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"You will observe with concern how long a useful truth may be known and exist, before it is 
generally received and practiced on." -- Benjamin Franklin 
 

In 1972, the Computer Security Technology Planning Study report of the US Air Force reads: 
“The code performing this function does not check the source and destination addresses 
properly, permitting portions of the monitor to be overlaid by the user. This can be used to 
inject code into the monitor that will permit the user to seize control of the machine” [1]. This is 
an example of what later became known as memory corruption attacks, which were famously 
popularized by Phrack’s “Smashing the Stack for Fun and Profit” [2] in 1996. Despite being one 
of the earliest classes of vulnerabilities studied, memory safety bugs continue to one of the 
most widespread in modern systems. Studies by Microsoft [3] and Google [4] report that 
consistently around 70% of cyber vulnerabilities are memory safety bugs. This is despite 
decades of research into sanitizers and exploit mitigation techniques [5] that attempt to detect 
such vulnerabilities and complicate their exploitation. The persistence of memory safety 
vulnerabilities can perhaps be attributed to widespread usage of memory-unsafe programming 
languages such as C/C++ in commodity applications, libraries, and operating systems, and lack 
of hardware support for efficient enforcement of memory safety in commodity processors. 

Recent advancements in system-level languages with strong memory safety guarantees (e.g., 
Rust) and tools and techniques to make large-scale, legacy C/C++ code bases partially or fully 
memory safe have created a new hope in this area. This is perhaps best exemplified in its 
acknowledgement in the highest national-level strategies. The 2024 White House Report on the 
Cybersecurity Posture of the United States [6], for example, mentions the goal to promoted the 
adoption of “memory-safe programing languages”. In addition, in 2023, NSA joins CISA and 
other partners in releasing a report [7], making the case for a memory-safe roadmap, in which 
they “urge senior executives at every software manufacturer to reduce customer risk by 
prioritizing design and development practices that implement memory-safe languages”.  

This special issue of IEEE Security & Privacy aims to highlight recent advancements in memory 
safety research with an emphasis on solutions. Perhaps the most principled approach for 
addressing memory safety is using safe programming languages such as Rust. However, 



redevelopment of existing codebases in such safe languages is a very costly and time-
consuming proposition.  

Wallach and Lord A1 share their viewpoint for automated translation of existing C codebases 
into Rust.  

LarsenA2 describes the state-of-the-art in automated translation of C to Rust using a tool called 
C2Rust and explains the nuances and challenges of generating safe, idiomatic Rust code 
automatically. He also proposes a number of ideas including the usage of ML to facilitate such 
translations. 

Before such tools are fully matured, however, existing C/C++ codebases need to be secured 
against memory corruption attacks. This goal can be achieved either in software or by 
leveraging hardware extensions. Software-only approaches have the advantage of not requiring 
new hardware, but may impose larger runtime overheads. Hardware-based approaches, on the 
other hand, are more efficient, but require the deployment of new hardware.  

NagarakatteA3 proposes full spatial and temporal memory safety for C by maintaining and 
runtime checking of metadata. Such runtime enforcement can be further optimized by 
additional support from hardware.  

Huang et al.A4 propose comprehensive memory safety validation that identifies the subset of 
memory objects that require runtime protection and isolating them from the rest of the 
objects. This significantly reduces the overhead of memory safety enforcement at runtime. 

Watson et al.A5 propose the CHERI system, a hardware-software co-design available on top of 
ARM Morello and Microsoft CHERIoT Ibex cores, that allows efficient enforcement of memory 
safety for existing C/C++ codebases. 

Robertson and EgeleA6 share their viewpoint on how architectural security primitives allow 
efficient enforcement of heap safety. 

Memory safety does not always have to be deterministic, however. Probabilistic techniques can 
provide effective ways of enforcing safety with low overhead through randomization, 
replication, and diversification. Such techniques are collectively known as moving target 
defenses [8].  

Andre et al.A7 propose a probabilistic memory safety technique known as Multi-Variant 
Execution (MVX). In MVX, multiple variants of a program are run concurrently and are cross-
checked. Divergence in execution among the variants would be indicative of an attack. 

While hardware support allows for efficient enforcement of memory safety, hardware itself is 
not immune from vulnerabilities. The complexity of modern hardware gives rise to a wide range 
of architectural and micro-architectural vulnerabilities. These vulnerabilities can exist in the 
hardware itself or in the interfaces between hardware and software. 



Rostami et al.A8 describe a fuzzing technique for detecting and mitigating architectural and 
microarchitectural memory safety vulnerabilities in hardware.  

Cloosters et al.A9 describe memory safety vulnerabilities that arise at the interface of software 
and hardware, in particular in Trusted Execution Environments (TEEs), and proposes 
approaches for building memory-safe enclaves. 

Finally, while there is work to converge these research thrusts, a unified, holistic vision for 
memory safety remains an open research problem. Liljestrand and EkbergA10 share their 
viewpoint for harmonizing diverse memory safety fronts. 
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