
1

A Cybersecurity Moonshot
Hamed Okhravi

MIT Lincoln Laboratory
hamed.okhravi@ll.mit.edu

Abstract—Cybersecurity needs radical rethinking to change its
current landscape. This article charts a vision for a cybersecurity
moonshot based on radical but feasible technologies that can
prevent the largest classes of vulnerabilities in modern systems.

I. INTRODUCTION

In 2016, MIT Lincoln Laboratory conducted a study on
‘moonshot’ efforts in various areas. The author led one of
those studies for cybersecurity. The study resulted in a number
of follow-on projects to execute its vision and start the
journey towards its ultimate goal. This article captures some
of the high-level challenges and opportunities identified in
the moonshot study as well as the research and development
performed in the past five years at MIT to execute its vision.

That cybersecurity needs ambitious and creative rethinking
is not only supported by intuition, but also by data. For
instance, while more and more funding is being spent for cy-
bersecurity every year, by multiple measures such as the extent
of data breaches, the number of vulnerabilities exploited, and
the number of attacks, the situation seems to be getting worse
[1]. Despite decades of research and practice in cybersecurity,
large, traditional classes of vulnerabilities don’t seem to be
tapering down. A recent study by Microsoft, for example,
shows that consistently a large fraction of vulnerabilities are
memory safety errors [2], despite the fact that such errors are
one of the earliest classes of vulnerabilities to be studied, and
decades of research has been dedicated to mitigating them. To
make meaningful progress in cybersecurity, we need disruptive
technologies and concerted efforts; we need a moonshot.

A moonshot is defined by Donald Boudreaux as “radical but
feasible solutions to important problems” [3]. A cybersecurity
moonshot, thus should outright prevent some large classes of
vulnerabilities (radical) and be based on realistic and practical
technologies (feasible). While a moonshot project is often
thought of as a consolidated effort, in reality, it is often a
process contributed to by many researchers and enabled by
some critical technologies that reach a tipping point.

In this article, we chart a vision for the cybersecurity
moonshot. We investigate the largest classes of vulnerabilities
in modern systems and identify three main legacy design
choices that are the root causes of the status quo: the use

DISTRIBUTION STATEMENT A. Approved for public release. Distri-
bution is unlimited. This material is based upon work supported by the
Under Secretary of Defense for Research and Engineering under Air Force
Contract No. FA8702-15-D-0001. Any opinions, findings, conclusions or
recommendations expressed in this material are those of the author(s) and
do not necessarily reflect the views of the Under Secretary of Defense for
Research and Engineering.

of unsafe programming languages (like C/C++); the lack of
proper semantics in the processor; and the monolithic, highly-
privileged design of the operating systems. We discuss how
these legacy design choices, inherited from early systems such
as the PDP-11 machine and MULTICS (which in turn heavily
influenced UNIX), have contributed to some of the largest
classes of vulnerabilities in modern systems. We then describe
a roadmap for the cybersecurity moonshot based on multiple
past and ongoing projects at our laboratory and multiple other
research groups.

Unsafe languages delegate most security checks to the
developers in the interest of making the compiler as simple
as possible. These checks are notoriously hard to get right,
and a long history of bugs introduced as a result of this trade-
off highlights the need for rethinking here. Processors have
traditionally treated all code and data (including all data types)
as raw bits1. This makes it increasingly difficult to perform
meaningful security checks in the processor. Finally, the
monolithic and highly-privileged design of modern operating
systems often allows a single vulnerability to be exploited to
hijack the control of the entire system and perform arbitrary
malicious actions.

The first pillar of our vision has to do with enriching the
processor with semantic information. Recent advancements in
tagged architectures [4], [5] allow the storage and association
of extra bits of metadata for each word of memory, and
the enforcement of security checks on runtime execution of
code in the processor itself. Designing and automatically
generating proper security policies that balance the trade-offs
appropriately, however, requires additional research that we
highlight later in the article

The second pillar focuses on the proliferation of modern,
safe, systems programming languages such as Rust that pro-
vide native memory safety. Rust does so by virtue of having
a strong type system and performing static bounds checks
to prevent spatial memory corruption (e.g., buffer overflows)
and ownership checks to prevent temporal memory corruption
(e.g., use-after-frees). Achieving a fully memory-safe system,
however, requires addressing important research questions.

The third pillar focuses on the operating system (OS). En-
abled by the safe programming language and the semantically-
rich processor, the operating system can be designed in a
way that each of its functional modules is in a separate
compartment. Each compartment can then be assigned the
“least privilege” necessary for it to do its job, but not any
more. The privilege enforcement can be done seamlessly in

1This is particularly true about the von Neumann architecture commonly
used today. The Harvard architecture does separate data and code, but it
doesn’t distinguish between different types of data.



2

Memory Safety
Bugs
33%

Compartmentalization
Bugs
45%

13%

Other
9%

Other includes:
- Race Conditions
- Integer Over/Underflow
- Logic bugs:

- Missing checks
- Buggy initialization
- Buggy error handling

Prevented by 
Fine-Grained 

Compartmentalization of OS

Prevented by 
Language-Based 
Memory Safety

Fig. 1: The past five years of vulnerabilities in Linux categorized by their type.

the tagged architecture, thus removing the need for an omni-
privileged software layer. We call this new design a Zero-
Kernel OS (ZKOS). Redesigning an OS around this new model
in a performant manner, however, requires more research.

Equipped with these pillars, we discuss how this redesigned
computer system can inherently prevent the largest classes of
vulnerabilities (radical), while relying on near-ready, concrete
technologies (feasible). We also highlight the additional re-
search problems that need to be addressed to further mature
them for operational deployment.

II. WHY MOONSHOT? WHAT MOONSHOT?
A moonshot is a risky undertaking. It imposes not only costs

in the form of abandoning existing systems (i.e., new hardware
and software cost), but also it, by its very nature, has technical
risks. It requires time-consuming ventures to address known
unknowns during which many unknown unknowns also come
to light. It can only be justified if incremental improvements
to existing systems are not sufficient to achieve the desired
goal.

This is indeed the case for cybersecurity. Multiple decades
of research into defenses that are soon followed by novel
attacks that bypass them have created an unending arms race.
To exemplify this arms race, it is helpful to look at the
memory safety domain. To mitigate simple code injection
attacks, canaries were developed and deployed [6]. This was
soon followed by selective overwrite attacks that could bypass
canaries. In response, write XOR execute (W⊕X) was de-
veloped [6]. Soon code reuse attacks were devised to bypass
W⊕X [7]. Code randomization techniques were matured to
combat code reuse [8], just to be bypassed by various forms
of information leakage attacks [9]. Control-flow integrity was
then developed as a defense that is resilient to information
leakage attacks, but it was in-turn bypassed by attacks that
respect the control-flow graph [10]. At the risk of laboring
the point, the situation is significantly exacerbated by recent
microarchitectural attacks [11]. With the wide availability
of automated tools that generate exploits against the most
sophisticated defenses, little tangible security seems to have
been achieved. This anecdotal arms race is also supported

by real-world attack data, which is the ultimate measure of
success/failure. The attacks, breaches, and malicious activities
are only getting more voluminous [1]. The incremental im-
provements, therefore, don’t seem to be working.

To better highlight what needs fixing, it is beneficial to have
a more quantitative understanding of the current vulnerabili-
ties. We have analyzed the past five years of vulnerabilities
in Linux that have Critical or High severity ratings, a total
of 506 vulnerabilities. This analysis was done manually by
inspecting each vulnerability and asking the question of ‘what
would have prevented this vulnerability?’. Figure 1 illustrates
the results. We have categorized these vulnerabilities based
on whether they are related to memory safety issues, lack
of compartmentalization, or other types of vulnerabilities.
For example, a stack-based buffer overflow vulnerability is
a memory safety bug (e.g., CVE-2017-12762), while a vul-
nerability that allows the user ID (uid) to be decremented
to zero, thus allowing a user from a buggy module to access
sensitive kernel functionalities is a compartmentalization bug
(e.g., CVE-2016-4997). There are also vulnerabilities that can
be mitigated by either memory safety or compartmentalization
(a buffer overflow allowing privilege escalation, as in CVE-
2019-18675).

As can be observed from Figure 1, the vast majority
(> 90%) of vulnerabilities in Linux are either related to
lack of memory safety (∼ 33%) or lack of fine-grained
compartmentalization (∼ 45%) or both (∼ 13%). The re-
maining vulnerabilities (∼ 9%) are related to other classes
of bugs, namely, race conditions, integer over/underflows, and
logic bugs such as missing permission checks or buggy error
handling.

This provides us a roadmap for our vision: in order to
prevent 90% of current vulnerabilities in an operating system
(Linux), memory safety and fine-grained compartmentaliza-
tion must be implemented. Preventing 90% of vulnerabilities
conveniently corresponds to an order of magnitude reduction
in vulnerabilities, which is the goal called out in the 2019
Federal Cybersecurity Research and Development Strategic
Plan as well. Note that these numbers are based on known
vulnerabilities. Of course, we cannot reason about unknown



3

vulnerabilities, but given that these distributions have changed
very little over the past couple of decades, they are not
expected to change significantly in short- or medium-term.

In the following sections, we discuss how these two am-
bitious goals (memory safety and fine-grained compartmen-
talization) can be achieved, empowered by recent advanced
in semantically-rich processors (i.e., tagged architectures). We
start with the semantically-rich processors as they are an
important enabling technology for the other two goals.

III. SEMANTICALLY-RICH PROCESSORS

A foundational challenge in modern computer security is
the lack of semantic information in commodity processors.
Processors view code, various types of data (including control
and non-control data), and even configuration information
(e.g., for memory-mapped input/output devices) as raw bits.
There is no notion of a return address vs. an integer
in a processor. This is partly the reason why a buffer of integers
can overflow into a return address and maliciously alter control
flow in what is known as control-flow hijacking attacks. The
lack of semantics in the processor allows the overflown data (in
this case an integer) to be interpreted as a return address, which
diverts control to an injected code (a.k.a. code injection attack)
or existing code in the memory space of the application (a.k.a.
return-oriented programming attack). If the processor had the
semantic information, this attack would not be possible. Even
in memory, data and code are stored as raw bits and there
is little distinction between various types of data. This is
often referred to as the flatness of memory space. Recent
work has shown that attempts to detect malicious activities
using modern hardware features (e.g., Hardware Performance
Counters – HPC) fail precisely because of the poor semantics
in processors [12].

It is important to note that these design decisions were
made in a different era (60’s and 70’s) when resources
were extremely limited and there was little justification for
including extra metadata in processor or memory. Simplicity
and resource conservation were the two main goals to be able
to achieve a functional system.

Unsurprisingly the needs and capabilities of the modern
era are vastly different from those early times. We have
gigabytes of memory available to an average computer rather
than kilobytes; modern processors have billions of transistors
in real estate rather than tens of thousands. What is perhaps
surprising is that for the most part, these early design decisions
have stayed unchanged for multiple decades.

This has changed in recent years, however. Multiple in-
fluential efforts have focused on building semantically-rich
processors by adding tags that carry metedata to every word
in memory (including registers). They are thus called tagged
architectures. A policy can then be enforced on any code
execution in the processor via a policy enforcement logic. This
logic can be implemented by adding additional instructions to
the processor or by adding a dedicated policy enforcement
engine in parallel with the main application processor.

Figure 2 illustrates a simplified view of a tagged archi-
tecture. As can be observed in the figure, the memory, the

instruction and data caches, the register file, and the instruction
pointer are all tagged with extra metadata. Upon execution of
each instruction, the policy enforcement engine either allows
or denies the execution. If the execution is allowed, the policy
engine determines the tag of the output based on the tags of
the instruction, the instruction pointer, and the operands. If the
execution is denied, however, it raises an exception and goes
into exception handling.

A simple policy, for example, can enforce that a return
instruction can only return to a value tagged with a specific
type (e.g., RET), and not any other value, thus preventing the
control-hijacking attack described above.

Prominent examples of tagged architectures include CHERI
[4] and DOVER [5] that provide expressive policies. Even
commodity processors have started implementing tagged ar-
chitectures. ARMv8.5-A architecture has a new Memory
Tagging Engine (MTE) that provides four bits of tags and
extensions to the ISA to set and check tags during execution.

A semantically-rich processor has two main advantages
to a pure software-based enforcement of security checks:
it is significantly more efficient and it reduces the trusted
computing base (TCB) in software. While software defenses
exit that retrofit security checks to unsafe languages (e.g.,
SoftBound [13]), they impose a large performance overhead
because multiple instructions are needed to check the safety
of a sensitive instruction (e.g., a pointer dereference). Tagged
architectures avoid this by implementing native instructions
that can perform such check efficiently, thus adding a modest
overhead, or having a parallel engine that introduces little
overhead to native execution by trading off silicon area for
performance. They also reduce the size of the TCB in software.
While hardware is by no means immune to vulnerabilities as
evident by recent microarchitectural attacks, reducing the TCB
in software is a valuable exercise. Needless to say that accurate
representation of semantics in the processor relieves the upper
security layers from trying to inaccurately reconstruct the
semantics as is the case with many HPC-based defenses.

A. Research Challenges

For all the benefits semantically-rich processors provide,
there are still important research challenges to be addressed
before they can be used widely.

There is often a strong trade-off between how expressive
tagged architectures are and how large the tags are (which in
turn creates silicon, power, and memory overheads). DOVER
is thus more expressive than ARM MTE because it has much
larger tags (configurable tags that can be 265 bits or even
larger vs. 4 bits). A research challenge is how to design flexible
and meaningful policies in a small tag space. Particularly if
MTE achieves widespread adoption due to the vast fabrication
capacity behind ARM processors, it becomes imperative to
design policies that can leverage a 4-bit tag to its fullest.

Automatically generating complete and effective fine-
grained policies for tagged architectures is another important
challenge. This is a task best done in the compiler since it has
the necessary semantic information. While tag policies have
been generated automatically in the related work [5] for some



4

Instruction PointerTag

Policy 
Enforcement 

Engine

Policy

Instruction/Date 
Caches

Register 
File

Code or Data

Tag

……

Tag

……

Data

Code or DataTag

……

Memory

ALU

New Instruction Pointer Tag New Instruction Pointer

New Instructions/DataException for Policy Violation

Fig. 2: A simplified view of a tagged architecture.

high-level security goals (e.g., control-flow integrity), reason-
ing about the completeness and efficacy of the tag policies for
an arbitrary goal remains an open research problem.

Another important challenge is understanding the trade-offs
involved in policy design. Often a given policy (e.g., prevent-
ing buffer overflows) can be designed in multiple different
ways that trade-off granularity, overhead, policy complexity,
and power consumption, among other dimensions. While how
to build tagged architectures is rather well-researched, what
policies to enforce with them has comparatively received
much less research. Understanding these trade-offs is thus an
important open research problem. How to compose various
policies and how to enable them in dynamic loading/linking
also remain as challenges in this area.

Finally, designing tagged architectures that can work seam-
lessly with modern hardware features such as multi-core, direct
memory access (DMA), and out-of-order and speculative
execution, while resisting various side-channel attacks remain
open problems.

IV. LANGUAGE-BASED MEMORY SAFETY

The second component of our vision is wide-spread usage
of safe programming languages, thus achieving language-
based memory safety. Unsafe languages like C/C++ attempt
to simplify the compiler as much as possible by delegating
security checks to the developers. This has created a long

history of vulnerabilities introduced by developer mistakes,
particularly related to memory safety. Memory safe languages
prevent these vulnerabilities by having a strong type system,
performing safety checks during compilation, and inserting
necessary runtime checks into the compiled code.

While memory safe languages such as Java, Haskell, and
Python have long existed in the community, their reliance
on a language interpreter prohibits their effective usage for
developing systems software (e.g., operating system or middle-
ware). Moreover, the interpreters of such languages are often
themselves written in C/C++, which open up the system to
memory corruption vulnerabilities, defeating the main security
purpose of a safe programming language. It wasn’t till recently
(2015) that a safe systems programming language was devel-
oped: Rust. Another similar safe language is Go (circa 2012),
but unlike Go, Rust does not have a language runtime, which
makes it appropriate for systems programming. Thus, in this
article, we focus on Rust.

Rust has a strong type system and provides native spatial
and temporal memory safety at compile time, preventing, for
example, buffer overflows and use-after-free vulnerabilities,
respectively. Spatial memory safety in Rust is provided by
strong typing of data, compile-time bounds checking of static
data, and automatically inserted runtime bounds checking
instructions for dynamic data. Temporal memory safety, on
the other hand, is provided by the notion of ownership, which



5

only allows one mutable reference2 or multiple immutable
references to exist to an object. This ensures that when the
object is destructed, all references to it can be zeroized without
the need for heavy-weight garbage collection, thus preventing
temporal safety bugs such as use-after-free or double-free.

Like C, Rust has no true language runtime and can be
compiled directly to processor instructions, making it ideal
for implementing systems software. An evidence for this is
the fact that Rust has already been used to build embedded
operating systems like Tock OS and enterprise operating
systems like Redox.

Despite all the benefits a safe programming language pro-
vides, a valid question can still be: do we really need it?
In other words, can we fix applications written in C/C++,
perhaps with additional sanitization (development-time anal-
ysis) or automatically inserted runtime checks (as done by
SoftBound)? The answer becomes clear when we consider
that unsafe languages like C/C++ have ambiguous cases that
are impossible to secure with any automated analysis. For
example, the C language specification does not distinguish
between a pointer to the first element of a structure and a
pointer to the entire structure. As such, there is no automated
analysis that can establish a bound finer than the entire
structure for a pointer than can potentially only intend to
point to the first element of the structure. When the first
element is a buffer, for example, it can overflow into the rest
of the structure, corrupting function pointers in the process
and resulting in control-hijacking vulnerabilities. Such vulner-
abilities have been shown to be abundant and exploitable in
real-world software [14]. As a result, runtime defenses either
have false negatives or false positives (crashing benign code).
Sanitizers also face coverage challenges; their analyses are
incomplete and miss many vulnerabilities. In fact, vulnera-
bilities in reputable software packages are found everyday
despite state-of-the-art sanitization being applied to them. The
answer, therefore, is yes; safe programming languages are
indeed required to prevent memory safety bugs. Approached
that attempt to protect unsafe languages only provide partial
protection at best.

A. Research Challenges

There are still important challenges to fully leverage the
safety provided by Rust. In some cases, the restrictions en-
forced by the language are too restrictive for the developer.
Two examples of this include complex data structures like a
doubly-linked list and low-level interactions with hardware
devices. In a doubly-linked list, the restriction that only
one mutable reference can exist to an object is problematic;
a doubly-linked list needs two for each object. For low-
level interactions with hardware such as a memory-mapped
input/output device (MMIO), the code needs to manipulate
raw bits in configuration registers for which the strong typing
of Rust is too restrictive.

Rust itself provides a mechanism to bypass the language’s
safety restrictions with the unsafe keyword. Code enclosed

2A mutable reference is what is traditionally referred to as a pointer in
some programming languages like C/C++.

in an unsafe section will not be checked for adherence to
the restrictions on raw pointers or ownership. This means that
a complex data structure or code handling hardware devices
can still be developed in Rust, but at a cost to security. Code
enclosed in unsafe sections can be vulnerable to spatial
or temporal memory corruption bugs, just like C/C++. More
troublesome is the fact that unsafe code not only impacts
unsafe sections, but also safe sections. An arbitrary raw pointer
in unsafe Rust can maliciously modify the entire addressable
memory space of the process, thus changing the behavior of
even the safe sections of the code.

A major gap in the past and current efforts to built Rust-
based OSes and utilities (such as Tock OS, Redox, Mesalock
Linux, and uutils) is the widespread usage of unsafe sections
in their codebase. An important lesson from these efforts is to
try to minimize the amount of unsafe code or properly contain
their impact.

Therefore, additional research is needed to either alleviate
the need for unsafe Rust or properly sandbox/isolate unsafe
sections from the rest of the code so that their bugs don’t
endanger the rest of the application. One important context to
address this challenge in for MMIO devices [15]. An unsafe
driver for an MMIO device only needs to access certain
regions of memory (allocated for MMIO) and only certain
parts of that region (allocated for that particular device). As
such, it can be isolated to those parts using proper tagging
by the tagged processor. A more complex policy can also
distinguish between configuration registers and data regions
to implement an even finer-grained isolation.

An orthogonal research effort has focused on formally
verifying that while certain complex data structures (e.g.,
doubly-linked lists) are using unsafe code internally, they
provide safe interfaces to the rest of the code. This is called
interior mutability [16].

V. FINE-GRAINED COMPARTMENTALIZATION OF OS
The third component of our vision is fine-grained compart-

mentalization of software stack. Nowhere is this more impor-
tant than in the operating system. There are two main operating
system designs in modern systems: monolithic kernels and
microkernels3. Monolithic kernels (e.g., Linux, UNIX, and
Android) include most of the important functionalities (e.g.,
file system, IPC, device drivers, etc.) in the kernel, while
microkernels (e.g., MINIX, L4 and seL4) only provide the
bare minimum functionality (e.g., virtual memory, scheduler,
and basic IPC) in the kernel and push others (e.g., file system,
application IPC, device drivers, etc.) to user space services.
Both designs have some weaknesses, however. A monolithic
kernel is not secure. A very large code base runs at the highest
privilege level (often enforced by the ring model), thus any
severe vulnerability in any part of the code often results in a
complete takeover of the system. Moreover, there are many
different developers and coding standards, and current mono-
lithic kernels are as secure as their least secure component.

3While other OS designs also exist (Unikernels, Exokernels, etc.), they are
not as widely used as the two main designs and for the sake of the argument
made in this article, they share many of the weaknesses of the two main
designs.



6

Processor

OS 
Kernel

Applications

Device Drivers

Scheduler, Virt. Mem.

IPC, File System

System Call, VFS

Processor

OS
Kernel

Applications

Basic IPC, Virtual Memory, 
Scheduler

Device 
Drivers

App 
IPC

File 
System

Tagged Processor

UNIX 
Server

Applications

Scheduler Device 
Driver

Device 
Driver

Virtual 
Mem.

IPC WiFi UART File 
System

Monolithic OS Microkernel OS

Kernel 
Mode

User 
Mode

Security Weak Medium Strong

Fine-Grained 
Isolation Boundaries

Zero-Kernel OS (ZKOS)

Fig. 3: The Zero-Kernel OS design compared with monolithic and microkernels.

The microkernel design improves upon the OS security by
virtue of pushing services into the user space, the security
provided by microkernels is not sufficient. First, a vulnerability
in the kernel can still compromise the entire system. Second,
microkernels do not provide additional protection for the
services themselves. A buggy driver can still interfere with
other services running on the system. As such, microkernels
can only provide coarse-grained isolation. For example, virtual
machines (VMs) running on top of seL4 can be isolated from
each other, but each VM is subject to compromise internally.
Moreover, microkernels also face performance challenges
compared to monolithic kernels in general4. Most system calls
in this model require multiple context switches (e.g., from
application to service, from service to kernel, from kernel
to devices, and all the way back), which imposes a large
overhead.

A new design that can significantly improve security, while
not sacrificing performance is what we call the Zero-Kernel
Operating System (ZKOS) [17]. In this model, each module or
service in the OS is isolated in its own compartment (Figure 3).
Each module’s privilege is then reduced to the bare minimum
necessary for it to perform its job. This design importantly
relies on the tagged architecture for seamless enforcement
of isolation and privilege. Privilege in this context refers to
the read/write/execute permissions to any region in memory
as well as being allowed or not allowed to execute specific
instructions. Note that because each memory word is tagged,
switching between two privilege levels happen transparently
and without additional operations by simply executing their
corresponding instructions. For example, the instructions as-

4This rule may not apply on a one-to-one basis because individual im-
plementations of microkernels can dedicate significant effort to optimizing
performance, but generally speaking, additional context switches cause per-
formance degradation.

sociated with the memory manager can be tagged with one
type of tag (e.g., MEMMGR), which ensures that the memory
manager can only modify certain parts of memory (e.g.,
heap metadata), while a driver can be tagged with another
type of tag (e.g., DRVR1), which only allows it to access
the memory-mapped region associated with its corresponding
device. This change of privilege happens automatically when
the OS executes the instructions associated with the driver or
those associated with the memory manager.

This design has a number of important implications. First,
the operating system will no longer have an omni-privileged
piece of code in it (hence the name “Zero-Kernel”). This
is unlike a microkernel design in which the kernel is still
running at the highest privilege level. Second, the fine-grained
enforcement of isolation (word granularity) obviates the need
for page-level permissions (and thus paging altogether) and
the coarse-grained ring model that do not provide sufficient
protection. In some studies, the overhead of paging alone is
estimated to be 20-30%, thus such a design can also save this
performance. Third, because of the fine-grained isolation and
privilege enforcement, the traditional user space/kernel space
division can also be eliminated, thus allowing applications to
run in the same nominal space as the OS modules (note that
the separation is actually being enforce at a finer granularity,
so this does not make the system less secure). This means that
system calls can become almost as efficient as function calls
because no heavy-weight context switching will be needed,
thus making the system more performant.

The ZKOS design, in effect, turns OS security from an all
or nothing battle into a series of contests, each of which is
easier for the defender to win.

An astute reader might wonder where ZKOS’s performance
comes from; in other words, what is being traded-off with
performance in a ZKOS design? The answer is silicon area



7

in the form of tag space in memory and the policy engine in
the processor. The tagged architecture is what makes such a
design possible and efficient.

We note here that fine-grained isolation and compartmen-
talization have been studied rather extensively in various
contexts, including in OSes. Separation kernels, unikernels,
the least privilege separation kernel (LPSK) [18] are some of
the attempts in the community to implement compartmental-
ization for the OS. What makes ZKOS different from these
efforts is the granularity of its compartmentalizaion and its
reliance on tagged architectures that eliminates the need for
an omni-privileged software layer. Separation kernels provide
coarse-grained (VM level) compartmentalization. Unikernels,
while they minimize the attack surface of the system by
not including unnecessary OS services, they do not provide
isolation among the OS services that are included in the image.
Finally, the LPSK, while providing fine-grained (service level)
compartmentalization, it relies on an omni-privileged kernel
for limiting the information flow among various services.

A. Research Challenges

Although this compartmented OS design looks promising,
there are still important research problems to be solved.

Not all tagged architectures have large tag spaces or an
expressive policy language. ARM MTE, for example, only
has four bits of tags. How to compartmentalize an entire OS
with such a limited tag space remains a research problem.

Moreover, when OS compartments exchange data, that data
either needs to be re-tagged, or needs to be assigned a third
tag with a dynamic policy that allows the receiver module
to access it and denies the sender from accessing it. Neither
feature (efficient re-tagging or dynamic policies) is supported
or matured in existing tagged architectures. More research is
thus needed in this area.

Compartmentalization can also be built in multiple different
ways that trade-off policy complexity, performance, granu-
larity of compartmentalization, and tag size. Studying and
understanding such trade-offs and picking an optimal design
for each use case thus remains an open problem.

Finally, compartmentalizaion can further be extended into
the application space, isolating various modules of a complex
application such as a web browser or a web server into their
own compartments. Additional work is needed in this area to
study appropriate designs for such compartmentalizaion.

VI. WHERE TO START?

As mentioned earlier, a number of past and on-going
projects at our laboratory have started executing the vision laid
out in this document. We have focused on embedded systems
as the first target for implementing the pillars discussed in
this article. Embedded systems often are not as feature-rich
as enterprise systems, and do not require the same level of
generality in the services they provide. As such, they are an
easier target for a new design. We have specifically focus
on autonomous systems as the application domains of choice
for our secure embedded system design. Expanding such a

computer system to more feature-rich tactical and enterprise
applications remains as future work.

In addition, under each pillar, we have focused on easier-to-
solve gaps first. For example, unsafe Rust is easier to contain
for MMIO devices because it is already known what memory
regions such code should and should not be allowed to access,
whereas minimizing the need for unsafe Rust in the general
case is much harder to achieve. Part of our effort, therefore,
has focused on proper containment of unsafe Rust code that
interacts with MMIO devices [15].

VII. CONCLUSION

In this article, we charted a vision for a cybersecurity
moonshot, a radical, but feasible redesign of computer systems
in which important security properties are inherent. This vision
is not the result of research from one team or one effort; the
components of our vision are the culmination of long running
projects and research efforts from many independent groups
of researchers in academia, research laboratories, and industry.
This article described how these components could fit together
to achieve ambitious goals in cybersecurity, and why such a
moonshot is indeed needed and timely.

VIII. ACKNOWLEDGMENT

We sincerely thank David Martinez, Bob Bond, Marc Ziss-
man, and Roger Khazan whose support and guidance has made
this effort possible. In addition, we would like to thank Howie
Shrobe, Nathan Burow, and the members of the Resilient
Mission Computer (RMC) project who contributed to many
of the ideas and research challenges outlined in this article.

REFERENCES

[1] “Statistics and Market Data on Cyber Crime & Security,”
https://www.statista.com/markets/424/topic/1065/cyber-crime-security/,
2020.

[2] M. Miller, “Trends, challenges, and strategic shifts in the software
vulnerability mitigation landscape,” 2019.

[3] D. J. Boudreaux, “What’s Your Moonshot?”
https://www.mercatus.org/videos/whats-your-moonshot, 2020.

[4] R. N. Watson, J. Woodruff, P. G. Neumann, S. W. Moore, J. Anderson,
D. Chisnall, N. Dave, B. Davis, K. Gudka, B. Laurie et al., “Cheri: A
hybrid capability-system architecture for scalable software compartmen-
talization,” in 2015 IEEE Symposium on Security and Privacy. IEEE,
2015, pp. 20–37.

[5] G. T. Sullivan, A. DeHon, S. Milburn, E. Boling, M. Ciaffi, J. Rosenberg,
and A. Sutherland, “The dover inherently secure processor,” in 2017
IEEE International Symposium on Technologies for Homeland Security
(HST). IEEE, 2017, pp. 1–5.

[6] L. Szekeres, M. Payer, T. Wei, and D. Song, “Sok: Eternal war in
memory,” in 2013 IEEE Symposium on Security and Privacy. IEEE,
2013, pp. 48–62.

[7] H. Shacham, “The geometry of innocent flesh on the bone: Return-into-
libc without function calls (on the x86),” in Proceedings of the 14th
ACM conference on Computer and communications security, 2007, pp.
552–561.

[8] P. Larsen, A. Homescu, S. Brunthaler, and M. Franz, “Sok: Automated
software diversity,” in 2014 IEEE Symposium on Security and Privacy.
IEEE, 2014, pp. 276–291.

[9] J. Seibert, H. Okhravi, and E. Söderström, “Information leaks without
memory disclosures: Remote side channel attacks on diversified code,”
in Proceedings of the 2014 ACM SIGSAC Conference on Computer and
Communications Security, 2014, pp. 54–65.



8

[10] I. Evans, F. Long, U. Otgonbaatar, H. Shrobe, M. Rinard, H. Okhravi,
and S. Sidiroglou-Douskos, “Control jujutsu: On the weaknesses of fine-
grained control flow integrity,” in Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security, 2015, pp. 901–
913.

[11] P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas, M. Ham-
burg, M. Lipp, S. Mangard, T. Prescher et al., “Spectre attacks: Exploit-
ing speculative execution,” in 2019 IEEE Symposium on Security and
Privacy (SP). IEEE, 2019, pp. 1–19.

[12] B. Zhou, A. Gupta, R. Jahanshahi, M. Egele, and A. Joshi, “Hardware
performance counters can detect malware: Myth or fact?” in Proceedings
of the 2018 on Asia Conference on Computer and Communications
Security, 2018, pp. 457–468.

[13] S. Nagarakatte, J. Zhao, M. M. Martin, and S. Zdancewic, “Softbound:
Highly compatible and complete spatial memory safety for c,” in
Proceedings of the 30th ACM SIGPLAN Conference on Programming
Language Design and Implementation, 2009, pp. 245–258.

[14] R. Gil, H. Okhravi, and H. Shrobe, “There’s a hole in the bottom of
the c: On the effectiveness of allocation protection,” in 2018 IEEE
Cybersecurity Development (SecDev). IEEE, 2018, pp. 102–109.

[15] A. Huang, “Software defined memory ownership system,” Master’s
thesis, MIT, 2020.

[16] R. Jung, J.-H. Jourdan, R. Krebbers, and D. Dreyer, “Rustbelt: Securing
the foundations of the rust programming language,” Proceedings of the
ACM on Programming Languages, vol. 2, no. POPL, p. 66, 2017.

[17] J. Restivo, “A zero kernel operating system: Rethinking microkernel
design by leveraging tagged architectures and memory-safe languages,”
Master’s thesis, MIT, 2020.

[18] T. E. Levin, C. E. Irvine, and T. D. Nguyen, “A least privilege model
for static separation kernels,” Naval Postgraduate School Monterey CA
Center for Information Systems, Tech. Rep., 2004.


	Introduction
	Why Moonshot? What Moonshot?
	Semantically-Rich Processors
	Research Challenges

	Language-Based Memory Safety
	Research Challenges

	Fine-Grained Compartmentalization of OS
	Research Challenges

	Where to Start?
	Conclusion
	Acknowledgment
	References

