Article for
Encyclopedia of Cryptography, Security and Privacy

Moving Target
Defense

Hamed Okhravi
MIT Lincoln Laboratory
hamed.okhravi@Il.mit.edu

Synonyms

Moving target techniques, maneuvering, agility,
dynamic defenses

Definition

Moving target defenses (MTD) are techniques that
seek to enhance the resiliency (cross-ref: Cyber
Resilience) of a computer system by making it more
dynamic, random, and/or diverse.

Background

The static nature of computer systems has
traditionally contributed to an ‘economy of scale’ for
cyber attackers. Attackers can craft an exploit
against a copy of a computer system (comprising
hardware and various software layers) and because
numerous instances of the system are internally
alike, they can compromise hundreds to millions of
machines at once. This problem is exemplified in
modern malware that often impacts millions of
machines and in recent vulnerabilities such as
Log4Shell (Wortley et al. 2021) that impact millions
of machines.

Techniques that fit within the scope of MTDs have
long been studied in computer science. Some of the
early examples of what are now called MTDs were
used in the Apollo program for reliability reasons.
The Apollo guidance computer system was called a
Triple Modular Redundant (TMR) computer in which
an equation was solved on three different circuits
simultaneously and the results were compared to
achieve fault tolerance (Lyons and Vanderkulk 1962)
(cross-ref: Asynchronous Byzantine Fault Tolerance).
This was an early example of diversity. Other data
diversity approaches were studied in late 80s
(Ammann and Knight 1988). Dynamic techniques for
resiliency were also studied in early 2000s.

The term moving target defenses gained widespread
adoption around 2010 and the Networking and
Information Technology Research and Development
(NITRD) offered one of its early definitions:
increasing the complexity of cyber attacks by making
systems less homogeneous, less deterministic, and
less static (NITRD 2010).

The focus of this article is particularly on techniques
against malicious cyber-attacks, and not those that
target benign faults.

Theory

MTDs are defined in terms of three properties of
making a system more dynamic, random, and/or
diverse (Okhravi et al. 2013). Dynamism refers to
changing the properties or internals of a system over
time. Randomness refers to making an aspect of a
system less predictable. Diversity refers to having
different copies of a system with different internal
properties.

An MTD may have one or more of these properties.
For example, a technique that periodically replaces
web servers running in a virtual machine (VM) with
fresh copies of the VM to remove attacker’s foothold

DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited.

This material is based upon work supported by the United States Air Force under Air Force Contract No. FA8702-15-D-0001. Any opinions,
findings, conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the

United States Air Force.

N Springer



Article for
Encyclopedia of Cryptography, Security and Privacy

is an example of dynamism. Randomizing the
location of loaded libraries in the memory space of
an application, on the other hand, is an example of
randomization. Periodically replacing VMs with
copies that are further scrambled internally provides
both dynamism and randomness.

Based on their characteristics and implementation,
MTDs can be categorized into five large domains:
dynamic data, dynamic software, dynamic runtime
environment, dynamic platform, and dynamic
network. Dynamic data techniques change the
syntax, representation, or format of data being
processed by the system. Data randomization (Cadar
et al. 2008) is an example of a dynamic data
technique that masks all data values in an
application using a random key to prevent their
malicious modification. Dynamic software
techniques randomize or diversify the application
code. Multicompiler (Franz 2010) is an example of a
dynamic software technique that inserts random
number of no-operations (NOPs) into the application
binary at compile time to enhance its resilience
against control hijacking exploits. Dynamic runtime
environment techniques change the system
interface presented to the running application.
Address space layout randomization (ASLR) is an
example of a dynamic runtime environment
technique that loads libraries at random offsets in
memory at load time to resist code injection or code
reuse attacks. Dynamic platform techniques change
the properties of the underlying platform comprising
the operating system, the hypervisor, and the
hardware of the system. Self Cleansing Intrusion
Tolerance (SCIT) (Bangalore and Sood 2009) is an
example of a dynamic platform technique that
periodically rotates server VMs with fresh copies to
remove attackers’ foothold on the server. Lastly,
dynamic network techniques change the
connectivity or addressing of machines in a network.
PSI (Yu et al. 2017) is an example of a dynamic
network technique that dynamically adjusts the

connectivity of machines in a network based on
security-related attributes and events.

Figure 1 illustrates the different domains of MTDs.
Related surveys (Ward et al. 2018, Jajodia et al.
2012) provide a more extensive list of MTDs and
their properties.

\010 Dynamic Data
01014 Change data format or representation

(e.g., data syntax)

“ Dynamic Software Application
” Change application code (e.g., create
different variations of binary)

Runtime Environment # Dynamic Runtime Environment

Change the environment during execution
(e.g., memory randomization)

Operating System I

; I \BR Dynamic Platform
Hypervisor === Change platform properties (e.g., CPU

or operating system)

Hardware

P Dynamic Network
Network . Change network properties and
configurations (e.g., connectivity)

Figure 1: Moving target defense domains laid out
against a typical compute stack.

The resiliency offered by MTDs can be evaluated
using various approaches. The threat model is a
crucial factor when evaluating the protection offered
by an MTD. If an attacker has to enumerate all
possible states in order to bypass an MTD, measures
such as the amount of randomness (i.e., entropy)
can offer some insight into the difficulty of an attack.

A more practical attack against MTDs, however, is
information leakage attacks through which an
attacker learns about how the system is randomized.
For example, memory disclosure attacks (Strackx et
al. 2009) or remote side-channels (Seibert et al.
2014) are used to learn how the system is
randomized. They can be usedto bypass dynamic
runtime environment techniques such as ASLR or
dynamic software techniques such as the
multicompiler.

DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited.

This material is based upon work supported by the United States Air Force under Air Force Contract No. FA8702-15-D-0001. Any opinions,
findings, conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the

United States Air Force.

2 Springer



Article for
Encyclopedia of Cryptography, Security and Privacy

Leakage-resilient MTDs such as re-randomization
techniques (Bigelow et al. 2015) and non-readable
codes (Crane et al. 2015) have been studied as a way
of mitigating the impact of information leakage
attacks.

Application

MTDs have gained varying degrees of adoption in
practice. Perhaps the most widely used MTD to date
is ASLR that has been running on most major
desktop and mobile operating systems (including
Windows, Linux, Mac OS, iOS, and Android).

The Windows operating system also deploys heap
metadata randomization by XORing it with a random
value, a form of dynamic data technique.

Dynamic networks in the form of dynamic
adjustment of connectivity has also been used in the
form of network access control (cross-ref: Access
Control Policies, Models, and Mechanisms) in
various enterprises.

Other MTDs such as dynamic software techniques
and dynamic platform technique have gained some
adoption, albeit in more limited use cases.

Open problems and Future directions

Several open problems and practical challenges have
impeded broader adoption of MTDs (Larsen and
Franz 2020). These problems form the basis for
future work in this area.

Despite the development of leakage-resilient
techniques, information leakage attacks still pose a
threat to many forms of MTDs (cross-ref: Leakage-
resilience). Practical and comprehensive protections
against information leakage attacks remain an open
problem (Ward et al. 2019).

Some randomization/dynamism techniques impose
a performance overhead, while diversification
techniques often impose additional hardware
overhead. Even when these overheads are small,
they can be impractical/undesirable for resource-
limited platforms such as embedded systems. This is
particularly important in areas where MTDs compete
with deterministic defenses such as control flow
integrity (CFl) (Larsen and Franz 2020). Development
of extremely low-overhead MTDs particularly for
resource-limited systems remain an open problem.

Some MTDs also do not interoperate well with other
defenses in a system or with some widely used
system features. Among them, techniques that
randomize the application binary on-disk pose a
challenge to code signing defenses that are widely
used in iOS devices and runtime randomization
techniques also cannot seamlessly handle just-in-
time compilation or dynamic loading of libraries. For
MTDs to gain broader adoption these gaps need to
be addressed.

Some forms of MTDs also pose a challenge to typical
enterprise maintenance and operations tasks. For
example, dynamic adjustment of connectivity in a
network may impede network visibility for network
operators, while code randomization techniques can
complicate debugging.

Furthermore, additional research is needed to study
and design proper MTDs for advanced
microarchitectural and hardware vulnerabilities such
as Spectre (cross-ref: Spectre), Meltdown (cross-ref:
Meltdown), Foreshadow, Rowhammer (cross-ref:
Rowhammer), and the like.

Cross-References

Access Control Policies, Models, and Mechanisms
Asynchronous Byzantine Fault Tolerance
Cyber Resilience

DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited.

This material is based upon work supported by the United States Air Force under Air Force Contract No. FA8702-15-D-0001. Any opinions,
findings, conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the

United States Air Force.

N Springer



Article for
Encyclopedia of Cryptography, Security and Privacy

Leakage-resilience
Meltdown
Rowhammer
Spectre

References

Ammann PE, Knight JC (1988) Data diversity: An approach
to software fault tolerance, IEEE Transactions on
Computers, Apr, 37(4):418-25

Bangalore AK, Sood AK (2009) Securing web servers using
self cleansing intrusion tolerance (SCIT). In Second
International Conference on Dependability, Jun 18, pp. 60-
65

Bigelow D, Hobson T, Rudd R, Streilein W, Okhravi H
(2015) Timely rerandomization for mitigating memory
disclosures. In ACM CCS, Oct 12, pp. 268-279

Cadar C, Akritidis P, Costa M, Martin JP, Castro M (2008)
Data randomization. Technical Report TR-2008-120,
Microsoft Research

Crane S, Liebchen C, Homescu A, Davi L, Larsen P, Sadeghi
AR, Brunthaler S, Franz M (2015) Readactor: Practical code
randomization resilient to memory disclosure, In IEEE

Symposium on Security and Privacy, May 17, pp. 763-780

Franz M. (2010) E unibus pluram: massive-scale software
diversity as a defense mechanism. In Proceedings of the
New Security Paradigms Workshop, Sep 21, pp. 7-16

Jajodia S, Ghosh AK, Subrahmanian VS, Swarup V, Wang C,
Wang XS (2012) Moving Target Defense II: Application of
Game Theory and Adversarial Modeling, Springer Science
& Business Media, Sep 18

Larsen P, Franz M (2020) Adoption Challenges of Code
Randomization. In ACM Moving Target Defense Workshop,
Nov 9, pp. 45-49

Lyons RE, Vanderkulk W (1962) The use of triple-modular
redundancy to improve computer reliability, IBM journal
of research and development, Apr, 6(2):200-9

NITRD (2010) Cybersecurity Game-Change Research &
Development Recommendations,
https://www.nitrd.gov/pubs/CSIA_IWG_%20Cybersecurity

_%20GameChange_RD_%20Recommendations_20100513.

pdf

Okhravi H, Hobson T, Bigelow D, Streilein W. (2013)
Finding focus in the blur of moving-target techniques, IEEE
Security & Privacy, Nov 22, 12(2), pp. 16-26

Seibert J, Okhravi H, Soderstrom E. (2014) Information
leaks without memory disclosures: Remote side channel
attacks on diversified code. In ACM CCS, Nov 3, pp. 54-65

Strackx R, Younan Y, Philippaerts P, Piessens F, Lachmund
S, Walter T (2009) Breaking the memory secrecy
assumption, In Proceedings of the Second European
Workshop on System Security, Mar 31, pp. 1-8

Ward B, Skowyra R, Spensky C, Martin J, Okhravi H (2019)
The leakage-resilience dilemma, In ESORICS, Sep 23, pp.
87-106

Ward B, Gomez SR, Skowyra R, Bigelow D, Martin J, Landry
J, Okhravi H (2018) Survey of cyber moving targets second
edition, MIT Lincoln Laboratory Report TR-1228

Wortley F, Thrompson C, Allison F (2021) Log4Shell: RCE 0-
day exploit found in log4j 2, a popular Java logging
package, LunaSec,
https://www.lunasec.io/docs/blog/log4j-zero-day/

Yu T, Fayaz SK, Collins MP, Sekar V, Seshan S. (2017) PSI:
Precise Security Instrumentation for Enterprise Networks.
In NDSS, Feb

DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited.

This material is based upon work supported by the United States Air Force under Air Force Contract No. FA8702-15-D-0001. Any opinions,
findings, conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the

United States Air Force.

N Springer



