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Intent-based networking (IBN) offers
advantages and opportunities compared
with SDN, but IBN also poses new and unique
security challenges that must be overcome.
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COMPUTER SYSTEMS HAVE evolved over decades to
enable more flexible programmability. Unsurprisingly,
such programmability has converged more closely

to how humans think and speak. This is perhaps

best exemplified in the evolution of programming
languages: an obtuse set of ones and zeros (machine
language), small snippets of instructions (assembly
language), early low-level abstractions with human-
readable syntax (for example, ALGOL or C), and today’s
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high-level abstractions with complex
operations (for example, Python or Go).
With each subsequent generation, pro-
gramming languages have described
richer semantics that enables desired
functionality to be expressed more
naturally. Not only has this evolution
made programming easier, but such
evolution allows humans to focus on
what they want to do instead of how
the machine should be programmed
to do it. In other words, the evolution
of high-level semantics has allowed hu-
mans to focus on the intent instead of
the mechanism.

A similar evolution has occurred in
computer networking. Early computer
networks were statically configured
machines that required manual config-
uration. Over time, network semantics
evolved into distributed, self-configur-
ing switches and routers. But, with the
complexity of modern networks (for ex-
ample, large enterprises, data centers),
such a model became unscalable and
unsustainable because network opera-
tors had to deal with individual rules
on switches to configure and debug a
network.

In recent years, software-defined
networking (SDN) was developed as an
answer to this need by capturing richer

key insights

m Intent-based networking (IBN) allows
network operators to more easily define
what they want their network to achieve
through high-level intents rather than
worrying about complex, low-level
configuration details of how the network
achieves it.

B The separation between high-level intents
and low-level configuration details
creates a semantic gap between intended
network objectives and actual behavior,
which introduces security (and privacy)
challenges that threaten the correct
operation of the network.

m Systematically studying the threats
facing IBN uncovered several new attack
vectors not found in legacy networks or
traditional SDN networks.

B Given the nascent state of IBN adoption
by industry and vendors, we propose
several opportunities and directions for
IBN security research going forward.
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Figure 1. Intent lifecycle within IBN.

The lifecycle includes two main stages, fulfillment and assurance, that ultimately form a feed-
back loop toward automated, semantically rich network functionality.
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systematically analyze the unique se-
curity challenges that IBN poses and
propose several opportunities to tack-
le these challenges. Given the recent
interest from industry and academia
in IBN, we posit that a thorough un-
derstanding of the IBN security pos-
ture will foster greater interest and
deployment in this latest evolution of
networks.

Background
IBN is best contrasted with traditional
networks by its ability to allow network
operators to define what the network
should do instead of how it should be
done. While SDN reduces the burden
of manual configuration efforts, net-
work operators must still build and
develop custom applications that re-
quire knowledge about lower-level net-
work events (for example, network for-
warding rules, configuration protocol
limitations, and so on). In such envi-
ronments, operators without domain
knowledge could construct networks
incorrectly.

IBN reduces this burden by abstract-
ing away network implementation de-
tails, such as data-plane forwarding

rules, network configuration protocols
(for example, OpenFlow, SNMP, OSPF,
BGP), and the underlying physical (or
virtual) topology.

IBN has been standardized by the
Open Networking Foundation (ONF),”
the Internet Research Task Force
(IRTF),"? and the 3" Generation Part-
nership Project (3GPP).! Although dif-
ferences in terminology exist among
the standards, all of them have a com-
mon model in which a centralized in-
tent controller (or IBN controller) man-
ages diverse types of intents based on
an intent lifecycle. The intent controller
may be realized as a subsystem of a
network operating system (NOS) or an
SDN controller.

Within the open source com-
munity, Open Network Automation
Platform (ONAP), Open Network Op-
erating System (ONOS), and Open-
Daylight (ODL) provide high-level in-
tent interfaces for network operators.
From industry, multiple commercial
products officially support IBN, in-
cluding Cisco IBN' and Juniper Aps-
tra.> Google has also announced its
internal use of IBN in its latest SDN-
based environment."
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Intent properties. IBN’s key feature
lies in the intent of what the network
should do. An operator specifies a user-
defined intent as a declarative set of
general properties or constraints that
must be met. Previous efforts***3! have
proposed diverse properties that can be
incorporated into intents, and extend-
ing properties for expressive policies is
an active research area.

For instance, some basic network
properties can be expressed as con-
straints within intents:

» Reachability guarantees connectiv-
ity between nodes in the network (for
example, “allow a host with an IP ad-
dress of 10.0.0.1 to communicate with a
host that has an IP address of 10.0.0.2”).

» Waypointing specifies partial or
complete paths for routing (for exam-
ple, “traffic destined to the database
server should pass through the firewall
first”).

» Bandwidth allocates the data-plane
bandwidth for a particular purpose
(for example, “traffic destined to the
database server should be at most 500
Mbps”).

» Isolation enforces that traffic is
physically or virtually isolated from
other traffic (for example, “traffic for
disaster recovery must use dedicated
and redundant network slices to avoid
creating a single point of failure in the
network”).

Intents can also be used to group
similar devices together (for example,
all hosts within a department of an or-
ganization) and can join together mul-
tiple constraints. Intents may include
stateful constraints (for example, “the
firewall must mirror traffic with more
than five failed connections to a moni-
toring server”) or temporal constraints
(for example, “traffic from the market-
ing team is only allowed from 9 a.m. to
5 p.m., Monday to Friday”).

In short, intent properties enhance
the expressiveness of how network be-
havior can be declared without placing
the focus on lower-level details (for ex-
ample, network topology or network
configuration protocol). This expres-
siveness also enables the reduction of
complexity for network operators who
no longer have to reason about behav-
ior solely through low-level configura-
tion changes.

Intent lifecycle. Once a network op-
erator has declaratively specified an



intent and any associated intent prop-
erties, the operator submits the intent
to the IBN controller. The intent follows
an intent lifecycle, as shown at a high
level in Figure 1.

The intent lifecycle consists of two
phases: fulfillment and assurance.
This is analogous to programming
languages that have compilation and
debugging phases. The fulfillment
phase transforms intents from op-
erators into a set of network objects
applied to network infrastructures.
The assurance phase confirms the
correctness of intents by reading
network behaviors from devices and
re-interpreting them as high-level in-
tents. During the two phases, the IBN
controller continuously reconciles the
inconsistencies between the intents
and the network; verifies network in-
variants, such as the absence of loops
or blackholes; and validates the high-
level intent semantics. Since an in-
tent exists in a specific lifecycle stage
at any given time, IBN can represent
each stage as an intent state.

Throughout the remainder of this
article, we use a demonstrative example
of a marketing team that requests net-
work capabilities within an enterprise
organization’s network. Figure 2 shows
the corresponding abstractions and
events in the intent lifecycle.

Intent fulfillment. The fulfillment

phase translates high-level intents to
low-level network objects following
three stages: translation, compilation,
and activation.

Translation. Translation converts
user-defined intents into network-level
intents. Translation allows non-expert
users to simply define their desired
goals using a human language or a de-
clarative language, and IBN can lever-
age natural-language processing (NLP)
or a domain-specific compiler to ac-
complish this task.

Compilation. Compilation trans-
forms network-level intents into net-
work objects, which include abstrac-
tions such as device configuration
information, forwarding rules in the
data plane, and network topology. To
bridge the gap between users and net-
work behaviors, the IBN controller uses
the networlk-level intents and a global
network view to calculate viable for-
warding rules that could satisfy the re-
quirements. For example, in Figure 2,
the IBN controller calculates all paths
between the marketing team’s hosts
and the database hosts by referring to
group information and the underlying
network topology.

Activation. Activation implements
and realizes the network objects in the
underlying network devices. Activation
can be delegated to the existing respon-
sible system, such as an SDN controller.

Figure 2. IBN workflow and adversarial threats.
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In Figure 2, the activation stage con-
trols network devices by sending flow
(forwarding) rules on software switch-
es (for example, switches S1 and $2),
changing configurations of devices (for
example, the load balancer LB), and ex-
ecuting remote commands. Activation
may also modify the executable code
present on programmable devices (for
example, a programmable data-plane
configuration implemented by the data
plane programming language P4). For
any errors, such as a flow table overflow,
the IBN controller will return the error
message to the compilation stage to
recompile an intent from which the ob-
ject originated.

Intent assurance. Once an intent has
been fulfilled, IBN continues with a
goal of continuous assurances that the
network performs as expected. Such
assurances enable greater insight capa-
bilities to proactively optimize and sug-
gest network improvements to the op-
erator. The assurance phase consists of
three stages: observation, verification,
and optimization.

Observation. Observation enables
the construction of a centralized and
global view of the network. Such ob-
servation occurs by periodically moni-
toring the network and synchronously
receiving any messages from network
devices. One goal from observation is
to measure the network’s performance

A network operator (that is, a user) specifies a high-level network intent that is fulfilled through
low-level configuration in the data plane. IBN employs network observation to enhance veri-
fication, optimization, and recommendation capabilities. Attacks from network operators (0),
applications (A), switches (S), and hosts (H) can exploit threats in Table 1.
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to detect possible degradations. For
instance, a switch in Figure 2 might
experience a traffic bottleneck; depend-
ing on configuration, the switch may
proactively notify the IBN controller or
the IBN controller may reactively detect
such traffic conditions.

Verification. Verification confirms
whether given intents are correctly im-
plemented. If the IBN controller deter-
mines that an intent is not activated cor-
rectly after observation, the intent can
be re-compiled with new parameters.

For instance, if there are two intents
that compile down to flow rules that use
the same matching fields (for example,
a TCP/IP 5-tuple) but that implement
different actions (for example, forward
traffic on a particular port) on the same
switch, the traffic may match success-
fully with the low-priority intent before
such a match is checked against the
high-priority intent. That distorts the

goal of the high-priority intent taking
the highest priority.

To avoid such situations, the IBN
controller can choose a new path for
the low-priority intent. Additionally,
whenever the network state changes
(for example, link failure), the verifica-
tion process can help select affected
intents for re-compilation and assess
the effectiveness of given intents using
the network statistics gathered during
observation.

Optimization. Optimization sum-
marizes network behavior and recom-
mends suggested improvements. When
an issue occurs in traditional networks,
operators attempt to understand the
root causes of the issue using a set of
primitive tools (for example, ping,
traceroute, and iperf) and check
that the individual device configura-
tions are implemented as expected.
Such an approach does not scale well

for large networks and is subject to hu-
man error and misinterpretation.?

IBN summarizes the network’s cur-
rent status and reports key findings,
which reduces the manual effort re-
quired to diagnose or improve network
configuration. For instance, in Figure 2,
the IBN controller reports to a network
operator that 80% of the traffic destined
to the load balancer LB via switch S1
comes from host C. Optimization can
also automatically produce recommen-
dations and subsequently implement
them. An IBN-based network can learn
from such summaries and suggest new
intents. For instance, in Figure 2, the
IBN controller suggests a new 300Mbps
bandwidth constraint that the network
operator can implement or that the IBN

a According to Cisco, up to 95% of network up-
dates are manual, which increases operational
costs two to three times."

Table 1. IBN threat model overview. Attacks can originate from network operators (0), applications (A), switches (S), or end user hosts (H).

Stage Challenge Security Threat Security Impact Attacker Example(s)
Intent Compiler Trust T1 iInr]“s;atllmg incorrectly compiled Intent Integrity Violation /DoS 0,A CVE-2021-38363
T2 Installing overlapping intent Intent Integrity Violation 0,A CVE-2022-29944
Intent Composability
T3 Leaking unauthorized intent Information Disclosure 6]
Transllat|(.)n/ T4 Installing intent that causes a side Covert Traffic / Unauthorized Access 0,A
Compilation ;
. ; intent
Intent Linearity
T5 Exploiting existing side intent Covert Traffic / Unauthorized Access ~ H
T6 Installing coarse intent Covert Traffic / Unauthorized Access 0A
Intent Granularity
T7 Exploiting existing coarse intent Covert Traffic / Unauthorized Access ~ H
Compilation App-Intent Interactions T8 Instglpng intent from an Elevation of Privilege A
unprivileged app
Activation Activation Conflicts T9 (I)gﬁﬁtling intent that causes object Intent Integrity Violation 0,A CVE-2021-38364
T10 Installingintent unsupported by  Intent Integrity Violation 0,A CVE-2022-29605
Intent-Forwarding Rule network
Consistency
T11 Exploiting verification vulnerability Intent Integrity Violation/DoS H, (S) CVE-2022-24035
T12 Installing intent that causes Intent Integrity Violation 0,A CVE-2022-29607
inconsistent state CVE-2022-29609
Verification  Intent State Correctness
T13 Installing intent that corrupts Intent Integrity Violation 0,A CVE-2022-29604
state CVE-2022-29606
T14 Installing intent that violates Intent Integrity Violation 0,A CVE-2022-29608
network invariant
Network Degeneracy
T15 Installing non-functional intent Resource Exhaustion (DoS) 0,A
T16 Exploiting optimization Unauthorized Access H, (S)
Observation/ Optimization vulnerability
Olptimpgertion  ishsoriiess T17 Sending fake monitoring or Covert Traffic / Unauthorized Access H, S

telemetry data

60 COMMUNICATIONS OF THE ACM | JULY 2024 | VOL.67 | NO.7



controller implements automatically on
the operator’s behalf. The overarching
goal of optimization is to reduce opera-
tional costs and improve the network’s
utilization, reliability, and security.

Security Challenges

One market survey® estimates that the
IBN market had a $1.27 billion valua-
tion in 2021 that will eventually reach
$5.09 billion by 2026. As organizations
consider deploying IBN to enhance
their network’s functionality and to re-
duce their operational costs, they must
also weigh IBN’s security posture in the
adoption calculation. Without a clearer
understanding of IBN’s security chal-
lenges (and opportunities), organiza-
tions may be hesitant to adopt IBN in
spite of its operational benefits.

To date, no systematization exists on
the unique and inherent security chal-
lenges within IBN. Our goal in this sec-
tion is to highlight such security chal-
lenges and categorize them according
to the two lifecycle stages of intent ful-
fillment and intent assurance. We note
that all the challenges are, in some way,
attributed to the large semantic gap be-
tween an operator’s network view and
the low-level implementation in net-
work devices.

Threat model. We consider a threat
model based on various actors in IBN,
including network operators, network
applications, network forwarding de-
vices (for example, switches, routers),
and hosts (thatis, traffic generated from
end users). Figure 2 shows an overview
of the attackers and the attack surface.

As shown in Figure 2, even if the in-
tent controller itself is considered trust-
ed, attackers can still attack almost
all stages in IBN with negative conse-
quences. From the control plane, at-
tackers may be network-operator insid-
ers or malicious network tenants. From
the data plane, attackers on the net-
work’s hosts can send arbitrary packets
into the network. Such attackers may
be able to indirectly exploit controller
configuration, attack existing network
devices with known vulnerabilities, or
deploy malicious network functions
that interact with the intent controller.

Table 1 provides an overview of 17
threats, T1-T17, that are explained
throughout the rest of this section. We
highlight the fact that about half of
these threats have been shown to be

exploitable in production-quality im-
plementations, which are marked with
relevant example CVE identifiers.

Attacking intent fulfillment. Given
that fulfillment introduces a new ab-
straction layer with new input formats
to operators and users, the abstraction
can bring unique challenges related to
intent translation, compilation, and ac-
tivation that do not exist in traditional
networks. We highlight several ways at-
tackers can misuse these mechanisms.

Attacking intent compiler trust. Faith-
fully translating intents into forward-
ing rules crucially depends on a unique
component in IBNs: the compiler. Soft-
ware bugs in the compiler can cause
not only syntactic errors that are usual-
ly visible to users with a system failure,
but also semantic errors that often do
not cause any crash and instead result
inviolating the integrity of how the net-
work should operate (T1).

Semantic errors in IBN can cause
two types of misbehaviors that attack-
ers can exploit: a desired intent is not
implemented in the network, or an
undesired intent is implemented. To
resolve the former case, the verifica-
tion stage should validate the installed
intents. However, since there is no gen-
eral sound and complete algorithm for
the verification problem, practical veri-
fiers often focus on soundness, which
means they are incomplete.

Attacking intent composability. In-
tents can partially or fully overlap with
one another with respect to their reach-
ability, bandwidth, and temporal prop-
erties (T2). As a result, IBN may be able
to fulfill multiple intents when consid-
ered in isolation, but the network may
not be able to meet the intended prop-
erties when combined. That could re-
sult in a denial of service attack against
network availability.

Figure 3 shows an example that vio-
lates intent composability. While an al-
ternative path exists for either intent to
use Sy; in the route between both sides
of the network topology, the IBN con-
troller selects the same path for both
intents. That causes a bottleneck in S,
that could have been avoided with prop-
er composability.

Conflicts among intents can be ex-
ceedingly hard to avoid. Intent APIs are
often quite expressive and sometimes
leverage a natural language. While
composition tools***' can synthesize
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Figure 3. Violation of intent composability.

Intents 1 and 2 can independently meet
their desired behaviors but may cause
denial of service if the global view of all
intents’ constraints is not considered.
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specific types of intents, they require
domain-limited, structured inputs
such as graphs or regular expressions.
If users’ intents cannot be represented
in such formats, IBNs cannot apply
these tools to resolve their conflicts.
Complicating this matter are dy-
namic functions in translation or com-
pilation stages that evolve over time.
Unlike predefined types of intents, it
might be infeasible to even define a con-
flict for intents with new conditions and
parameters created by these functions.
Finally, the multi-tenant nature of
IBN makes composition a challenging
security problem because composition
conflicts and vulnerabilities can arise
among different tenants’ priorities. For
instance, a malicious tenant may infer
information about network utilization
or other tenants’ intents depending on
carefully crafted intents that the mali-
cious tenant attempts to install (T3).
Attacking intent linearity. New in-
tents may also trigger “side intents”
when combined with existing intents
(T4). A side intent is traffic that is implic-
itly allowed but does not exist in any of
the intents individually. Side intents
allow attackers to escalate their access
privileges to violate availability policies.
Figure 4 shows a violation of intent
linearity. The first and the second in-
tents try to permit only the marketing
team (MKT) to connect to the database
(DB). The third intent tries to allow
guests to access the customer service
team (CST) via a NAT middleware box
(NAT). Data-plane attackers can launch
link-flooding attacks' to congest tar-
geted links such as (S, S3;) and (Sy,
S34). When the (S5, S3;3) link fails, traffic

JULY 2024 | VOL.67 | NO.7 | COMMUNICATIONS OF THE AcM 61



research and advances

Figure 4. Violation of intent linearity.

Switch S32 implements three intents that
collectively enforce the policies that only
MKT can connect to DB and that guests
accessing CST must go through NAT first.
One result is that a side intent, S, implicitly
allows traffic from guests posing as MKT to
access DB.
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An operator may wish to allow only repre-
sentatives of a customer service depart-
ment (CST) to access a database (DB), but
how the intent is specified may unintention-
ally allow extra traffic to access DB.
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from MKT to DB must go through Sj,.
Similarly, when the (S, S;4) link fails,
traffic from guests to CST must also go
through S;,. Finally, the guest attackers
can leverage the two intents’ behaviors
to access DB by sending a crafted pack-
et that spoofs MKT as the source (T5).
Since the implicit side intent that is ex-
ploited (that is, connectivity between S3
and DB) is not explicitly visible in the
flow table, it is difficult for network op-
erators to detect such conditions.
Attacking intent granularity. One of
the classic principles of secure design
is the principle of least privileges.** For
IBN, this requires the finest granular-
ity of intent possible to avoid allowing

greater connectivity than desired. A
coarse intent can affect the network in
unexpected ways and allow undesirable
communication (T6). Coarse intents
can conflict with each other because
they cover larger subsets of the traffic
space. Coarse intents can arise either
from operators implementing an un-
der-specified (that is, over-provisioned)
privilege policy or from the IBN con-
troller incorrectly implementing the
network’s compilation and activation
mechanisms.

Figure 5 shows an example of an
unintended consequence of a coarse
intent that over-provisions privileges. If
the network operator simply defines the
intent to provide connectivity between
the customer service team (CST) and
a database (DB), any guest of the CST
department may gain unauthorized ac-
cess to the database (T7).

Exploiting application-intent interac-
tions. Modern network operating sys-
tems that use SDN allow for external
network applications to extend the con-
trol plane’s functionality. In SDN, appli-
cations subscribe to events of interest
so that the applications can consume
and react to the events. For example, a
Layer 2 forwarding switch application
may subscribe to new packets com-
ing from the data plane that have not
matched existing forwarding rules, and
the application may choose to install
new forwarding rules in the data plane.

Similarly, network applications can
subscribe to intentrelated events via
the IBN controller. That enables exter-
nal network applications to install, re-
configure, remove, or observe intents.
In such an environment, it is critically
important to the overall network secu-
rity posture for operators to be able to
define the privilege model between in-
tent applications and the IBN-enabled
network.

The effects of granting privileges
may not be obvious. For instance, an
attacker that does not have permission
to request intents may indirectly in-
stall intents by invoking cross-plane
network events to which the intent ap-
plications subscribe (T8). This leverages
triggered events in the complex inter-
dependencies among network objects
and the event-driven nature of network
operating systems.

Attacking activation conflicts. In-
tents with different objectives can have
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conflicts in implementation. This can
occur when the compiled forwarding
rules overlap, or when competing net-
work configurations in network de-
vices cause unintended consequences
(T9). When a new intent with a higher
priority has a conflict with an existing
intent, the IBN controller should re-
compile the existing intent and try to
activate it in other ways. If there is no
way to reconcile these conflicts, the IBN
controller should notify operators as to
the unfulfilled intents. Otherwise, al-
lowing activation conflicts will resultin
violating integrity of existing intents.

IBN controllers may be exploited if
they handle multiple intents with iden-
tical network objects. In such cases, de-
leting one of the intents or changing the
network configuration may cause un-
wanted behavior. For example, in CVE-
2021-38364, deleting one of two intents
that shared the same flow rules violated
the other intent’s integrity.

Attacking intent assurance. Intent
assurance validates the various layers
of abstraction in IBN, from high-level
intents to low-level network objects. As-
surance monitors all network events to
perform process verification, summa-
rization, and recommendation. How-
ever, the semantic differences between
user intents and those intents’ low-level
implementation in the network create
unique challenges. We highlight sev-
eral ways that attackers can manipulate
assurances to violate the integrity and
availability properties of the network.

Attacking intent-forwarding rule con-
sistency. Intents should be consistent
with underlying network specifications,
such as device configurations, any sup-
ported protocols, and the network’s to-
pology. Given that IBN abstracts away
such details from users, users may un-
intentionally request intents that are
beyond the capabilities of the underly-
ing network (T10).

Improper handling of unsupported
intents by the IBN controller may cause
adverse effects on data-plane behavior
and control-plane processes. For exam-
ple, in CVE-2022-29605, an IBN control-
ler repeatedly attempted to install an
intent’s IPv6 forwarding rules into leg-
acy switches that did not support IPv6,
which misleads a network operator by
showing an in-progress state.

Moreover, intents should be consis-
tent across network changes. For in-



stance, in CVE-2022-24035, an installed
intent did not respond properly to sub-
sequent network changes, which could
resultin a denial-of-service attack when
combining link-flooding attacks (T11).
Such inconsistencies can be hard to re-
solve for non-specialists, given that the
network’s details are more opaque to
operators.

Attacking intent state correctness. An
intent’s state should correctly represent
the current stage at a specific time and
the outcome of the intent. However,
if the intent state is inconsistent with
the intent processing, it will mislead a
network operator or the intent control-
ler, which can be used to attack control
plane processes (T12). For instance, in
CVE-2022-29607, modifying an existing
intent to have the same source and des-
tination address showed that the intent
was installed without any flow rule, even
though it should have been a failure.

If an intent that is expected to be
correctly installed shows an internal
corrupted error state, adversaries can
exploit this to attack IBN (T13). For ex-
ample, in CVE-2022-29606, an intent
could be corrupted with a large switch
port number, which allowed an attack-
er to bypass any intent by assigning the
large number to the host port.

Exploiting network degeneracy. IBN
should consistently verify network in-
variants, such as the absence of for-
warding loops and black holes. While
a large body of literature in network
verification has focused on these invari-
ants, IBN faces additional challenges
because operators (and developers)
must find causal relationships between
intents and conditions that cause the
network to degenerate into undesirable
behavior and violate network correct-
ness properties (T14). For instance, in
CVE-2022-29608, a one-way intent gen-
erated a forwarding loop in certain net-
work topologies, which made it difficult
to track the origin.

Another set of network degeneracy
conditions can be caused by invalid in-
tents, such as a zero-bandwidth intent.
Without proper logic to detect such in-
tents, the IBN controller could spend
unnecessary resources to process in-
valid intents or even install ineffec-
tual network objects, which ultimately
affects control-plane and data-plane
performance (T15). For example, in
CVE-2022-29607, one controller imple-

mentation allowed an intent with the
same source and destination addresses
to be installed.

Exploiting optimization trust. While
optimization can be useful for ef-
ficiently using all the resources of a
network, undermining the informa-
tion used in optimization can create
security challenges. Optimization al-
gorithms and their implementations
must be correct and trustworthy to
avoid introducing vulnerabilities. At-
tackers can exploit such vulnerabilities
to influence network decision making
or to achieve undesirable network con-
ditions (T16).

In addition to the optimization code,
the monitoring and telemetry data be-
ing observed must also be trustworthy
(T17). That trustworthiness is derived
in part from the trust placed on the
underlying devices generating such
data. IBN may use third-party sources,
such as vendors that produce forward-
ing devices and developers who write
software for network functions. An
untrusted source can poison observed
data, which can cause the optimization
code to change the network in an unde-
sirable fashion that is beneficial for an
attacker.

Status Quo of IBN Security

Based on the aforementioned security
challenges, we now discuss the cur-
rent state of the art in IBN security. To
the best of our knowledge, a compre-
hensive security assessment in IBN has
not been realized. Toward that goal, we
consider existing work related to IBN se-
curity and note security shortcomings.

Natural language approaches.
LUMIY introduces a natural language-
based IBN system, while presenting its
open problems, such as ambiguities
in conflicts and verifying correctness
of natural-language intents. These un-
certainties can pose unnoticed vulner-
abilities in the IBN system, as several AI-
based systems have brought about new
types of security attacks (for example,
adversarial data poisoning).

Network policy composition. Prior
work has attempted to synthesize the
diverse types of intents, such as reach-
ability and waypoint,” bandwidth,
stateful, and temporal policies,* as
well as multi-tenancy.* These tools re-
quire formal specifications of intend-
ed behaviors, such as policy graphs or
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regular expressions. Since these tools
focus on reconciling intents in pre-
deployment, they do not consider any
malicious intents from either an in-
sider attacker or an attacker in a multi-
tenant network.

Formal network verification. Net-
work verification has long been stud-
ied within the networking community
in the control plane>'>* and the data
plane.®!#16:1921.25,36 Control-plane verifi-
cation tools can verify diverse types of
policies that described as functions or
graphs.>?® However, these tools have
not been implemented in the context of
IBN security, which limits the classes of
attacks they can formally verify.

Root cause analysis. Provenance has
been proposed as a way to understand
the causal dependencies of past intent
and network activities.* Although such
tools can observe and track relevant
network state changes that can aid in
understanding past attacks, they do
not sufficiently solve the additional
challenge of automatically identifying
undesirable behavior (for example, side
intents generation).

Vulnerability discovery. Dynamic
testing tools*?* have been introduced
toward discovering vulnerabilities and
validating network configurations.
While dynamic testing can reduce pos-
sibilities of novel attacks in IBN, it does
not provide completeness guarantees
(that is, absence of vulnerabilities).

Intent assurance. There have been
several efforts toward automatically
mining network specifications from
the low-level network properties®?® and
summarizing network behaviors in a
natural language.® However, these ef-
forts do not address malicious attackers
in the data plane, which may generate
malicious telemetry data to deceive the
IBN controller. In addition, if the IBN
system leverages Al modelsin the intent
assurance, the system inherits the class
of general Alrelated security threats.
For instance, security challenges arise
in AI-driven zero-touch networks from
poisoning attacks in the training phase
to evasion attacks in the testing phase.”

Toward Secure Design Solutions
and Research Directions

We discuss some possible directions to
mitigate the aforementioned open se-
curity challenges. Most of the solutions
either do not yet exist or are nascent ar-
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eas of work, so we hope this discussion
facilitates future research in the design
of a secure and trustworthy IBN.

Securing intent fulfillment. Security-
privileged intents. To allow for flexible
network policies, IBNs should provide
new intent types and properties that
represent diverse, expressive, and flexi-
ble security policies. Since these securi-
ty-related intents will impact the whole
network, IBN can enforce multi-level
intents that differentiate such security-
related intents from regular intents
installed by third parties or individual
users. While users can create and ob-
serve their intents, a security module
(that is, reference monitor) within the
IBN controller should manage security-
related intents akin to user-space and
kernel-space privileges in traditional
host-based operating systems.

Secure intent composition. During
intent translation, IBNs can benefit
from an additional secure composition
layer to resolve intent composability.
Although previous work has attempt-
ed to synthesize the diverse types of
intents,***3! these tools often require
complex inputs, such as policy graphs
or regular expressions. Secure com-
position tools should be able to auto-
matically recognize side intents and
coarse intents.

Access control and information flow
control. To tackle privilege-related
challenges in IBN, new access-control
and information flow-control mecha-
nisms should be designed, similar to
those used in various multi-user or
multi-application environments (for
example, host operating systems, mo-
bile operating systems) but that take
into account the unique security chal-
lenges posed by IBN.

IBN can benefit from a fine-grained,
role-based access-control (RBAC) model
to define permissions for each user. For
example, one IBN implementation used
in ONOS provides just three permissions
(reading, writing, and event subscrip-
tion) that provide an operator with near-
ly unrestricted control over all network
intents. To further limit access, IBN
should provide fine-grained controls
that enable operators to only manage a
subset of the overall intent space, similar
to the concept of network slicing.

While ostensibly straightforward to
implement, IBN introduces new chal-
lenges with RBAC because the mapping

If the intent state
is inconsistent
with the intent
processing, it will
mislead a network
operator or the
intent controller,
which can be used
to attack control
plane processes.
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between intents and the underlying
configuration (for example, flow rules,
network protocols) must also follow
the same access-control policy in spite
of any optimizations (for example, mul-
tiple intents sharing the same underly-
ing flow rules).

IBN can further construct intents
to manage different intent spaces.’
In such a model, each user can create
intents within their virtual network.
Those intents are then composed and
deconflicted at the whole-network
scale. Even if duplicate forwarding
rules exist for intents in different intent
spaces (for example, a forwarding rule
that tunnels traffic between regions),
the whole-network view can reconcile
these flow rules globally.

RBAC alone, however, may be in-
sufficient for properly controlling ac-
cess in IBN. Previous work has shown
that SDNs are vulnerable to cross-app
poisoning attacks in which a mali-
cious application can indirectly trick a
privileged application to manipulate
the control-plane state shared by both
applications.®® Since IBNs also run ap-
plications that create intents and sub-
scribe to intentrelated events, IBN is
also vulnerable to similar attacks.

To avoid such vulnerabilities, IBN
design should incorporate an internal
security framework that functions as
a reference monitor while enforcing
information flow control (IFC) among
intent-related control-plane decisions.
Such a framework would monitor all
requests from both users and applica-
tions to create intents, intentrelated
events subscribed to by the applica-
tions, and the subsequent operations.

In short, IBN should not only pro-
vide a complete permission model for
both network operators and applica-
tions, but also protect against confused
deputy attacks that could leverage data
dependencies among different intent
applications and the intent-forwarding
rule mappings.

Securing intent assurance. Intent ver-
ification. Although network verification
has been studied within the network-
ing community,>*® the intent semantics
and the network invariants need to be
verified for IBN. Beyond verifying intent
semantics among diverse intents, IBN
may need to verify intents which cannot
be defined by one of known properties,
such as smart functions that evolve dur-



ing the intent lifecycle. Furthermore,
IBN controllers can leverage incremen-
tal verification techniques to verify net-
work invariants (that is, the absence of
network degeneracy conditions) and
pinpoint specific intents to blame if
those invariants are violated. To avoid
disclosing internal errors in processing
intents, IBN must be able to distinguish
the exposure of intent states depend-
ing on security levels. In addition, IBN
should defend against the adversaries
speculating the underlying network by
probing with test intents.

Intent consistency. Ensuring consis-
tency between the control-plane intents
and data-plane forwarding rules is com-
plicated by asymmetric operations (for
example, rules that are installed some
time after the creation of intents) and
network dynamics (for example, rules
that change according to underlying
network events). Such a consistency
should not be viewed as an invariant,
but rather as a property that is eventu-
ally correct.

For such a property to be useful, how-
ever, consistency must be achieved prior
to network changes; otherwise, the net-
work will be perpetually in an inconsis-
tent state. Periodic monitoring is thus a
possible approach to ensure intent con-
sistency (for example, the intent cleanup
function in ONOS), but additional work
is needed to make such monitoring
code fast and scalable in a large net-
work. Backup intents can also be lever-
aged as a fail-safe mechanism to resolve
inconsistencies within an IBN.

Conclusion
Although programmable networking
has made significant progress in the
last few years, deployable IBN is still in
its infancy as new features emerge and
new standards develop. In this nascent
phase, understanding the particular se-
curity challenges inherent to IBN affords
the opportunity to realize a more secure
and trustworthy IBN for the future.

In this article, we positioned IBN as
a new, semantically rich paradigm for
networking that can bring great oppor-
tunity into designing next-generation
networks, yet unique security challenges
must be addressed to enhance the assur-
ance and trust placed in it. We studied
why some of these challenges are hard
to address with existing techniques and
briefly outlined prescriptive solutions to

tackle them. Addressing these security
challenges will allow IBN to unleash its
full potential in the coming years.
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