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"You will observe with concern how long a useful truth may be known and exist, before it is
generally received and practiced on." -- Benjamin Franklin

In 1972, the Computer Security Technology Planning Study report of the US Air Force reads:
“The code performing this function does not check the source and destination addresses
properly, permitting portions of the monitor to be overlaid by the user. This can be used to
inject code into the monitor that will permit the user to seize control of the machine” [1]. This is
an example of what later became known as memory corruption attacks, which were famously
popularized by Phrack’s “Smashing the Stack for Fun and Profit” [2] in 1996. Despite being one
of the earliest classes of vulnerabilities studied, memory safety bugs continue to one of the
most widespread in modern systems. Studies by Microsoft [3] and Google [4] report that
consistently around 70% of cyber vulnerabilities are memory safety bugs. This is despite
decades of research into sanitizers and exploit mitigation techniques [5] that attempt to detect
such vulnerabilities and complicate their exploitation. The persistence of memory safety
vulnerabilities can perhaps be attributed to widespread usage of memory-unsafe programming
languages such as C/C++ in commodity applications, libraries, and operating systems, and lack
of hardware support for efficient enforcement of memory safety in commodity processors.

Recent advancements in system-level languages with strong memory safety guarantees (e.g.,
Rust) and tools and techniques to make large-scale, legacy C/C++ code bases partially or fully
memory safe have created a new hope in this area. This is perhaps best exemplified in its
acknowledgement in the highest national-level strategies. The 2024 White House Report on the
Cybersecurity Posture of the United States [6], for example, mentions the goal to promoted the
adoption of “memory-safe programing languages”. In addition, in 2023, NSA joins CISA and
other partners in releasing a report [7], making the case for a memory-safe roadmap, in which
they “urge senior executives at every software manufacturer to reduce customer risk by
prioritizing design and development practices that implement memory-safe languages”.

This special issue of IEEE Security & Privacy aims to highlight recent advancements in memory
safety research with an emphasis on solutions. Perhaps the most principled approach for
addressing memory safety is using safe programming languages such as Rust. However,
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redevelopment of existing codebases in such safe languages is a very costly and time-
consuming proposition.

Wallach and Lord ! share their viewpoint for automated translation of existing C codebases
into Rust.

Larsen®? describes the state-of-the-art in automated translation of C to Rust using a tool called
C2Rust and explains the nuances and challenges of generating safe, idiomatic Rust code
automatically. He also proposes a number of ideas including the usage of ML to facilitate such
translations.

Before such tools are fully matured, however, existing C/C++ codebases need to be secured
against memory corruption attacks. This goal can be achieved either in software or by
leveraging hardware extensions. Software-only approaches have the advantage of not requiring
new hardware, but may impose larger runtime overheads. Hardware-based approaches, on the
other hand, are more efficient, but require the deployment of new hardware.

Nagarakatte”® proposes full spatial and temporal memory safety for C by maintaining and
runtime checking of metadata. Such runtime enforcement can be further optimized by
additional support from hardware.

Huang et al.A* propose comprehensive memory safety validation that identifies the subset of
memory objects that require runtime protection and isolating them from the rest of the
objects. This significantly reduces the overhead of memory safety enforcement at runtime.

Watson et al.»> propose the CHERI system, a hardware-software co-design available on top of
ARM Morello and Microsoft CHERIoT Ibex cores, that allows efficient enforcement of memory
safety for existing C/C++ codebases.

Robertson and Egele”® share their viewpoint on how architectural security primitives allow
efficient enforcement of heap safety.

Memory safety does not always have to be deterministic, however. Probabilistic techniques can
provide effective ways of enforcing safety with low overhead through randomization,
replication, and diversification. Such techniques are collectively known as moving target
defenses [8].

Andre et al.»” propose a probabilistic memory safety technique known as Multi-Variant
Execution (MVX). In MVX, multiple variants of a program are run concurrently and are cross-
checked. Divergence in execution among the variants would be indicative of an attack.

While hardware support allows for efficient enforcement of memory safety, hardware itself is
not immune from vulnerabilities. The complexity of modern hardware gives rise to a wide range
of architectural and micro-architectural vulnerabilities. These vulnerabilities can exist in the
hardware itself or in the interfaces between hardware and software.



Rostami et al.*® describe a fuzzing technique for detecting and mitigating architectural and
microarchitectural memory safety vulnerabilities in hardware.

Cloosters et al.A° describe memory safety vulnerabilities that arise at the interface of software
and hardware, in particular in Trusted Execution Environments (TEEs), and proposes
approaches for building memory-safe enclaves.

Finally, while there is work to converge these research thrusts, a unified, holistic vision for
memory safety remains an open research problem. Liljestrand and Ekberg”1® share their
viewpoint for harmonizing diverse memory safety fronts.
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