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Synonyms	
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Definition		

Moving target defenses (MTD) are techniques that 
seek to enhance the resiliency (cross-ref: Cyber 
Resilience) of a computer system by making it more 
dynamic, random, and/or diverse.  
 

Background		

The static nature of computer systems has 
traditionally contributed to an ‘economy of scale’ for 
cyber attackers. Attackers can craft an exploit 
against a copy of a computer system (comprising 
hardware and various software layers) and because 
numerous instances of the system are internally 
alike, they can compromise hundreds to millions of 
machines at once. This problem is exemplified in 
modern malware that often impacts millions of 
machines and in recent vulnerabilities such as 
Log4Shell (Wortley et al. 2021) that impact millions 
of machines. 
 

Techniques that fit within the scope of MTDs have 
long been studied in computer science. Some of the 
early examples of what are now called MTDs were 
used in the Apollo program for reliability reasons. 
The Apollo guidance computer system was called a 
Triple Modular Redundant (TMR) computer in which 
an equation was solved on three different circuits 
simultaneously and the results were compared to 
achieve fault tolerance (Lyons and Vanderkulk 1962) 
(cross-ref: Asynchronous Byzantine Fault Tolerance). 
This was an early example of diversity. Other data 
diversity approaches were studied in late 80s 
(Ammann and Knight 1988). Dynamic techniques for 
resiliency were also studied in early 2000s. 
 
The term moving target defenses gained widespread 
adoption around 2010 and the Networking and 
Information Technology Research and Development 
(NITRD) offered one of its early definitions: 
increasing the complexity of cyber attacks by making 
systems less homogeneous, less deterministic, and 
less static (NITRD 2010). 
 
The focus of this article is particularly on techniques 
against malicious cyber-attacks, and not those that 
target benign faults. 
 

Theory		

MTDs are defined in terms of three properties of 
making a system more dynamic, random, and/or 
diverse (Okhravi et al. 2013). Dynamism refers to 
changing the properties or internals of a system over 
time. Randomness refers to making an aspect of a 
system less predictable. Diversity refers to having 
different copies of a system with different internal 
properties. 
 
An MTD may have one or more of these properties. 
For example, a technique that periodically replaces 
web servers running in a virtual machine (VM) with 
fresh copies of the VM to remove attacker’s foothold 
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is an example of dynamism. Randomizing the 
location of loaded libraries in the memory space of 
an application, on the other hand, is an example of 
randomization. Periodically replacing VMs with 
copies that are further scrambled internally provides 
both dynamism and randomness. 
 
Based on their characteristics and implementation, 
MTDs can be categorized into five large domains: 
dynamic data, dynamic software, dynamic runtime 
environment, dynamic platform, and dynamic 
network. Dynamic data techniques change the 
syntax, representation, or format of data being 
processed by the system. Data randomization (Cadar 
et al. 2008) is an example of a dynamic data 
technique that masks all data values in an 
application using a random key to prevent their 
malicious modification. Dynamic software 
techniques randomize or diversify the application 
code. Multicompiler (Franz 2010) is an example of a 
dynamic software technique that inserts random 
number of no-operations (NOPs) into the application 
binary at compile time to enhance its resilience 
against control hijacking exploits. Dynamic runtime 
environment techniques change the system 
interface presented to the running application. 
Address space layout randomization (ASLR) is an 
example of a dynamic runtime environment 
technique that loads libraries at random offsets in 
memory at load time to resist code injection or code 
reuse attacks. Dynamic platform techniques change 
the properties of the underlying platform comprising 
the operating system, the hypervisor, and the 
hardware of the system. Self Cleansing Intrusion 
Tolerance (SCIT) (Bangalore and Sood 2009) is an 
example of a dynamic platform technique that 
periodically rotates server VMs with fresh copies to 
remove attackers’ foothold on the server. Lastly, 
dynamic network techniques change the 
connectivity or addressing of machines in a network. 
PSI (Yu et al. 2017) is an example of a dynamic 
network technique that dynamically adjusts the 

connectivity of machines in a network based on 
security-related attributes and events. 
 
Figure 1 illustrates the different domains of MTDs. 
Related surveys (Ward et al. 2018, Jajodia et al. 
2012) provide a more extensive list of MTDs and 
their properties. 
 

 
Figure 1: Moving target defense domains laid out 
against a typical compute stack.  
 
The resiliency offered by MTDs can be evaluated 
using various approaches. The threat model is a 
crucial factor when evaluating the protection offered 
by an MTD. If an attacker has to enumerate all 
possible states in order to bypass an MTD, measures 
such as the amount of randomness (i.e., entropy) 
can offer some insight into the difficulty of an attack. 
 
A more practical attack against MTDs, however, is 
information leakage attacks through which an 
attacker learns about how the system is randomized. 
For example, memory disclosure attacks (Strackx et 
al. 2009) or remote side-channels (Seibert et al. 
2014) are used to learn how the system is 
randomized. They can be usedto bypass dynamic 
runtime environment techniques such as ASLR or 
dynamic software techniques such as the 
multicompiler. 
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Leakage-resilient MTDs such as re-randomization 
techniques (Bigelow et al. 2015) and non-readable 
codes (Crane et al. 2015) have been studied as a way 
of mitigating the impact of information leakage 
attacks. 

Application		

MTDs have gained varying degrees of adoption in 
practice. Perhaps the most widely used MTD to date 
is ASLR that has been running on most major 
desktop and mobile operating systems (including 
Windows, Linux, Mac OS, iOS, and Android).  
 
The Windows operating system also deploys heap 
metadata randomization by XORing it with a random 
value, a form of dynamic data technique. 
 
Dynamic networks in the form of dynamic 
adjustment of connectivity has also been used in the 
form of network access control (cross-ref: Access 
Control Policies, Models, and Mechanisms) in 
various enterprises.  
 
Other MTDs such as dynamic software techniques 
and dynamic platform technique have gained some 
adoption, albeit in more limited use cases. 
 

Open	problems	and	Future	directions		

Several open problems and practical challenges have 
impeded broader adoption of MTDs (Larsen and 
Franz 2020). These problems form the basis for 
future work in this area. 
 
Despite the development of leakage-resilient 
techniques, information leakage attacks still pose a 
threat to many forms of MTDs (cross-ref: Leakage-
resilience). Practical and comprehensive protections 
against information leakage attacks remain an open 
problem (Ward et al. 2019). 
 

Some randomization/dynamism techniques impose 
a performance overhead, while diversification 
techniques often impose additional hardware 
overhead. Even when these overheads are small, 
they can be impractical/undesirable for resource-
limited platforms such as embedded systems. This is 
particularly important in areas where MTDs compete 
with deterministic defenses such as control flow 
integrity (CFI) (Larsen and Franz 2020). Development 
of extremely low-overhead MTDs particularly for 
resource-limited systems remain an open problem. 
 
Some MTDs also do not interoperate well with other 
defenses in a system or with some widely used 
system features. Among them, techniques that 
randomize the application binary on-disk pose a 
challenge to code signing defenses that are widely 
used in iOS devices and runtime randomization 
techniques also cannot seamlessly handle just-in-
time compilation or dynamic loading of libraries. For 
MTDs to gain broader adoption these gaps need to 
be addressed. 
 
Some forms of MTDs also pose a challenge to typical 
enterprise maintenance and operations tasks. For 
example, dynamic adjustment of connectivity in a 
network may impede network visibility for network 
operators, while code randomization techniques can 
complicate debugging. 
 
Furthermore, additional research is needed to study 
and design proper MTDs for advanced 
microarchitectural and hardware vulnerabilities such 
as Spectre (cross-ref: Spectre), Meltdown (cross-ref: 
Meltdown), Foreshadow, Rowhammer (cross-ref: 
Rowhammer), and the like. 
 

Cross-References		

Access Control Policies, Models, and Mechanisms 
Asynchronous Byzantine Fault Tolerance 
Cyber Resilience 
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