence network decision making 
or to achieve undesirable network con-
ditions (T16).

In addition to the optimization code, 
the monitoring and telemetry data be-
ing observed must also be trustworthy 
(T17). That trustworthiness is derived 
in part from the trust placed on the 
underlying devices generating such 
data. IBN may use third-party sources, 
such as vendors that produce forward-
ing devices and developers who write 
software for network functions. An 
untrusted source can poison observed 
data, which can cause the optimization 
code to change the network in an unde-
sirable fashion that is beneficial for an 
attacker.

Status Quo of IBN Security
Based on the aforementioned security 
challenges, we now discuss the cur-
rent state of the art in IBN security. To 
the best of our knowledge, a compre-
hensive security assessment in IBN has 
not been realized. Toward that goal, we 
consider existing work related to IBN se-
curity and note security shortcomings.

Natural language approaches. 
LUMI17 introduces a natural language-
based IBN system, while presenting its 
open problems, such as ambiguities 
in conflicts and verifying correctness 
of natural-language intents. These un-
certainties can pose unnoticed vulner-
abilities in the IBN system, as several AI-
based systems have brought about new 
types of security attacks (for example, 
adversarial data poisoning).

Network policy composition. Prior 
work has attempted to synthesize the 
diverse types of intents, such as reach-
ability and waypoint,29 bandwidth, 
stateful, and temporal policies,3 as 
well as multi-tenancy.31 These tools re-
quire formal specifications of intend-
ed behaviors, such as policy graphs or 

stance, in CVE-2022-24035, an installed 
intent did not respond properly to sub-
sequent network changes, which could 
result in a denial-of-service attack when 
combining link-flooding attacks (T11). 
Such inconsistencies can be hard to re-
solve for non-specialists, given that the 
network’s details are more opaque to 
operators.

Attacking intent state correctness. An 
intent’s state should correctly represent 
the current stage at a specific time and 
the outcome of the intent. However, 
if the intent state is inconsistent with 
the intent processing, it will mislead a 
network operator or the intent control-
ler, which can be used to attack control 
plane processes (T12). For instance, in 
CVE-2022-29607, modifying an existing 
intent to have the same source and des-
tination address showed that the intent 
was installed without any flow rule, even 
though it should have been a failure.

If an intent that is expected to be 
correctly installed shows an internal 
corrupted error state, adversaries can 
exploit this to attack IBN (T13). For ex-
ample, in CVE-2022-29606, an intent 
could be corrupted with a large switch 
port number, which allowed an attack-
er to bypass any intent by assigning the 
large number to the host port.

Exploiting network degeneracy. IBN 
should consistently verify network in-
variants, such as the absence of for-
warding loops and black holes. While 
a large body of literature in network 
verification has focused on these invari-
ants, IBN faces additional challenges 
because operators (and developers) 
must find causal relationships between 
intents and conditions that cause the 
network to degenerate into undesirable 
behavior and violate network correct-
ness properties (T14). For instance, in 
CVE-2022-29608, a one-way intent gen-
erated a forwarding loop in certain net-
work topologies, which made it difficult 
to track the origin.

Another set of network degeneracy 
conditions can be caused by invalid in-
tents, such as a zero-bandwidth intent. 
Without proper logic to detect such in-
tents, the IBN controller could spend 
unnecessary resources to process in-
valid intents or even install ineffec-
tual network objects, which ultimately 
affects control-plane and data-plane 
performance (T15). For example, in 
CVE-2022-29607, one controller imple-
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between intents and the underlying 
configuration (for example, flow rules, 
network protocols) must also follow 
the same access-control policy in spite 
of any optimizations (for example, mul-
tiple intents sharing the same underly-
ing flow rules).

IBN can further construct intents 
to manage different intent spaces.5 
In such a model, each user can create 
intents within their virtual network. 
Those intents are then composed and 
deconflicted at the whole-network 
scale. Even if duplicate forwarding 
rules exist for intents in different intent 
spaces (for example, a forwarding rule 
that tunnels traffic between regions), 
the whole-network view can reconcile 
these flow rules globally.

RBAC alone, however, may be in-
sufficient for properly controlling ac-
cess in IBN. Previous work has shown 
that SDNs are vulnerable to cross-app 
poisoning attacks in which a mali-
cious application can indirectly trick a 
privileged application to manipulate 
the control-plane state shared by both 
applications.33 Since IBNs also run ap-
plications that create intents and sub-
scribe to intent-related events, IBN is 
also vulnerable to similar attacks.

To avoid such vulnerabilities, IBN 
design should incorporate an internal 
security framework that functions as 
a reference monitor while enforcing 
information flow control (IFC) among 
intent-related control-plane decisions. 
Such a framework would monitor all 
requests from both users and applica-
tions to create intents, intent-related 
events subscribed to by the applica-
tions, and the subsequent operations.

In short, IBN should not only pro-
vide a complete permission model for 
both network operators and applica-
tions, but also protect against confused 
deputy attacks that could leverage data 
dependencies among different intent 
applications and the intent–forwarding 
rule mappings.

Securing intent assurance. Intent ver-
ification. Although network verification 
has been studied within the network-
ing community,2,28 the intent semantics 
and the network invariants need to be 
verified for IBN. Beyond verifying intent 
semantics among diverse intents, IBN 
may need to verify intents which cannot 
be defined by one of known properties, 
such as smart functions that evolve dur-

eas of work, so we hope this discussion 
facilitates future research in the design 
of a secure and trustworthy IBN.

Securing intent fulfillment. Security-
privileged intents. To allow for flexible 
network policies, IBNs should provide 
new intent types and properties that 
represent diverse, expressive, and flexi-
ble security policies. Since these securi-
ty-related intents will impact the whole 
network, IBN can enforce multi-level 
intents that differentiate such security-
related intents from regular intents 
installed by third parties or individual 
users. While users can create and ob-
serve their intents, a security module 
(that is, reference monitor) within the 
IBN controller should manage security-
related intents akin to user-space and 
kernel-space privileges in traditional 
host-based operating systems.

Secure intent composition. During 
intent translation, IBNs can benefit 
from an additional secure composition 
layer to resolve intent composability. 
Although previous work has attempt-
ed to synthesize the diverse types of 
intents,3,29,31 these tools often require 
complex inputs, such as policy graphs 
or regular expressions. Secure com-
position tools should be able to auto-
matically recognize side intents and 
coarse intents.

Access control and information flow 
control. To tackle privilege-related 
challenges in IBN, new access-control 
and information flow-control mecha-
nisms should be designed, similar to 
those used in various multi-user or 
multi-application environments (for 
example, host operating systems, mo-
bile operating systems) but that take 
into account the unique security chal-
lenges posed by IBN.

IBN can benefit from a fine-grained, 
role-based access-control (RBAC) model 
to define permissions for each user. For 
example, one IBN implementation used 
in ONOS provides just three permissions 
(reading, writing, and event subscrip-
tion) that provide an operator with near-
ly unrestricted control over all network 
intents. To further limit access, IBN 
should provide fine-grained controls 
that enable operators to only manage a 
subset of the overall intent space, similar 
to the concept of network slicing.

While ostensibly straightforward to 
implement, IBN introduces new chal-
lenges with RBAC because the mapping 

If the intent state 
is inconsistent 
with the intent 
processing, it will 
mislead a network 
operator or the 
intent controller, 
which can be used 
to attack control 
plane processes.
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tackle them. Addressing these security 
challenges will allow IBN to unleash its 
full potential in the coming years.
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ing the intent lifecycle. Furthermore, 
IBN controllers can leverage incremen-
tal verification techniques to verify net-
work invariants (that is, the absence of 
network degeneracy conditions) and 
pinpoint specific intents to blame if 
those invariants are violated. To avoid 
disclosing internal errors in processing 
intents, IBN must be able to distinguish 
the exposure of intent states depend-
ing on security levels. In addition, IBN 
should defend against the adversaries 
speculating the underlying network by 
probing with test intents.

Intent consistency. Ensuring consis-
tency between the control-plane intents 
and data-plane forwarding rules is com-
plicated by asymmetric operations (for 
example, rules that are installed some 
time after the creation of intents) and 
network dynamics (for example, rules 
that change according to underlying 
network events). Such a consistency 
should not be viewed as an invariant, 
but rather as a property that is eventu-
ally correct.

For such a property to be useful, how-
ever, consistency must be achieved prior 
to network changes; otherwise, the net-
work will be perpetually in an inconsis-
tent state. Periodic monitoring is thus a 
possible approach to ensure intent con-
sistency (for example, the intent cleanup 
function in ONOS), but additional work 
is needed to make such monitoring 
code fast and scalable in a large net-
work. Backup intents can also be lever-
aged as a fail-safe mechanism to resolve 
inconsistencies within an IBN.

Conclusion
Although programmable networking 
has made significant progress in the 
last few years, deployable IBN is still in 
its infancy as new features emerge and 
new standards develop. In this nascent 
phase, understanding the particular se-
curity challenges inherent to IBN affords 
the opportunity to realize a more secure 
and trustworthy IBN for the future.

In this article, we positioned IBN as 
a new, semantically rich paradigm for 
networking that can bring great oppor-
tunity into designing next-generation 
networks, yet unique security challenges 
must be addressed to enhance the assur-
ance and trust placed in it. We studied 
why some of these challenges are hard 
to address with existing techniques and 
briefly outlined prescriptive solutions to 
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