
	 Copublished by the IEEE Computer and Reliability Societies	 March/April 2025� 101

Editor: Sean Peisert, sppeisert@lbl.gov

1540-7993 © 2025 IEEE. All rights reserved, including
rights for text and data mining, and training of
artificial intelligence and similar technologies.

IN FOCUS

Software Bill of Materials as a
Proactive Defense

Hamed Okhravi and Nathan Burow | Massachusetts Institute of Technology Lincoln Laboratory
Fred B. Schneider | Cornell University

The recently mandated software bill of materials (SBOM) is intended to help mitigate software
supply-chain risk. We discuss extensions that would enable an SBOM to serve as a basis for making trust
assessments thus also serving as a proactive defense.

I n 2020, an attacker accessing the
build system of the Texas-based

company SolarWinds was able to
cause distribution of a malicious
update to the tens of thousands
of machines running the Orion
end-host monitoring tool.1 Once
installed, the malicious update gave
the attacker access to that custom-
er’s machines. Microsoft, Intel, and
Cisco, as well as multiple U.S. gov-
ernment departments and agencies,
including Treasury, Justice, Energy,
and the Pentagon, were among the
victims. The 2024 XZ Utils back-
door attack2 in which malicious
code was included in the ubiquitous
XZ compression library is another
prominent attack similar to Solar-
Winds in its vector.

The attacks on SolarWinds and
XZ were classic examples of a soft-
ware supply-chain attack.3 Such an
attack allows “the adversary to uti-
lize implants or other vulnerabilities
inserted prior to installation in order
to infiltrate data, or manipulate infor-
mation technology hardware, soft-
ware, operating systems, peripherals
(information technology products)
or services at any point during the

life cycle.”4 Software supply-chain
attacks are attractive because an
attacker’s investments into gaining
access to modify a single system are
highly leveraged. Such attacks are not
new or novel; a particularly insidious
one was outlined 40 years ago in Ken
Thompson’s 1984 Turing Award
lecture.5 A modern example of this
attack, the “Xcode Ghost” attack,6
was used to compromise software in
Apple’s App Store in 2015. However,
with so many other ways to penetrate
today’s software, the software supply
chain had been widely considered
an unlikely attack vector. Effort was

more sensibly directed at blocking
other kinds of attacks.

The success and scope of the Solar-
Winds attack changed that view, at least
for U.S. government systems. Among
the mitigations outlined in the subse-
quently issued Presidential Executive
Order 140287 were a mandate that
a software bill of materials (SBOM)
would be required for any software
product supplied to the U.S. govern-
ment. This is not a United States-only
initiative; the Cyber Resilience Act
(CRA), a set of rules for security stan-
dards in the European Union, indeed
has similar SBOM requirements.8

Digital Object Identifier 10.1109/MSEC.2025.3528535
Date of current version: 17 March 2025

©SHUTTERSTOCK.COM/CARLOS CASTILLA

https://orcid.org/0000-0003-1450-3744
https://orcid.org/0009-0001-4902-018X

IN FOCUS

102	 IEEE Security & Privacy� March/April 2025

As the name suggests, an SBOM
for a software system describes all of
the components that are part of that
software system. So an SBOM for a
software system provides informa-
tion that enables predictions about
whether attacks on the associated
system would be facilitated by com-
promising a given supplier.

Defenders can consult SBOMs to
prevent the spread of recently seen
attacks (the so-called one-day exploits).
The SBOM is thus serving as a

reactive defense, coming into play
only after an attack has been detected
someplace. As another example of
this reactive usage of the SBOM, con-
sider how it could have helped assess
the extent of exposure to the Log-
4Shell attack against Log4j, the pop-
ular Java logging framework back in
2021. In addition, an SBOM provides
the information necessary for deter-
mining whether different software
systems have components in com-
mon and, thus, could be susceptible
to common-mode failures or attacks.
Here the SBOM is serving as a proac-
tive defense by providing insight into
a system’s resilience to attacks that
have not yet been detected and per-
haps not even conceived.

An SBOM—with some exten-
sions—could become even more
effective as a proactive defense if the
SBOM could be used by software
developers for assessing the trustwor-
thiness of open source and third-party
software components. However, the
information that the Executive Order
and the European Union’s CRA
today mandate an SBOM to include
is too modest for making credible
assessments about trustworthiness of

this software. They require an SBOM
to name the organizations that were
involved in creating the components
comprising a software system. That
information enables some judgments
about the trustworthiness of those
components. But an SBOM is not
required today to specify the build
pipeline used to produce the soft-
ware; assessments of trustworthiness
would require that an SBOM incor-
porated (and perhaps extended)
ideas from the reproducible builds

movement.9 This movement focuses
on approaches that can determine
whether a generated binary corre-
sponds to the original source code
or not. Reproducible builds require
addressing various challenges in the
small and in the large. The challenges
in the large include proper recording
of build information and root cause
analysis for build differences, while
the challenges in the small include
timestamp and path differences. An
SBOM today also is not required to
give other information about meth-
ods (e.g., test coverage criteria or
vulnerability discovery tools used)
that a developer used for assurance.

Today’s SBOM requirements
have been likened by some10 to giv-
ing a list of ingredients for a meal, in
contrast to giving a recipe for cook-
ing that meal or giving a description
of how the meal should taste. By
listing only the ingredients, today’s
SBOMs ignore the complexities of
software vulnerabilities.11 In par-
ticular, a larger software system that
contains a vulnerable module might
be unaffected by that vulnerability
because the vulnerability might not
be exploitable in the context of the

larger system. Exploitability could
be captured in today’s SBOMs, how-
ever, using extensions such as the
vulnerability exploitability exchange
(VEX). VEX specifies the impact
of each vulnerability (CVE) on a
given product by identifying it as
affected, not affected, fixed,
or under investigation.

Given what information an SBOM
is today mandated to provide, a nat-
ural question is: What additional
information should SBOMs con-
tain to help realize their potential
as proactive defenses? That is the
subject of this article. In the “Today:
A Reactive Defense” section, we
summarize how today’s SBOMs are
intended to be used as a reactive
defense. Then, the “Tomorrow: A
Proactive Defense” section discusses
properties that additions to SBOMs
should have to be useful in making
trust assessments for the system an
SBOM labels. Finally, the “Measures
of Success” section discusses the
costs and other criteria for under-
standing when making those addi-
tions are a good idea.

Today: A Reactive Defense
The SBOM for a software system S
is expected to be a machine-readable
record that gives the list of compo-
nents and libraries included in S,
describing certain baseline attributes
for each12: supplier name, compo-
nent name, version string, unique
identifier, dependency relationship,
author of SBOM, and a timestamp.
The supplier name and version string
are useful both for uniquely identify-
ing the component and for deciding
whether some form of mitigation is
required when a supply-chain attack
has been discovered. Other recom-
mended, albeit not required, attri-
butes may also be present in an
SBOM. For example, if the SBOM
includes a hash for some component,
then it becomes possible to check
whether the bits that will be executed
are the same as the sequence of bits
that the developer intended.

Software supply-chain attacks are
attractive because an attacker’s

investments into gaining access to modify
a single system are highly leveraged.

www.computer.org/security� 103

Abstractly, an SBOM defines
a directed acyclic graph in which
an edge in the graph from node n
to node m indicates that the sub-
system being represented by n is a
component of the subsystem being
represented by m. To determine the
impact of a software supply-chain
attack, the entire graph for a system
will often be generated from the
SBOMs for its subsystems. Modern
tools are available to generate this
transitive closure from the compo-
nent relation that is documented in
the SBOM for each subsystem.

The SBOM is not a new concept.
The SAFECode Forum formed in
2007 by multiple “big-name” software
development companies explicitly
mentions the need for “maintaining
a list of third-party components” in
its “Managing Security Risks Inher-
ent in the Use of Thirdparty Com-
ponents” white paper, circa 2017.13
Other guidance documents have
also alluded to SBOM-like ideas.
For example, the Microsoft Secu-
rity Development Lifecycle Process
Guidance, circa 201214 includes the
requirement that “all code developed
outside the project team (third-party
components) must be listed by file-
name, version, and source.”

What is new with Executive
Order 14028 is the mandate for
SBOMs to become available to end
customers. Reactions have been
mixed.15 There never was any debate
that an SBOM would be useful
for developers who must eliminate
a vulnerability or must assess the
scope of the products impacted by
that vulnerability. In response to the
new mandate, however, some have
expressed skepticism about the use-
fulness of SBOMs for end custom-
ers.11 Yet, an end customer with
proper resources (e.g., a medium to
large company) could use an SBOM
in mitigating the spread of a one-day
exploit. For example, particular
network ports could be closed on
the enterprise firewall or certain fea-
tures could be disabled to prevent

immediate exploitation before proper
patches are developed. Other con-
cerns voiced about Executive Order
14028 focus on the timeline, absence
of infrastructure for storing SBOMs,
and missing specifics that allow dif-
ferent government agencies consider-
able flexibility in their interpretations
of the new mandate.16 The Euro-
pean Union initiative is not far
enough along for these issues to be
considered/debated.

SBOM generation and manage-
ment tools that exist today provide
a wide-range of features. This article
is not intended to provide a compre-
hensive treatment of these tools, but
for completeness we briefly mention
a few. BlackDuck is a software com-
position analysis tool that extracts
dependencies and builds SBOMs
from source code, binaries, and even
snippets of code. It also integrates
with software development tools
to automatically generate SBOMs.
Synk is another developer-focused
tool that performs software compo-
sition analysis on open source code.
Checkmarx One, FOSSA, Syft,
and the Microsoft SBOM Tool are
some other prominent SBOM gen-
eration tools.

Tomorrow: A Proactive
Defense
By adding information to what is
today mandated for the SBOM of a
system S, we can create transparency
into the practices used to develop S.
This transparency would enable trust
assessments about the binary execut-
able for S. The transparency would
also provide justification for requests

that a developer undertake additional
testing and/or code analysis.

Consider the case of SolarWinds,
wherein the build system was com-
promised, causing malicious bina-
ries to be distributed without directly
effecting the source code. The form
of SBOM mandated today does
not contain the information neces-
sary for detecting this attack. Only
if an SBOM contained additional
information could the build process

be replicated to create a binary
executable that, if checked against
an authoritative hash, would reveal
that an executable is corrupted. This
checking, however, presumes the use
of reproducible builds,9 as advocated
in the free and open source software
community. So making an SBOM
into a proactive defense because
it enables trustworthiness assess-
ment not only requires incorporat-
ing additional information into an
SBOM, but also adopting certain
development practices.

A step beyond requiring repro-
ducible builds would be to require
reproducible tests. Taking that step
would involve incorporating into an
SBOM the information necessary
for a developer’s tests to be repeated
on a delivered system. Even when
those tests are not actually being
repeated, having the SBOM provide
this information would make it pos-
sible to assess the quality of the test-
ing that a developer had performed.
For example, having test informa-
tion in the SBOM would enable the
determination of the code coverage
achieved by the test suite and it would
allow the determination of whether

An SBOM for a software system
provides information that enables

predictions about whether attacks on the
associated system would be facilitated

by compromising a given supplier.

IN FOCUS

104	 IEEE Security & Privacy� March/April 2025

checks had been made for various
common weakness enumeration
categories. More generally, SBOM
extensions can be a vehicle for mak-
ing claims—ideally, claims that can
be independently verified—about
the DevSecOps practices employed
in producing a software system.

Closed source software is poten-
tially problematic for this vision of
SBOM extensions, though. But such

problems have been addressed in
the regulatory community before.
Possible solutions include the use
of trusted third parties, cooperative
inspections, and sampling. All of
these solutions are seen today in prac-
tice by agencies in the United States,
such as the Food and Drug Admin-
istration for agriculture products,
Federal Aviation Administration for
aircraft production, and Customs and
Border Protection inspections. Other
agencies in the European Union and
other jurisdictions perform similar
regulatory and inspection functions.
Moreover, additional approaches may
be possible for software by using
infrastructure-as-a-service and vir-
tualization, where continuous inte-
gration and continuous deployment
pipelines, testing infrastructure, and
so on could be easily shared with a
trusted third party for validation.

Expanding SBOMs for Trust
Assessment
The ultimate goal of using an SBOM
for proactive security is to have the
SBOM facilitate trust assessments
of systems. A trust assessment for
some system S will be based on the
attributes of a system S, and these
attributes can be put into different
categories.

	■ Intrinsic: These are attributes that
can be verified by analyzing the
codebase for S. What program-
ming language was used? Does
the code incorporate checks for
sanity of inputs, buffer overflows,
etc.? Does the code comply with
specific style guides or standards?

	■ Developmental: These are attri-
butes of the environment and the
process used to develop S and to

establish assurance about its func-
tionality. What compiler was used
in creating the codebase for S?
What hardware and software was
used in the development envi-
ronment? How was S tested (and
what characterizes the test cases
that were used)? What evaluation
methods were employed (and
what properties were verified)?

	■ Reputational: These are attributes
believed to be correlated with the
development of trustworthy sys-
tems. Is the company doing the
development under financial stress?
How trustworthy are the software
producer’s other products? What
education or certifications do the
developers have? In what country
was the software produced?

Intrinsic attributes have been
widely studied in the security com-
munity. The vast literature on soft-
ware testing and sanitization is, in
essence, about establishing trust
based on intrinsic attributes. Devel-
opmental attributes are covered by
the reproducible build, DevSecOps,
and software engineering communi-
ties. Reputational factors venture into
socioeconomic factors that are the
domain of the business and political
communities. One of the challenges

for SBOMs is to distill the vast
amounts of work in these spaces into
a readily stored and verified artifact,
with results that are difficult to game.

The enumeration just given for
the possible contents of a future
SBOM is not intended to be exhaus-
tive. Reasoning about the real-world
security of a system is a multifaceted,
complex, open problem. There is
not ever likely to be a one-size-fits-all
answer to the question: What infor-
mation should inform a decision to
trust a given system? This is because
the relevance of various attributes
depends on the system being evalu-
ated, as well as on how that system
will be used. So we advocate that the
SBOM be seen as a flexible frame-
work for conveying information.
Certain fields might be mandated,
but the SBOM also should evolve
and convey other information that
might be useful for making trust
assessments. The community, in
turn, must see the requirement to
provide an SBOM as an opportu-
nity to incentivize higher assurance
for systems by creating transparency
about practices in software develop-
ment and analysis.

One sensible guiding principle
for selecting the attributes that an
SBOM conveys is to give facts, not
analysis results. What analyses we
can perform is likely to change with
additional research; an SBOM that
reports facts would not become
obsolete by such research. There is,
of course, a risk of having the size of
an SBOM rival the size of the system,
because the SBOM as mandated
incorporates so much detail. That is
not the intention. Rather, an initial
goal might be for the SBOM to con-
tain sufficient detail about a system
so that one could determine whether
an existing or new CVE should
prompt a deeper dive into the code.

It is worth mentioning that a recent
Defense Advanced Research Projects
Agency program, Enhanced SBOM
for Optimized Software Sustainment
(E-BOSS), aims to enhance SBOMs

What is new with Executive Order
14028 is the mandate for SBOMs to
become available to end customers.

www.computer.org/security� 105

with new types of metadata and
develop new cyber-reasoning capa-
bilities. What metadata will be incor-
porated into the SBOM and how it is
used to perform proactive defense is
yet to be seen.

Measures of Success
As with any security mandate, it will
be vital to understand whether an
SBOM mandate is achieving worth-
while goals as opposed to being
“security theater” without a mean-
ingful impact. We have seen that the
goals for an SBOM mandate can
range from enabling the rapid dis-
covery of known vulnerabilities to
serving as a basis for making trust
decisions. After there is a consensus
on the goals for an SBOM mandate,
then incentives can be identified for
ensuring that all participants have a
reason to work toward not only the
letter of a mandate, but also the spirit.

It is impossible to conduct double-
blind randomized control trials that
would gauge the impact of an SBOM
mandate on the obvious concerns:
number of cyberattacks, amount
of data leaked, economic damage,
etc. Nonetheless, indications of suc-
cess would include a reduction in
the exploitable window for known
attacks or a reduction in the total
number of unknown or zero-day,
attacks. Insurance companies requir-
ing SBOMs when writing cyber poli-
cies would be another indicator of
impact, and premium reductions for
using SBOMs could not only incen-
tivize the use of SBOMs but would
help quantify their economic value.

A longer-term possible conse-
quence of an SBOM mandate is
to increase code quality, generally.
What gets measured gets managed.
To the extent that SBOMs enable
the measurement of code attributes
that correlate with quality, having an
SBOM would enable developers and
users to differentiate between better
and worse code. A simple first step
might be for an SBOM to report the
number and recency of updates to a

component, so that developers can
easily check how well maintained a
library is before using it.

It is important not to ignore
potential abuses of SBOMs. There
is a long trail of systems that are
patched slowly, if ever. Conse-
quently, an SBOM repository offers
attackers a road map of known vul-
nerabilities to exploit. This risk
can be mitigated to some extent by
limiting users to accessing subsets
of information relevant to them in
the repository. However, history
shows that access control is diffi-
cult to implement well in practice.
Drawing on Sun Tzu, we believe it
is critical to know yourself, and that
any advantage gained by attackers is
more than outweighed by the addi-
tional transparency for defenders.

Voltaire is credited with observ-
ing that “the best is the enemy

of the good.” Viewed through that
lens, some of the suggestions we
are making about uses and exten-
sions to SBOMs can be seen as being
the enemy. Critics of our suggestions
will argue—rightly—that SBOMs
are a clear improvement over the
status quo, so the current mandate
should suffice! By enumerating a sys-
tem’s components, an SBOM pro-
vides the information that a system
owner needs to take action when
one of those components has been
successfully attacked elsewhere, so
with SBOMs we are better off. But
SBOMs deliver the “good” only with
an infrastructure to manage and dis-
tribute SBOMs. Insufficient attention
is being devoted to that piece of the
SBOM picture; technical as well as
policy challenges must be addressed.

Security measures bring overhead
and inconvenience. They are best
deployed when we have some adver-
sary in mind. The U.S. government’s
mandate for SBOMs was introduced
following a supply-chain attack
and, thus, the mandate might be
seen as a defense against adversaries

who launch supply-chain attacks.
Supply-chain attacks are expensive
to perpetrate, so those adversaries
will be well-resourced. However, we
should also expect a well-resourced
adversary to be capable of subvert-
ing compilers and other elements of
a build tool chain. An SBOM can be
subverted unless it has a verifiable
link to the software artifact (with all
its components) and to the tool chain
used to build that artifact. The cur-
rently mandated SBOM does not
incorporate that information. So the
current mandate exhibits a funda-
mental weakness relative to its goals.

Finally, we have noted that
SBOMs offer enormous potential
beyond their use in alerting a sys-
tem’s owner when a successful attack
elsewhere should be worrisome. In
addition to its role in alerting a sys-
tem owner of new vulnerabilities,
an SBOM could include informa-
tion needed by system owners who
are making trust decisions. Moving
toward support for such extensions is
not in the critical path for the wide-
spread deployment of SBOMs, so
contemplating these extensions isn’t
an impediment to the “good.” But the
chances of making that progress will
be much improved if they are part of
our thinking today.

Acknowledgment
Steve Lipner and the IEEE Security
& Privacy reviewers provided helpful
feedback on an earlier version of this
article. This material is based upon
work supported by the Under Sec-
retary of Defense for Research and
Engineering under Air Force Contract
FA8702-15-D-0001, and Air Force
Office of Scientific Research under
Award FA9550-23-1-0435, as well as
by funding from the Massachusetts
Institute of Technology Lincoln Lab-
oratory, Amazon, and Google. Any
opinions, findings, conclusions or
recommendations expressed in this
material are those of the authors and
do not necessarily reflect the views of
these organizations.

IN FOCUS

106	 IEEE Security & Privacy� March/April 2025

References
	 1.	 S. Peisert et al., “Perspectives on the

SolarWinds incident,” IEEE Secu-
rity Privacy, vol. 19, no. 2, pp. 7–13,
Mar./Apr. 2021, doi: 10.1109/
MSEC.2021.3051235.

	 2.	 “XZ/Utils/backdoor.” Wikipedia.
[Online]. Available: https://en.
w ikipedia.org/w iki/X Z_Uti ls
_backdoor

	 3.	 F. Massacci and L. Williams, “Soft-
ware supply chain security [Guest
Editors’ Introduction],” IEEE Secu-
rity Privacy, vol. 21, no. 6, pp. 8–10,
Nov./Dec. 2023, doi: 10.1109/
MSEC.2023.3321189.

	 4.	 “NIST glossary.” National Insti-
tute of Standards and Technol-
ogy (.gov). [Online]. Available:
https://csrc.nist.gov/glossary/
term/supply_chain_attack

	 5.	 K. Thompson, “Reflections on
trusting trust,” Commun. ACM, vol.
27, no. 8, pp. 761–763, 1984, doi:
10.1145/358198.358210.

	 6.	 D. Goodin, “Apple scrambles after 40
malicious “XcodeGhost” apps haunt
app store,” Ars Technica, Sep. 21,
2015. [Online]. Available: https://
arstechnica .com/information
- te c h n o l o g y / 2 0 1 5 / 0 9 / a p p l e
-scrambles-after-40-malicious
-xcodeghost-apps-haunt-app-store/

	 7.	 “Executive order 14028: Improv-
ing the nation’s cybersecurity,”
The White House, May 12, 2021.
[Online]. Available: https://www.
whitehouse.gov/briefing-room/
presidential-actions/2021/05/12/
executive-order-on-improving-
the-nations-cybersecurity/

	 8.	 T. Turner, “SBOM requirements
in the EU’s CRA (cyber resil-
ience act),” FOSSA, Sep. 9, 2024.
[Online]. Available: https://fossa.
com/blog/sbom-requirements-
cra-cyber-resilience-act/

	 9.	 C. Lamb and S. Zacchiroli, “Repro-
ducible builds: Increasing the integ-
rity of software supply chains,” IEEE
Softw., vol. 39, no. 2, pp. 62–70,
Mar./Apr. 2022, doi: 10.1109/
MS.2021.3073045.

	10.	 National Telecommunications and
Information Administration. SBOM
Explainer: What is SBOM? (Dec. 22,
2020). [Online Video]. https://
w w w. y o u t u b e . c o m / w a t c h ?
v=6yljBKKl8Vo&t=105s

	11.	 S. Lipner. “Software products aren’t
cookies.” csoonline.com. [Online].
Available: https://www.csoonline.
com/ar ticle/566091/software
-products-aren-t-cookies.html

	12.	 United States Department of Com-
merce. “The minimum elements
for a software bill of materials
(SBOM).” National Telecommuni-
cations and Information Adminis-
tration (.gov). [Online]. Available:
https://www.ntia.doc.gov/files/
ntia/publications/sbom_minimum
_elements_report.pdf

	13.	SAFECode, “Managing secu-
rity risks inherent in the use of
thirdparty components,” Tech.
Rep., 2017. [Online]. Available:
https://safecode.org/wp-content/
uploads/2017/05/SAFECode_
TPC_Whitepaper.pdf

	14.	 Microsoft, “SDL process guid-
ance version 5.2,” Tech. Rep., May
2012. [Online]. Available: legacy
update.net/download-center/
download/29884/microsoft-security
-development-lifecycle-sdl-process
-guidance-version-5

	15.	 W. Enck and L. Williams, “Top
five challenges in software sup-
ply chain security: Observations
from 30 industry and government
organizations,” IEEE Security Pri-
vacy, vol. 20, no. 2, pp. 96–100,
Mar./Apr. 2022, doi: 10.1109/
MSEC.2022.3142338.

	16.	 G. Bitko, “ITI Letter to office of
management and budget,” Informa-
tion Technology Industry Council,
Washington, DC, USA, Nov. 2022.
[Online]. Available: https://www.
itic.org/documents/public-sector/
ITILettertoOMBreM-22-18.pdf

Hamed Okhravi is a senior researcher at
the Massachusetts Institute of Tech-
nology (MIT) Lincoln Laboratory,

Lexington, MA 02421 USA. His
research interests include systems
security, security evaluation, and
operating systems. Okhravi received
a Ph.D. in electrical and computer
engineering from the University of
Illinois at Urbana-Champaign. He
is the recipient of two Best Paper
Awards, three R&D 100 Awards, the
Federal Laboratory Consortium for
Technology Transfer Excellence in
Technology Transfer Award, MIT
Lincoln Laboratory’s Best Inven-
tion and Early Career Technical
Achievement Awards, and the
National Security Agency’s Best
Scientific Cybersecurity Paper
Award. He is a Senior Member
of IEEE. Contact him at hamed.
okhravi@ll.mit.edu.

Nathan Burow is a technical staff
member at the Massachusetts
Institute of Technology Lincoln
Laboratory, Lexington, MA 02421
USA. His research interests include
systems security, operating sys-
tems, and binary analysis. Burow
received a Ph.D. in computer sci-
ence from Purdue University. His
work has received two best paper
awards. He is a Member of IEEE.
Contact him at nathan.burow@
ll.mit.edu.

Fred B. Schneider is the Samuel
B. Eckert Professor of Com-
puter Science at Cornell Uni-
versity, Ithaca, NY 14853 USA.
His research interests include
aspects of trustworthy systems,
such as those that will perform
as expected, despite failures
and attacks. He is a fellow of the
American Association for the
Advancement of Sciences and
the Association for Computing
Machinery, and has been elected
to membership of the National
Academy of Engineering and the
Norwegian Academy (NTV). He
is a Fellow of IEEE. Contact him
at fbs@cs.cornell.edu.

http://dx.doi.org/10.1109/MSEC.2021.3051235
http://dx.doi.org/10.1109/MSEC.2021.3051235
https://en.wikipedia.org/wiki/XZ_Utils_backdoor
https://en.wikipedia.org/wiki/XZ_Utils_backdoor
https://en.wikipedia.org/wiki/XZ_Utils_backdoor
http://dx.doi.org/10.1109/MSEC.2023.3321189
http://dx.doi.org/10.1109/MSEC.2023.3321189
https://csrc.nist.gov/glossary/term/supply_chain_attack
https://csrc.nist.gov/glossary/term/supply_chain_attack
http://dx.doi.org/10.1145/358198.358210
https://arstechnica.com/information-technology/2015/09/apple-scrambles-after-40-malicious-xcodeghost-apps-haunt-app-store/
https://arstechnica.com/information-technology/2015/09/apple-scrambles-after-40-malicious-xcodeghost-apps-haunt-app-store/
https://arstechnica.com/information-technology/2015/09/apple-scrambles-after-40-malicious-xcodeghost-apps-haunt-app-store/
https://arstechnica.com/information-technology/2015/09/apple-scrambles-after-40-malicious-xcodeghost-apps-haunt-app-store/
https://arstechnica.com/information-technology/2015/09/apple-scrambles-after-40-malicious-xcodeghost-apps-haunt-app-store/
https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/
https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/
https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/
https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/
https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/
https://fossa.com/blog/sbom-requirements-cra-cyber-resilience-act/
https://fossa.com/blog/sbom-requirements-cra-cyber-resilience-act/
https://fossa.com/blog/sbom-requirements-cra-cyber-resilience-act/
http://dx.doi.org/10.1109/MS.2021.3073045
http://dx.doi.org/10.1109/MS.2021.3073045
https://www.youtube.com/watch?v=6yljBKKl8Vo&t=105s
https://www.youtube.com/watch?v=6yljBKKl8Vo&t=105s
https://www.youtube.com/watch?v=6yljBKKl8Vo&t=105s
https://www.csoonline.com/article/566091/software-products-aren-t-cookies.html
https://www.csoonline.com/article/566091/software-products-aren-t-cookies.html
https://www.csoonline.com/article/566091/software-products-aren-t-cookies.html
https://www.ntia.doc.gov/files/ntia/publications/sbom_minimum_elements_report.pdf
https://www.ntia.doc.gov/files/ntia/publications/sbom_minimum_elements_report.pdf
https://www.ntia.doc.gov/files/ntia/publications/sbom_minimum_elements_report.pdf
https://safecode.org/wp-content/uploads/2017/05/SAFECode_TPC_Whitepaper.pdf
https://safecode.org/wp-content/uploads/2017/05/SAFECode_TPC_Whitepaper.pdf
https://safecode.org/wp-content/uploads/2017/05/SAFECode_TPC_Whitepaper.pdf
http://dx.doi.org/10.1109/MSEC.2022.3142338
http://dx.doi.org/10.1109/MSEC.2022.3142338
https://www.itic.org/documents/public-sector/ITILettertoOMBreM-22-18.pdf
https://www.itic.org/documents/public-sector/ITILettertoOMBreM-22-18.pdf
https://www.itic.org/documents/public-sector/ITILettertoOMBreM-22-18.pdf
mailto:hamed.okhravi@ll.mit.edu
mailto:hamed.okhravi@ll.mit.edu
mailto:nathan.burow@ll.mit.edu
mailto:nathan.burow@ll.mit.edu
mailto:fbs@cs.cornell.edu
legacyupdate.net/download-center/download/29884/microsoft-security-development-lifecycle-sdl-process-guidance-version-5
legacyupdate.net/download-center/download/29884/microsoft-security-development-lifecycle-sdl-process-guidance-version-5
legacyupdate.net/download-center/download/29884/microsoft-security-development-lifecycle-sdl-process-guidance-version-5
legacyupdate.net/download-center/download/29884/microsoft-security-development-lifecycle-sdl-process-guidance-version-5
legacyupdate.net/download-center/download/29884/microsoft-security-development-lifecycle-sdl-process-guidance-version-5

	101_23msec02-infocus-3528535

