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LLMs hold great promise in solving many challenges arising from software complexity, 
including the possibility of automating code generation and repair. Although we cannot deny 
the groundbreaking nature of LLM-based code repair, we must be realistic in positioning 
current results. This column explores the challenges in using LLMs for automated code 
generation and program repair. 

Introduction 

Joanna C. S. Santos, Mathias Payer 

With the latest advances in LLMs, AI-based code development assistants are increasingly part 
of day-to-day software development. A recent study (https://tinyurl.com/3kub3awn) of 500 US-
based developers showed that 92% use AI coding assistants for work and personal use. The 
increased productivity perceived by developers partly explains this fast, widespread adoption; 
AI helps them automate repetitive tasks so that they can focus on higher-level challenging 
tasks [1].  
Peter Hegedus, Joanna C. S. Santos, Lin Tan 

Automated program repair (APR) aims to generate source code to fix software defects and 
vulnerabilities automatically. Research on APR has advanced significantly with generative AI 
models. LSTM models achieved notable success in generating complex, syntactically correct 
code after training on extensive source code datasets. LLMs further improved automated 
program repair. Since they are pre-trained on an enormous amount of natural language text 
and source code, they also offer an out-of-the-box solution for code repair. Recent studies 
[2, 3, 10, 11] show that LLMs can fix issues in the code, such as defects, vulnerabilities, and 
code smells. In some cases, code repair is treated as a code generation task with a prompt 
explicitly instructing the model to fix a problem in a given location [2, 3].  
 
Peter Hegedus  
  
While LLMs, such as GPT-4, excel at fixing functional bugs in laboratory environments (i.e., 
on synthetic or isolated issues), their real-world application - especially when the task is 
fixing complex, security-related issues—remains limited [4].  
 
LLMs generate vulnerable and incorrect code. 

Awais Rashid 

Software professionals are concerned about AI-generated code quality, correctness, and 
security and the need to scrutinise and validate such code [5]. This is particularly critical for 
program repair. The CrowdStrike case has highlighted how errors in a single patch can have 
a global impact, halting critical services. 



 
Marcelo d’Amorim 

There is evidence that LLMs can produce code containing security weaknesses even when 
the user of the LLM is not malicious [6]. Prevention and detection are two directions to 
mitigate this problem. For prevention, responsibly disclosing the weaknesses of an LLM to 
the public encourages the LLM maintainers to curate training datasets actively. Users must 
know the threats and limitations associated with the versions of the LLMs they are using. 
LLM maintainers are expected to care about public announcements about weaknesses in 
their LLM and will address them in subsequent releases. The LVE Repository (https://lve-
project.org/) is a commendable global initiative in that direction. For detection, LLMs can be 
used to explain the weaknesses identified by third-party tools. Ideally, those explanations 
should describe the consequences of not taking some action to mitigate the weakness, i.e., 
counterfactual explanations are likely more helpful to users. Such explanations should help 
the distracted trained developer and help to train inexperienced developers. 
 
Hamed Okhravi 

Source code often must comply with many other requirements besides functionality. These 
may include soft and hard real-time constraints, power usage requirements (e.g., for 
embedded code), and side-channel resilience (e.g., for crypto code), as well as more generic 
non-functional requirements such as readability, maintainability, performance, portability, 
testability, and modularity. LLM-generated code rarely accounts for these requirements. 

LLMs must also understand the underlying platforms to generate the correct code to fix 
specific bugs [9]. Platform-specific parameters may include Windows vs. Linux file handling, 
32-bit vs. 64-bit code, Windows vs. POSIX threading API, network socket differences, or 
memory alignment. To successfully repair code, the LLM should be trained on all those 
platforms, and detailed platform information must be provided when prompting it to repair 
source code. 

Joanna C. S. Santos, Antonino Sabetta 

LLMs have a prompt input and output size threshold (e.g., GPT-4 can take up to 128,000 
tokens and generate up to 16,384 tokens).  Considering real software systems' sheer 
complexity and size, these thresholds are insufficient. As such, LLMs may miss the broader 
context of a project and can generate a limited repair size. Understanding the complete 
environment in which the code operates (e.g., configuration files, external dependencies, 
database structures, etc.) is crucial for code generation and repair. 
However, despite improvements in token counts (e.g., Gemini 1.5 allows up to 1 million 
tokens), capturing sufficient relevant context may require more than an extra-large token 
count. Effective code repair requires context-aware reasoning. That is, it requires 
understanding the structure and purpose of the overall application so that repairs are 
generated following the codebase’s security needs and technical constraints.  
 
Mathias Payer 
AI-based assistants must be sufficiently scoped to create correct code, especially in highly 
optimised environments. Although research has explored integrating LLMs into automated 
testing, the results only marginally improve on existing methods when incorporating the cost 
of LLM queries. A more promising application of LLMs is in generating test drivers to target 



specific functionalities, as they can generate and refine drivers to improve code path coverage. 
While manually-written drivers often fall short, LLMs could fill these gaps and enhance API 
coverage. However, LLM-generated drivers may be flawed or incomplete, potentially leading 
to false positives and wasted resources. 
 
Peter Hegedus 

The reproducibility of the fixing process is a major challenge, as LLM results are non-
deterministic. Since prompts can have a major impact on the results, instead of model 
training, one would need to invest effort into prompt engineering. 
 

Katja Tuma 

From experience assessing the effectiveness of LLMs in fixing security misconfigurations in 
Kubernetes-based applications [7], existing tools (Checkov, Datree, and KICS, to name a 
few) adopt different rules and security policies to identify security misconfigurations. These 
tools may produce both false positives and negatives. Some configurations (such as 
allowing network access to a container) might be flagged as insecure while they are required 
for the running application to perform its key functionalities (e.g., network monitoring), which 
can only become apparent at runtime when the applications are deployed in the cluster. It is 
up to the administrator to find the right configuration, but LLMs could be used to help. 
Keeping the human in the loop is essential: For infrastructure-as-code repair with LLMs, first, 
we need to distinguish between misconfiguration fixes that can (and should) be verified by 
humans and those that could potentially be automated with limited security risks. Second, 
we need to establish a common taxonomy of misconfigurations and robustness measures 
for more effective tool benchmarking and experimental validation. This could help associate 
a certain level of confidence in the LLM-generated fixes for certain types of 
misconfigurations and instead leave the (orders of magnitude smaller) remaining set of 
issues for humans to handle. 

 
Insufficient training data and how to add software domain knowledge  

Hamed Okhravi 

Supervised approaches may be necessary for APR to succeed. To achieve this aim, LLMs must 
capture a solid notion of vulnerable and secure code to repair code successfully. However, 
realistic data for vulnerable and secure code samples is insufficient to apply supervised 
learning. The entire National Vulnerability Database (NVD) contains around 260K 
vulnerabilities at the time of writing. Consider further that not every reported vulnerability has 
an associated code sample available, and some vulnerabilities on NVD are too old to be 
relevant to modern code. As a result, there are often less than tens of thousands of 
vulnerable code samples on which to train an LLM. This is insufficient to ensure the LLM is 
properly trained to generate only secure code. Recent work in this domain suggests that 
enriching existing data with additional properties (context, syntax, and semantics) allows one 
to achieve better accuracy, precision, and recall in distinguishing between vulnerable and 
secure code [8]. 

Joanna C. S. Santos 

Prior work [11] examined whether LLMs could repair their generated insecure code. Stark 
differences exist between the issues LLMs could repair for each programming language. For 



example, for Python, LLMs can solve issues related to XML validation vulnerabilities but are 
less capable of solving issues related to the Use of a Broken or Risky Cryptographic Algorithm 
(CWE-327), Path Traversal (CWE-22), and Incorrect Permission Assignment for Critical 
Resource (CWE-732). We also observed that, overall, LLMs were more capable of repairing 
Python code than Java code. These results indicate open challenges in effectively using LLM 
to repair insecure code. LLMs are trained with popular languages, especially Python. 
Consequently, LLMs will struggle to repair insecure code for languages with fewer samples in 
their training data. Even in cases where the language is well-covered, a model generates 
repairs to insecure code based on historical data. Still, vulnerabilities and secure coding 
practices continually change as technology evolves.  Thus, the precision observed today likely 
will not be the same tomorrow. 
 

Lin Tan 

Another important question is whether adding more data to train deep learning (DL) models, 
including LLMs, is a promising direction to improve APR techniques. Using increasingly large 
amounts of data has succeeded in tasks such as speaking a natural language, which may 
fundamentally differ from coding tasks. Babies learn to speak their mother tongue by 
mimicking and learning implicitly from what they hear. However, software developers do not 
simply learn programming and program repair by reading code and patches; they also use 
logic and reasoning by taking programming, algorithms, and data structure courses. Thus, 
while adding more data may improve LLMs for text and other modalities, it may not be the 
most effective approach for APR tasks. Adding explicit domain knowledge (including but not 
limited to type rules) to models may be a more effective approach [9]. On the other hand, 
models may not need to learn the same way humans do, and the most effective learning 
approaches for humans may not be the most effective ones for models, suggesting that 
more data could be more effective. 
 
Recent DL-based program repair techniques provide conflicting results in this respect. For 
example, KNOD employs a domain-rule distillation technique to explicitly inject domain 
knowledge including types into the neural network decoding procedure [9].  Specifically, the 
domain-rule distillation technique (1) represents syntax and semantics as rules in first-order 
logic, and (2) uses these logic rules to refine the teacher-student probability distributions to 
guide the model to learn to follow these syntactic and semantic rules. This approach shows 
that adding domain knowledge explicitly improves the effectiveness of neural networks for 
program repair. Yet, other studies (e.g., [10]) suggest the opposite. They show that LLMs for 
code, without or with fine-tuning, outperform existing DL-based program repair techniques 
specially designed for APR to fix software defects. These generic LLMs for code are pre-
trained with a vast amount of data but are not designed for APR. Since these LLMs are 
typically trained with more data than existing DL-based APR approaches, the finding 
suggests that more data could be more effective for improving LLM-based program repair.  
The next relevant open questions are (1) whether we have more data for DL models to 
improve automated program repair and code generation and (2) how to add domain 
knowledge to LLMs effectively.  
 
 
Limited LLMs Accountability and Overreliance 

https://www.cs.purdue.edu/homes/lintan/publications/knod-icse23.pdf


 

Peter Hegedus 

Another major challenge with LLM-based code repair is the validation of the fixes they 
produce. It is not always easy to determine if an LLM-generated patch is genuinely good, 
meaning humans still play an essential role in verifying the correctness of the generated 
patches.  
 
Marcelo d’Amorim 

A challenge is avoiding hallucinations, which can be especially detrimental to inexperienced 
developers, who may not realise incoherences in the discourse.  
The complementary problem of vulnerability repair can be even more challenging in practice 
if we consider the possibility of developers accepting plausible patches recommended by an 
LLM. The possibility of introducing bugs or other vulnerabilities when repairing code is well-
known in software engineering, but security weaknesses can be more consequential. 
Developers need to validate the security patches that automated tools generate. However, 
for small single-hunk patches ---which are prevalent--- the human cost of reviewing may well 
dominate the cost of writing the patch. So, the benefit of automated repair in that context is 
questionable. It is therefore important (1) to focus automated repair on multiple hunk 
patches, (2) to develop tools capable of explaining the repairs, and (3) to ensure developers 
validate these patches. 

 
Jonathan Spring 

Developers need a robust development environment to place more trust in the outputs of an 
LLM. That means good specification and documentation of the application programming 
interface of the project or module, adequate unit tests, adequate integration tests, repeatable 
build processes, appropriate program verification techniques to detect specific common 
classes of vulnerabilities, appropriate testing to check parsing and error handling, and so on. 
An organisation should have these tools established and working well before moving to 
automated code repair. 

However, there are some critical tasks an LLM cannot do. An LLM cannot take ownership of 
maintaining a software product that is out of support or end-of-life. An LLM cannot 
automatically write in interoperable, open standards for communication and data formats. 
Free and open standards will help others (using an LLM tool or not) repair your code after 
you move on to another project.  

With or without LLM assistance, a software vendor should meet the goals of CISA’s Secure 
by Design initiative. When a software vendor offers a product on which the engineers use 
LLM-based code repair, the vendor should provide software transparency and vulnerability 
management. A system owner or acquisitions team should still ask for a Software Bill of 
Materials and ask the vendor about their vulnerability disclosure and reporting practices. 
Vendors should still pledge the organisational work to make software secure by design. 

If we demand that software is secure by design, tools such as LLMs for code repair can help 
software developers meet that demand. 

 



Awais Rashid 

Several open questions surround the quality of LLM outputs. Would we see situations where 
the computer (LLM) says “no repair is needed” when one is required or where it hallucinates 
one? Similar questions arise about the repair itself. Who and how will scrutinise and validate 
the repair so it does not introduce undesirable side effects, such as impacting other software 
functionalities or introducing security weaknesses or vulnerabilities?  
 
There is an expectation that the developer's role will change – from the driver who writes the 
code to a navigator who will check and validate the driver’s work, that is, the LLM’s. 
However, we also know that automation and reliance on tools erode skills. I am reminded of 
a problem with my car: The hazard lights kept coming on when parked, draining the battery. 
Neither the small handheld diagnostic computer (with the repair person) nor the extensive 
diagnostic rig at the garage could replicate the issue or isolate the fault. The problem kept 
recurring until a different repair person came out to recharge the battery, used the same 
handheld diagnostic computer to no effect, gave it some thought and then noted that it was 
likely a faulty burglar alarm. He isolated it, and the problem was solved. Even if we use LLMs 
for code repair, we need skilled software engineers to understand, scrutinise and validate 
the outcomes.  

 
Liliana Pasquale 

LLMs can generate code that no longer satisfies system requirements or introduces 
vulnerabilities. Despite this, their growing power has led software engineers to increasingly 
depend on them, sometimes overly. This overconfidence becomes concerning as 
developers rely on LLMs for coding and program repair, where accuracy is critical. Existing 
AI coding assistants should identify the criticality of software development tasks and 
configure the reliance that developers can place on them accordingly.  For example, LLMs 
can still be useful for several applications where errors can be tolerated. Thus, developers 
can entirely rely on LLMs to automate simple and repetitive programming tasks in non-
critical applications. More complex programming tasks of non-critical applications could 
require the supervision of a senior software engineer to review the code generated 
automatically. New and large programming tasks, especially for critical applications, may 
require using LLMs only to oversee software development activities, such as generating test 
cases or performing code reviews. 
 
Mehdi Tarrit Mirakhorli  

Code repair generated by LLMs, while often functional, provides no guarantees that the 
repaired code is free of vulnerabilities, meets specific safety criteria or truly addresses the 
underlying requirements. This lack of assurance can be problematic, especially in critical 
systems where correctness, security, and performance are non-negotiable. One idea is to use 
LLMs to generate test cases and validate the repaired or synthesised code. However, a 
stronger idea is to provide proof of correctness. Since proofs equate with programs, one can 
deliver an LLM-based approach to generate proofs of correctness automatically using similar 
programs. We discussed the foundation of shifting towards certified code repair, where LLMs 
are integrated with formal verification techniques [12]. Based on the theory that proofs can 
equate with programs, we can think of generating proofs as a task similar to generating code. 
This theoretical foundation suggests that with appropriate training and fine-tuning, LLMs can 
be guided to produce not only code repairs but also formal proofs that guarantee the 
correctness of the generated solutions. In such a transformative approach, along with the code 



fix, the LLM generates a formal proof that certifies the repaired code satisfies a set of 
predefined safety, correctness properties, security policies, or design rules. A lightweight 
verification tool can independently check the proof, ensuring the code fix meets the necessary 
safety criteria before deployment. 

Certified code repair (or synthesis) is foundational for enabling AI autonomously and 
developing secure and trustworthy systems. Pre-LLMs and through my NSF CAREER award, 
I focused on the challenges of realising such a foundational approach where software 
engineers could focus on key engineering tasks  (1) creativity and (2) design, then collaborate 
with a design synthesis tool to generate low-level code that correctly implements their design 
choices.  While we are closer to such an idea today, there are challenges to achieving it for 
modern large-scale systems. For instance, generating formal proofs for code repairs can be 
computationally expensive, especially for large and complex systems. Proof generation 
requires rigorous formalisation of the code’s properties and behaviour, and ensuring that these 
properties hold under all conditions can be time-consuming. Also, modern software has many 
third-party dependencies, adding to the complexity of generating proof of correctness. Fine-
tuning LLMs on datasets that include examples of formal methods, symbolic reasoning, and 
proof-generation tasks can help bridge this gap. Integrating language models with formal proof 
engines could also enhance their capabilities in proof generation. 

 
Opportunities for Software Testing 
 
Joanna C. S. Santos 

LLMs cannot simply be used off the shelf as a foolproof tool to solve the insecure code repair 
problem. LLMs should enhance classic APR techniques rather than fully replace them.  Such 
a hybrid approach has been shown by prior work to help in generating tests  [14]. In that 
context, LLMs generated more diversified inputs to increase test coverage for an underlying 
search-based software-testing approach. 
 
Mathias Payer 

Two key areas are certainly human-in-the-loop code completion and the generation of unit 
tests and fuzzers. Automated testing, particularly fuzzing, has experienced a meteoric rise in 
popularity, mirroring the growth of large language models (LLMs) in computer science. Despite 
its conceptual simplicity, fuzzing effectively uncovers bugs by randomly probing a wide range 
of inputs to expose program vulnerabilities. A promising application of LLMs is generating test 
drivers to target specific functionalities [15], as they can create and refine drivers to improve 
code path coverage. While manually written drivers often fall short, LLMs could fill these gaps 
and enhance API coverage. However, LLM-generated drivers may be flawed or incomplete, 
potentially leading to false positives and wasted resources. 

A promising use case of LLMs is in the bug-fixing process [3]. After a fuzzer detects a bug and 
generates test inputs to reproduce it, an LLM could assist the developer by iteratively 
suggesting patches to address the underlying vulnerability. The fuzzer could then explore the 
patched code to uncover any lingering weaknesses of the patch. This iterative approach, 
alternating between fuzzers and LLMs, may lower developer involvement and reduce the costs 
of producing a complete patch. A hybrid approach combining fuzzers, LLMs, and developers 



could be a promising future direction for integrating LLMs into the bug discovery and 
remediation cycle. As it neither increases costs nor produces false positives, this approach is 
likely the most interesting angle for LLMs, but it will require careful customisation and 
optimisation. 

However, while LLMs offer significant potential for enhancing fuzzing, the baseline approach 
without LLMs is already highly optimised, and the cost of querying LLMs must be carefully 
balanced against the potential benefits. LLMs trained on source code and specifications may 
improve mutation operators and driver generation, but some challenges, such as false 
positives, remain. 

Conclusion 
Awais Rashid 

“Many people expect advances in artificial intelligence to provide the revolutionary 
breakthrough that will give order-of-magnitude gains in software productivity and quality. I do 
not.” wrote Fred Brooks Jr. in No Silver Bullet, his seminal 1986 essay tackling essential and 
accidental complexity in software engineering [15]. 
Will LLMs for code repair tasks alleviate essential complexity or exacerbate accidental 
complexity? Unless we systematically address issues such as correctness, verifiability and 
explainability, LLMs will likely add accidental complexity – potentially order-of-magnitude –  
to the task of program repair, thus eroding any gains they may provide. 
 
There are several open questions about the quality of LLM outputs. Would we see situations 
where the computer (LLM) says “no repair is needed” when one is required or where it 
hallucinates one? Similar questions arise about the repair itself. Who and how will scrutinise 
and validate the repair so it does not introduce undesirable side effects, such as impacting 
other software functionalities or introducing security weaknesses or vulnerabilities?  Time will 
tell. Let us know what your experience and opinions are. 
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