The Impact of Platform Vulnerabilities in Al
Systems
by
Ashley Kim

B.S. Electrical Engineering and Computer Science,
Massachusetts Institute of Technology (2020)

Submitted to the Department of Electrical Engineering and Computer
Science
in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
September 2020
(© Massachusetts Institute of Technology 2020. All rights reserved.

Author ..o
Department of Electrical Engineering and Computer Science
August 14, 2020

Certified Dy
Howard Shrobe

Professor of Electrical Engineering and Computer Science

Thesis Supervisor

Certified Dy
Hamed Okhravi

Senior Staff, MIT Lincoln Laboratory

Thesis Supervisor

Accepted Dyo
Katrina LaCurts
Chair, Master of Engineering Thesis Committee

DISTRIBUTION STATEMENT A. Approved for public release. Distribution is
unlimited.

This material is based upon work supported by the Assistant Secretary of Defense
for Research and Engineering under Air Force Contract No. FA8702-15-D-0001. Any
opinions, findings, conclusions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the views of the Assistant Secre-

tary of Defense for Research and Engineering.

The Impact of Platform Vulnerabilities in AI Systems
by
Ashley Kim

Submitted to the Department of Electrical Engineering and Computer Science
on August 14, 2020, in partial fulfillment of the
requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

Artificial intelligence has become increasingly prevalant through the past five years,
even resulting in a national strategy for artificial intelligence. With such widespread
usage, it is critical that we understand the threats to Al security. Historically, re-
search on security in Al systems has focused on vulnerabilities in the training algo-
rithm (e.g., adversarial machine learning), or vulnerabilities in the training process
(e.g., data poisoning attacks). However, there has not been much research on how
vulnerabilities in the platform on which the Al system runs can impact the classifi-
cation results. In this work, we study the impact of platform vulnerabilities on Al
systems. We divide the work into two major part: a concrete proof-of-concept attack
to prove the feasibility and impact of platform attack, and a higher-level qualitative
analysis to reason about the impact of large vulnerability classes on Al systems. We
demonstrate an attack on the Microsoft Cognitive Toolkit which results in targeted
misclassification, leveraging a memory safety vulnerability in a third party library.
Furthermore, we provide a general classification of system vulnerabilities and their
impacts on Al systems specifically.

Thesis Supervisor: Howard Shrobe
Title: Professor of Electrical Engineering and Computer Science

Thesis Supervisor: Hamed Okhravi
Title: Senior Staff, MIT Lincoln Laboratory

Acknowledgments

Thank you to Hamed Okhravi for guidance through the entirety of the process. I
could not have accomplished any of the work here without your ideas and your help.
Thank you to Howie Shrobe and Hamed Okhravi for giving me the opportunity
to work with the group, and providing the idea for this project.
Thank you to Kyle Denney for the AI and reverse-engineering specific advice
through our meetings, and for organizing information on various threats to Al sys-

tems. The work provided formed a large basis for the threat overview.

Contents

1 Introduction

2 Background
2.1 Al Systems

2.2 Problem Definition

3 Real-World Attack

3.1 Microsoft Cognitive Toolkit

3.2 Example Exploit o

4 Broader Threat Analysis

4.1 Platform Attacks
4.1.1 Data Modification Attacks
4.1.2 Denial of Service
4.1.3 Input Leakage

4.2 Algorithm Robustness Attacks
4.2.1 Adversarial Samples 0oL

4.3 Data Attacks
4.3.1 Training Data Poisoning
4.3.2 Training Data Leakage

4.4 Summary

5 Discussion

17

21
21
22

25
25
27

35
36
36
40
41
43
43
44
44
46
47

49

6 Related Work 51

6.1 Security in the Training Data 51
6.2 Security in the Algorithm 0. 51
6.3 Security in the Trained Model, 52
7 Conclusion 53

10

List of Figures

2-1

3-2

3-3

3-4

3-5

4-1

Information flow through a general Al System

Overview of CNTK
The structure of the buffer storing loaded images, and the pointers it
contains.
The timeline of events in the classification process, with adversary

actions outlined in red. The dotted lines indicate the window of op-

portunity for the adversary to leverage the arbitrary write vulnerability.

The sequence of the adversary’s actions and their effects on the memory
of the system.
Impact of the exploit. Without a malicious image, the classifications
are correct, but with a malicious exploit the classifications of all images

are impacted. oL

Tree of Al Security

11

27

29

30

12

List of Tables

4.1 Categorization of Attacks on Al Systems

13

14

List of Code Listings

321 CalltoOpenCV 28
3.2.2 Matrix Swap Snippet 30
3.2.3 Exploit Pseudocodeo 31
4.1.1 Vulnerable Stack Overflow Code 37
4.1.2 Vulnerable Heap Overflow Code 37
4.1.3 Vulnerable Arbitrary Overwrite Code 38
4.1.4 Arbitrary Reado 42

15

16

Chapter 1

Introduction

Artificial intelligence has become increasingly prevalent in the past few years, be-
ing used to solve problems across domains of speech recognition [89][4], optimization
[80]|73], and object identification [77][2][28]. AI has also been adopted in many sen-
sitive and fault intolerant fields such as fraud detection |76] and medicine [30]. With
the rise in open source toolkits, it has become easier than ever to deploy Al in a wide
variety of systems, causing their use to be even more widespread.

ML as a subdomain of Al has received special attention recently. ML systems
are often opaque, however [20]. The models are trained over many iterations without
needing much interaction with the underlying system. This can make vulnerabilities
in the system much more difficult to analyze. The validity of the results obtained from
machine learning relies on three main properties: sufficient training data, robustness
of the algorithm against adversarial samples, and the security of the platform on which
the engine runs. While both the properties of robustness in training [36][9][1][27] and
the algorithm [57][14][88][90][26] have been studied extensively, the third property, the
security of the platform, has received little attention. Unlike in many other systems,
in an Al engine, a single change in a variable may result in changes that are drastic
and difficult to diagnose. Thus, the impact of platform vulnerabilities on Al systems
have to be studied to understand their implications for real-world scenarios.

In this thesis, we study the impact of threats to Al platforms. We first build a

proof-of-concept attack to show that platform attacks are not only feasible, they can

17

have impacts that have received very little attention in the literature. For instance, a
malicious sample can maliciously modify not only its own classification but also the
classification of other samples. We demonstrate a cross-sample attack to highlight the
importance of Al platform security. Second, we study the larger landscape of attacks
against Al platforms, and analyze their impact against Al engines. In particular, we
find that certain classes of attacks that are important in enterprise settings are much
less important for Al systems, while others that seem weak in enterprise settings,

such as limited data-only attacks, have major impact on Al systems.

Our work demonstrates a novel class of cross-sample attacks that can impact Al
systems, and raise awareness towards the less-considered results of attacks against
the Al system platform. We also discuss a more general threat landscape that high-
lights important threats against Al engines. In doing so, we identify gaps in current
techniques used in securing Al systems, which the research community can leverage

in order to develop newer techniques.

There has been substantial reseach in securing Al platforms. However, a large
majority of them focus on either attacking the algorithm used in the learning process
[7][10][88][59]|26][90][14] or the training process [36][9][1][27]. There has been some
recent work in designing a secure platform for Al systems, but a majority focus on
securing the platform in a data-privacy setting, attempting to limit the amount of
private data exposed to an ML system during the training [33][64][37][54]. There has
been some recent work in guaranteeing the integrity of Al systems in the cloud using
trusted execution environments (TEEs) such as Intel SGX [43] [81], but these systems
are designed with threats in the untrusted software stack in mind, not necessarily
vulnerabilities in the AI system itself. In contrast to these efforts, we present a
specific attack against Al systems that only leverages vulnerabilities in the Al system

itself, and demonstrate a need for addressing platform security in a Al-specific setting.

In this thesis, we demonstrate a specific cross-sample attack against a popular ma-
chine learning framework (Section 3), and proceed to discuss general threats against
Al systems (Section 4). We then discuss the other efforts in the field of Al security

(Section 5), and provide a discussion of the results (Section 6), identifying vulnera-

18

bility classes that are not well addressed by currently existing research.

19

20

Chapter 2

Background

To contextualize our research, we provide a background for Al as a whole, and in Al

security.

2.1 Al Systems

AT has become increasingly prevalent in software in the past few years [29][13]. Many
critical systems, such as autonomous vehicles [39][24] and robots [12][91], rely on Al
for correct functionality.

Machine learning (ML), a subset of Al techniques, generally automates the process
of analyzing data sets, producing models that classify inputs based on the correlations
it finds in the training data it is initially provided [3|. There are three main classes
of machine learning techniques, depending on what data is provided as initial input
during the training phase. The three types are supervised learning, unsupervised
learning, and reinforcement learning [57]. Supervised learning refers to methods that
initially provide the systems with sets of inputs and their corresponding outputs. Un-
supervised learning initially provides inputs without information about the expected
outputs. Reinforcement learning relies on providing sequences of actions and observa-
tions as inputs, with the goal of identifying the optimal actions to take in a specified
environment.

Although separately classified by the inputs to the system, Al systems generally

21

Training Set
Training
Algorithm
3
Raw Data | —» Iage > Test Set Model
Processor
3
.| Evaluation -
Input Algorithm Output

Figure 2-1: Information flow through a general Al System

have similar attack surfaces, because their data processing pipelines are similar. A
generic system, illustrated in Figure 2-1, takes an object or action from the physical
domain, and translates it into input through various methods (sensors, cameras, etc.).
Then, the digital representation of the data is sent through the machine learning
model, which then outputs a result [57].

Tampering of the data at any point in this process could cause incorrect outputs of
the system. If the inputs are tampered with either in the physical domain or any time
during the conversion to digital data, the outputs may be unexpected. In addition,
if there are errors in the model itself, the outcomes may also be incorrect.

The validity of the model in artificial intelligence rely on three main factors: good
training, robustness of the algorithm, and security of the platform. All three elements

are necessary to be able to trust the results of the classifications.

2.2 Problem Definition

AT systems have risen in popularity recently, and there has been an increased interest
in the security of Al systems. Various researchers have worked on demonstrating that

machine learning is vulnerable to attacks through the training data [36][9] or through

22

adversarial examples that leverage flaws in the algorithms [14][57][90]. However, as
we stated, there are three main facets of machine learning. We need robustness in our
training, our algorithms, and in the platform on which the system operates. While
the first two facets have been researched [57|, there has been little work (to our
knowledge) on the last facet.

There is an underlying system that generates and trains the networks, and runs
the inputs through the classifier. The vulnerabilities in the underlying systems could
thus result in incorrect results even if the algorithms and the training data were all
free of errors. As Al systems are used to make decisions for sensitive applications in
self-driving cars, drones, or robots [14], trust in their behavior is imperative. Thus,
there is a need to learn about how platform vulnerabilities can effect Al systems.

There has been a large amount of general research done in systems security
[78]|17][44][75]|32], but none focuses on machine learning systems specifically. While
general systems vulnerabilities can still apply to machine learning platforms, we hy-
pothesize that there are specific classes of vulnerabilities that are significantly more
critical on Al systems than anywhere else. For example, an attacker being able to
overwrite a single data value may not be so damaging in general, but may be critical
in an Al system, where a single change in a model parameter is hard to identify, and
can change the results drastically.

Thus, we will attempt to find and classify vulnerabilities in Al platforms, with a
strong focus on ones that behave differently in AI platforms. Mostly, these should be
data-only vulnerabilities, and we will seek to demonstrate that their impact is much
greater than previously thought. Thus, we will motivate a specialized threat model

for Al systems, and identify methods for securing these platforms against threats.

23

24

Chapter 3

Real-World Attack

In this section we demonstrate an exploit on a existing Al system. Our exploit targets
Microsoft CNTK, a open-source deep learning library. We leverage a memory safety
vulnerability in a third party library in order to cause targeted misclassification. The

exploit relies on the existence of the vulnerability specified in CVE-2018-5268.

3.1 Microsoft Cognitive Toolkit

The Cognitive Toolkit (CNTK) is a open-source, deep learning toolkit developed by
Microsoft [68]. Primarily, it allows the user to define a network as a directed graph,
and train and evaluate the specified model. As illustrated in Figure 3-1, it takes in
a model specification along with inputs that are passed through a image processor,
and outputs a model that it can then evaluate with arbitrary processed inputs. As
it allows fine-grained model specification, CNTK can express nearly arbitrary neural
networks, and execute the corresponding algorithms. CNTK can be loaded in as a
library in Python, C#, or C+-+, but for our purposes, we use it as a standalone tool
and explicitly define our models using BrainScript, their custom model description
language.

The BrainScript interface allows us to specify one of two modes, training or eval-
uation, for execution. In the training mode, the BrainScript file specifies the model

layout and the size and shape of all parameters. In the evaluation mode, CNTK just

25

Training
Images
Model Image
Specifications Processor Test Images
\ / 3
CNTK (Train) Image
\ Processor
Model
CNTK
(Evaluate)

Figure 3-1: Overview of CNTK

needs a path to the trained model and the input images and their classifications.

When running CNTK providing the BrainScript specification as an input, CNTK
parses the specifications and initializes the model, located on the heap. All compo-
nents of the model are allocated on the heap, and pointers are initialized according to
the model description. The matrices holding the input data for the model is initial-
ized to empty during this stage, and references to it are created even though it’s not
yet populated. Figure 3-2 illustrates the structure of the matrix containing the input
data. It contains maps corresponding to features and labels for the potential input
set, which each contain a map with a pointer m_pArray that contains a reference to
the input data corresponding to the matrix.

The inputs are loaded through a call to ImageReader, which fills a buffer on the
stack with image data read from a specified text file. This buffer contains a matrix,
and also holds all the information about the layout and size of the input. The layout
and size information is included in the model itself, and the process will abort if an
input that is invalid for the current model is provided. The matrix contains pointers
to four different types of matrices. There are sparse and normal versions of matrices

for both CPU and GPU based calculations. These submatrices are what holds the

26

High Pre-allocated InputMatrices are populated
OXTHFT000 through a datastream
Stack
Ox7ffffice000 | StreamPrefetchBuffer Map
(map) : L1 - Matrix
- ‘features” = Layout
o - “labels” - Sample Shape
Shared Libraries - Shape Dimensions (vector)
/Memory \
Matrix :
- CPUMatrix
- GPUMatrix
0x555558af4000 - CPUSparseMatrix
Heap - GPUSparseMatrix
0x555558a65000 - GetDevicelD()
Low Text/Data/Etc. - m_pArray

Figure 3-2: The structure of the buffer storing loaded images, and the pointers it
contains.

pointer to the numerical data stored in the matrix. However, the data is accessed
through getter and setter methods in the matrix class.

After the image data is read into the buffer, CNTK swaps it into the input matrix
that was previously linked into the model. As the references to the matrix already
exist in the network, they swap the contents of the buffer and the matrix instead of

switching pointers.

3.2 Example Exploit

The goal of our attack is to use a malicious input image for CNTK and cause the
engine to misclassify other images. This requires finding a memory corruption vulner-
ability in either CNTK or the third party libraries it loads, and leveraging it during
the classification process.

We studied the image loading process for possible corruptible sites. We found that
the images were converted into matrix form in Readers/ImageReader/
ImageReader.cpp, which made calls out to Readers/ImageReader/

ImageDataDeserializer.cpp in order to parse the image data. In line 98 of Source/Readers/

27

ImageReader/ImageDataDeserializer.cpp, shown in listing 3.2.1, they call the

OpenCV library to read the image from the path.

1 return cv::imread(path, grayscale 7

2 cv:: : cv::IMREAD_COLOR);

OpenCV is a popular open-source computer vision library, popular for machine
learning applications due to its focus on efficiency and support for various types of
specialized hardware [11]. OpenCV had a heap-based buffer overflow that could be
triggered by parsing a malicious image in the loading process (CVE-2018-5268). We
decided to leverage this vulnerability to introduce a write-what-where vulnerability
[78] in CNTK itself.

Given a write-what-where vulnerability, we then determine which addresses to
overwrite in order to cause a misclassification. We observe that the following steps

occur during the image loading process.

1) The input matrix is initialized, and references to it are created within the network.
2) The image data is loaded into a buffer.

3) The matrix and the buffer have their contents swapped.

Step 3) of the process specifically swap the contents of the two matrices, instead of
changing their pointers. This is due to the initialization in step 1), causing references
to the input matrix to be remembered. This means that the image data referenced by
the input matrix will be the one used during classification. This is key to our attack,
and the specific timeline is outlined in Figure 3-3.

We considered several approaches before deciding on a plan of attack. We first
considered attempting to modify the size of the image in some way, in an attempt to
misalign the evaluation frame with the input images. Robust bounds checking and
layout verification made this approach infeasible. Then, we considered overwriting

the data pointer in the input matrix used in the network. However, after our window

28

Network

Loaded, Swap in
References Loaded
to Input Images Images to Classification
Created Loaded Model Input
- Time
4
Malicious Qverwrite Overwrite) -
Image Set Pointer for Pointer for Misclassification
as Input Swap Image Data of Target Image
Destination Location

Figure 3-3: The timeline of events in the classification process, with adversary actions
outlined in red. The dotted lines indicate the window of opportunity for the adversary
to leverage the arbitrary write vulnerability.

for arbitrary writes has passed, we have a swap that overwrites the value of the data
pointer with that of the input. We cannot delay our write, as we are leveraging
a vulnerability in an external library that is called exactly once during the image
loading process in step 2).

Thus, we need to accomplish two things with our vulnerability. We need to ensure
the swap does not overwrite the desired data in our input matrix, and overwrite the
data pointer in the input matrix to produce the desired classification.

We accomplish the first goal by creating a dummy matrix object, and overwrit-
ing the destination of the swap. Specifically, the swap occurs as follows in lines
301-307 of CNTK/Source/Readers/ReaderLib/ReaderShim. cpp: :301-307, shown in
listing 3.2.2.

29

e e Fetched Images

3) Malicious ptr = Ox7fffdc0057

Swap

Leede——-p| 2) Dummy Matrix

Input Matrix

> 1)
ptr = 6x%655558ae5+56
Ox7fffdbfd47

Figure 3-4: The sequence of the adversary’s actions and their effects on the memory
of the system.

1 for (auto i = matrices.begin(); i != matrices.end(); ++i)
2 {

3 std: :swap(i->second.GetMatrix<ElemType>(),

4 *m_prefetchBuffers[i->first] .m_matrix);

5

6 // Resetting layouts.

7 i->second.pMBLayout->Init (1, 0);

C

Before the swap, we can overwrite the matrices object, ensuring that the entries
it holds are not the ones referenced in the network. Then, this swap will effectively
result in a no-op. Thus, if we overwrote the data pointer in the input matrix, the
change will be preserved and the evaluation will occur on the malicious input data.
The sequence of transformations is illustrated in Figure 3-4.

Now, we need to overwrite the data pointer in the input matrix. If the buffer
loaded the image data into memory location X, we considered two possibilities for

a corrupted pointer: X - image_size, and X + image_size. The first possibility

30

can corrupt the first image of the stream, and in a targeted fashion if we leverage
additional writes during the corruption step in order to load a fake image right before
the real images. However, this approach is inconsistent, as the region of memory right
before the image buffer is not guaranteed to be writeable. The second approach is
much less brittle, but has the disadvantage that we can only corrupt a classification
into one of an image that was truly in the input stream.

We chose the second approach because the attack already assumes the attacker
can upload a malicious input image to the classifier. Thus, the disadvantage is mostly
mitigated, and we get a much more reliable attack.

As a result of uploading the malicious image, the attack executes the series of

commands described in Listing 3.2.3.

1 // corrupt the matriz data pointer

2 target_ptr = matrices.begin()->second.GetMatrix<Float>() .m_CPUMatrix.get()

3 .m_sob.get()) .m_pArray

4 fetched_images_ptr = *m_prefechBuffers[i->first].m_matrix..m_CPUMatrix.get())
5 .m_sob.get () .m_pArray

6 target_ptr = test_images_ptr + 4 * 28 * 28

g8 // undo the swap

9 dummy_matrix_ptr = make_fake_matrix_on_stack();

10 matrices.begin() = dummy_matrix_ptr

This overwrites both the swap destination pointer and the image data pointer,
causing the system to receive essentially an offset batch of inputs. Several examples
of the corruption are depicted in Figure 3-5.

We ran this attack on version 2.7 of CNTK, leveraging the vulnerability from
version 3.4.0 of OpenCV. We discovered that we could corrupt the classification of
all input images to the classification of the next image. This caused the evaluation
accuracy to fall from 100% to 0%. Using a sample of the two images shown, the

results of the outputs varied as shown in Figure 3-5. Even though we only provided

31

7 i 19)iL

Classification 7 2 Ckassiﬁcatio.n 9 2 |
| 7 :L__ Z“ ? T 1 Z“ ___
Classification 2 2 Classification B 2 - 2
33 23
Classification 3 | | 7 : CFassiﬁcatior; | 2 - | 7 | |
g2 Z93
Classification | 7 7 ‘ Classification 7 . 7 -

Figure 3-5: Impact of the exploit. Without a malicious image, the classifications are
correct, but with a malicious exploit the classifications of all images are impacted.

32

one malicious image to the process, we managed to alter the classification of all other

images.

33

34

Chapter 4

Broader Threat Analysis

We provide an overview of general attacks on Al systems, how they might be executed,
and their impacts on the system. AI Attacks can be classified intro three large
classes: platform attacks, which attack the platform the Al system runs on, algorithm
attacks, which attack the algorithm the AI system uses for classification, and data
attacks, which insert data into the system to cause malfunction. These attacks can
further be subdivided into more specific categories. Platform attacks can be divided
into data modification attacks, which modify the data in the evaluation step of the
system to cause misclassification, denial of service attacks, which causes a failure of
availability in the system, and input leakage attacks, which gain access to confidential
data that passes through the platform. Algorithm attacks are described by adversarial
examples, samples that are specifically constructed to cause a misclassification by the
classification algorithm. Data attacks can also be divided into training data poisoning
attacks, which insert malicious inputs to the training set to cause misclassification,
or training data leakage attacks, which use malicious inputs to identify samples from

the confidential training set. This categorization is illustrated in Figure 4-1.

35

Al Attacks

¥]]
Platform Algorithm
Attacks Attacks Data Attacks
{ 1 Jv—‘—l
Biaka Denial of Input Adversarial | | Training Data | | Training Data
Modification Service Leakage Examples Poisoning Leakage

Figure 4-1: Tree of Al Security

4.1 Platform Attacks

4.1.1 Data Modification Attacks

This section focuses on attacks that modify the data in the input evaluation step
of the Al system. This can range from modifying the parameters in the model, to
modifying the inputs to the system maliciously. These attacks do not involve changes

to the control flow of the system.

Attack Method

These attacks require that the adversary be able to overwrite a parameter to the
system. Depending on how objects are stored in memory, there are various methods
[19]|63][35] an attacker could use in order to compromise a system by overwriting
parameters.

Most Al systems take in an input, which is then categorized by the system. Con-
sider an example machine learning system that interprets its input as described in

listing 4.1.1.

36

Listing 4.1.1: Vulnerable Stack Overflow Code

1 modelObject model;
2 char input[200];

3

4 load_model (model) ;

5 gets(input);

7 return evaluate_model(model, inputs);

. »

This snippet loads in a model, reads an input, evaluates the input based on the
model, and returns the result. However, the key observation is that the model and
input are both stored as local variables in memory on the stack. As this model uses
gets (), which does not verify the size of the input, when loading in the model, the
adversary could provide an input of size much larger than the program specification,
which in this case is 200. If this occurs, gets() will attempt to copy the entire
adversary-provided input into the buffer, overflowing the data into the rest of the
local variables. As the model is stored on the stack in the same contiguous section as
all the other local variables, this buffer overflow could modify the model parameters
to attacker-controlled values and corrupt the evaluation of the input. While this ex-
ample overwrites memory on the stack, we can also perform a very similar attack to

overwrite parameters on the heap, as described in listing 4.1.2.

Listing 4.1.2: Vulnerable Heap Overflow Code

1 char *input = malloc(20);

2 modelObject *model = malloc(modelSize);
3 strcpy(input, argv[il);

4

5 return evaluate_model (model, inputs);

\. y

Since strcpy() reads to the nullbyte in argv[1], we may write more than 20
characters into the input buffer, causing an overflow. As the model is allocated right
after the input, the adversary can overwrite model parameters at will with the attack.

Furthermore, the adversary is not necessarily limited to attacking data that is directly

37

adjacent to the input in memory. Consider the system described in listing 4.1.3

1 char *input = malloc(20);
2 inputIndex = 10;
3 modelObject *model = malloc(modelSize);

4 strcpy(input, argv[1]);

6 model [inputIndex] = input;

8 return evaluate_model (model, inputs);

The snippet illustrates a function where the Al system evaluates the model given
an input with state, and returns the element at the index corresponding to the output.
However, the inputIndex is adjacent to the input in memory, and the input uses a
vulnerable function that allows a buffer overflow. This allows the attacker to control
the value of inputIndex. As C arrays do not natively check array boundaries, the
attacker can assign any value to inputIndex, and thus write to a value at any desired
offset from the model. This allows the adversary to have arbitrary write access over
the system.

The previous attacks take advantage of vulnerable system functions, for example
gets() and strcpy(), in the code. However, this is not necessarily required for the
adversary to be able to corrupt the data on the system. Many modern classifiers
attempt to support various types of inputs, and rely on third-party libraries in order
to read these values. In the example we provided in the thesis, we leveraged a buffer
overflow vulnerability in the library used to load the image, managing to overwrite
other images in the sample. Using this approach, we managed to corrupt not only the
classification of the adversary-provided data, but of entirely benign data provided in

the same sample set.

38

Attack Impact

Attacks that modify the weights of the model itself can lead to a variety of effects.
Even uncontrolled overwriting of a few parameters can cause the model to behave in
unintended ways, returning random classifications instead of the desired ones. Given
more control, if an attacker has the ability to overwrite specific parameters with
attacker-controlled values, they can achieve targeted misclassification and insert a
backdoor. However, as the model parameters were modified, we have consistency in
our results. Inputs will be classified the same (possibly incorrect) way every time it
is provided as an input to the system. This raises the possibility that, by causing
reproducible errors to the system, the adversary would be detected.

Attacks that modify single inputs can have a much more subtle impact on the
system. As demonstrated in our example exploit, if a malicious entity could provide
an input that modified other inputs to the system, we can achieve targeted misclassi-
fication on specific non-malicious inputs. As no changes are being made to the model,
this attack is difficult to detect, and when the benign image is provided to the system
in a sample without the malicious image, it will be classified correctly, causing the

error to be irreproducible in a testing environment.

Defenses

Defenses against data modification attacks require strict guarantees of data integrity
in the entire system. There has been research in technology that enables complete ac-
cess controls on specific sections of memory, such as XFT [21] that guarantees dataflow
integrity. We could also mitigate these attacks somewhat by having randomization
at the data-level [61]. Data-space randomization is a technique that randomizes the
representation of data in memory, instead of its location. The code encrypts and
decrypts the data on every access, but by using multiple keys and not storing raw
data in memory, we can mitigate many data only attacks [§].

More sophisticated defenses involve enclaving technology, such as Intel SGX [16].

These systems allow the users to separate sections of code and data in a system

39

into a trusted core, which provides additional integrity guarantees to the system.
For example, the operators could put the core of the evaluation engine along with
the model data into a secure enclave, isolating it from all the third party libraries
loaded into the system. Nested enclaves were demonstrated to be useful for isolating
software systems from their third party libraries [60] and this usage could be extended
to Al systems. However, in recent years, SGX has been shown to be vulnerable to
various side-channel leakage attacks, thus new enclaving primitives are needed in the

community to enable such protections [86][56].

4.1.2 Denial of Service

This section focuses on attacks that cause the Al engine to crash, or slow itself and

other processes.

Attack Method

A denial of service attack can be performed in one of several ways. If the engine is
hosted on the internet, the attacker may "flood" a network, sending a large amount
of traffic and denying access to legitimate users [34]. This could be executed by
targeting the network specifically, executing an amplification attack [72|[5] or a UDP
flood attack [45] [41].

However, the user could also utilize the specific attributes of Al engines. Classifi-
cation of a single sample with a large network could take several seconds to minutes
each. Each classification may be a relatively expensive process in terms of computing
resources, so if an adversary gains the ability to provide inputs to the system at a fast
rate, the process could be bottlenecked and be unable to return results to legitimate
users. Even if this method is mitigated by limiting the number of requests per user,

a user may submit a few very large files for classification, stalling the system.

40

Attack Impact

A denial of service attack causes a failure of availability in the system. In addition to
users not being able to access the system, if there are any other systems that rely on
the Al engine, the system would be unable to function. If the systems were entirely
reliant on the AI engine, even if all the training data was still available, it may be
impossible to recover the results that are necessary for the system [52]. Having said

that, denial of service attacks are often easy to detect and are not very stealthy.

Defenses

There are many existing defenses for network based denial of service attacks, such as
monitoring or traffic filtering [6]. For Al engine specific denial of service attacks, we
may limit both the maximum input size/complexity and the number of requests from

a single source.

4.1.3 Input Leakage

There are also data privacy concerns with inputs that are provided to the ML system.
If the system becomes compromised, it is possible for the adversary to gain access to

all user inputs.

Attack Method

There are several methods the attacker could utilize to gain access to inputs that
were provided to the ML system.

Firstly, if the model is hosted on the cloud, if the cloud service provider is ma-
licious, they can gain access to all data stored on and sent through the Al system
trivially.

More interestingly, the attacker can leverage platform vulnerabilities that allow
them to gain read access to any of the data stored on the system [69][31][8]. For

instance, consider a ML system as described in listing 4.1.4:

41

1 char *input = malloc(20);

2 outputIndex = batchNum;
3 modelObject *model = malloc(modelSize);

4 strcpy(input, argv[1]);

6 outputs = evaluate_model(model, inputs);

7 return outputs[outputIndex];

As in the data modification attack, the attacker has a buffer overflow in the input.
This allows them to control the outputIndex parameter. As the system returns
the result that is indexed by an adversary-controlled value, the adversary can print
arbitrary chunks of data in the system.

Furthermore, there are various side channel attacks that can leak information
about the system [67][40]. For instance, the adversary may be able to deduce details
about the model based on the amount of time it takes to classify an attacker-provided
image. While timing attacks are a threat to many systems [67][18], they are especially
dangerous against Al systems, where a single classification can take a long time,
amplifying the timing differences in the system.

In addition to timing attacks, Al systems are vulnerable to side channel vulnera-
bilities in the hardware they rely on. Recently, there was a major side channel attack,
Spectre [40], that leveraged speculative execution in processors to leak information
about running programs. Al systems would be vulnerable to Spectre and similar
attacks on the microprocessor, and we need guarantees of secure hardware to prevent

such side channel attacks.

Attack Impact

In either type of attack, the adversary fully compromises the confidentiality of the
system. If the entire platform for the Al system is adversary-controlled, the adversary
has access to data on the entire model, the inputs, and the training data provided to

the system.

42

Attacks that leverage a specific platform vulnerability to gain arbitrary read over
the system can also potentially read all parameters of the model, along with any
inputs in the batch. However, if the network does not explicitly retain information
about the inputs, the attacker cannot learn about any input submitted to the system

in a different batch.

Defenses

Researchers have posited that homomorphic encryption provides a good defense to
this problem [33|. Homomorphic encryption allows the system to run evaluations
on encrypted data, and return an output that corresponds to the encrypted version
of the output that corresponds to the original data [25]. This allows the system
to run computations or train a model on user-provided input without gaining any
information about the input itself. This manages to mitigate both the problem of a
curious server or a malicious adversary attempting to leak information through the
system. However, homomorphic encryption is way too slow to be of practical usage

in modern AL systems and significant more research to mature this area.

4.2 Algorithm Robustness Attacks

4.2.1 Adversarial Samples

This section discusses attacks that utilize a vulnerability in the algorithm used by the

Al system in order to cause a misclassification.

Attack Method

The best studied technique is the one of adversarial examples [58][47][14], where the
adversary leverages weaknesses in the classification algorithm in order to misclassify
an image. Often, this involves the adversary submitting a malicious image, for exam-
ple, a stop sign, with non-human discernable noise added that causes the classifier to

label it incorrectly, for example, as a green light [14].

43

Attack Impact

This technique can effectively cause the Al engine to misclassify any adversary-
inputted image. However, as the image itself is being tampered with to cause the

misclassification, the engine will behave correctly on all non-malicious images.

Defenses

There has been a large amount of research in detecting adversarial samples in a system
[22][53]|74]. We can mitigate adversarial examples to an extent by using adversarial
training, using a training set with adversarial examples included [70]. We can also
leverage the fact that, since adversarial samples are formed by specifically modifying
images based on the specific model, adding small noise in the model is much more
likely to change its classification, using that to distinguish possibly adversarial samples

[85].

4.3 Data Attacks

This section focuses on attacks where the adversary uses data inputted to the Al
system, either during the training or the evaluation phase, that causes the system to

malfunction.

4.3.1 Training Data Poisoning

In this section, we focus on attacks that involve inserting malicious data into the
training set of an Al system.

Attack Method

Training data poisoning involves inserting carefully crafted data into the training set
with the intent of entering specific attack points into the data [9]. These attacks take

advantage of the linear regression that underlies most Al systems that currently exist

44

[87]. The poisoning attack can be modeled as solving an optimization problem as

follows [36].

argmax, W(D',0,),
s.t. 6, € argming L(Dy, U D,,).

In the equation, W represents a loss function on a validation data set D’. The
attacker seeks to find a value of D,, the poisoned data set, that maximizes this loss.
The constraint represents retraining the model on the training set D;, augmented by
the training set D,. The loss function W varies based on the type of attack being
attempted. If the attacker desires specific targeted misclassification, the loss func-
tion should evaluate only those specific inputs. If the attacker wants indiscriminate

misclassification, the loss function should evaluate all possible inputs [36].

Attack Impact

There are two main types of poisoning attacks, poisoning availability attacks and
poisoning integrity attacks [36], which have different impacts on the system. Poisoning
availability attacks cause the model to malfunction on random inputs, effectively
resulting in a denial of service on the system. Poisoning integrity attacks only affect
a small subset of results, designed by the adversary, while preserving the integrity of

other sample classifications.

Defenses

There are two main types of defenses against data poisoning, noise-resilient regression
algorithms and adversarially resilient algorithms.

Noise-resilient regression algorithms rely on removing outliers from a dataset
[65]|83]. For example, if the adversary added poisoning data that was widely dif-
ferent from the normal distribution of the training data, they would be removed.
However, this does not prevent the adversary from generating poisoning data that is
distributed similarly to the original data [36]. As AI systems are sensitive to small

perturbations, the adversary can still gain a large amount of control over the system.

45

Adversarially resilient algorithms rely on strong guarantees on the data and noise
distribution [15|[49]. These methods use the guarantees to prove robustness about
the output data. However, we often do not have such strict guarantees on real-world

data, rendering the technique impractical.

4.3.2 Training Data Leakage
Attack Method

Two major attacks that cause data leakage are model inversion attacks and mem-
bership inference attacks [62][23|[71]. Model inversion attacks attempt to rebuild the
features that were used when constructing the model. These reconstructed features
reflect the average value of a classification set [23]. In settings such as facial recog-
nition where an average sample in a class can reflect a person’s identity clearly, this
poses great risks for data privacy.

Membership inference attacks are slightly different in that they attempt to directly
predict whether a sample was in the training data used for the model [66][62][71]. In
models that are trained using confidential data, such as medical history, membership

in the training set itself may be confidential [71].

Attack Impact

Training leakage attacks compromise the privacy of the large amounts of data used
during the training process. Model inversion attacks can reconstruct approximations
of the training data, and membership inference attacks can result in being able to
explicitly identify samples that were used during training. Furthermore, if the system
retains information about all data it classified and became compromised, the private

data of all users that utilized the Al engine would be exposed to the adversary.

Defenses

Model inversion attacks require precise confidence values to function well, and it was

found that reporting rounded confidence values greatly decreased the feasibility of

46

this attack [23].

Membership inference attacks rely on knowing the relative confidence values of
the model on possible labels for the input. One way to defend against this attack is
to return only the class label without any of the confidence values, but even this is

not entirely effective [71].

4.4 Summary

We summarize our findings in Table 4.1. We classify Arbitrary write, adversarial
examples, and poisoning integrity attacks as high severity, due to their combination
of high stealth and their fine-grained control over the failures in integrity they cause.
Although denial of service attacks can impact all samples, it was not considered a
high severity attack due to its low stealth. Different classes of data modification
attacks, although having similar reproducibility, impact, and stealth, were separated
in severity by how likely they were to accomplish a specific targeted corruption. A
linear stack overflow, for instance, is much less likely to be able to influence the
result of a specific sample than an arbitrary write. We deemed input leakage a fairly
low risk, as they cannot modify the integrity of the system, and can be mitigated
through encryption techniques, albeit with added overhead. Poisoning availability
attacks have mostly similar impacts to denial service attacks, so we categorized them
in similar severity. Training data leakage attacks, while still causing a failure of
confidentiality with high stealth, were deemed only medium severity, as they require
a large number of requests to the system to function, which can be additionally

mitigated by protection against denial of service attacks.

47

Category Subcategory Attack Severity Reproducibility = Stealthiness Samples Affected
Platform Data Modification Stack Buffer Overflow Low Low High Targeted Subset
Attacks Heap Buffer Overflow Medium Low High Targeted Subset
Arbitrary Write High Low High Targeted Subset
Input Leakage Input Leakage Low High High Some/All
Denial of Service Amplification Attack Medium High Low All
UDP Flood Medium High Low All
Algorithm Adversarial Examples Adversarial Examples High High High Single

Data Attacks | Training Data Poisoning | Poisoning Availability Attack | Medium High Low All
Poisoning Integrity Attack High High High Targeted Subset

Training Data Leakage Model Inversion Medium High High All

Membership Inference Medium High High All

Table 4.1: Categorization of Attacks on Al Systems

48

Chapter 5

Discussion

In our research, we have uncovered several gaps in existing research for Al security.

First, we need much more research into designing secure platforms for Al systems.
We need to provide guarantees to the system that provide memory safety guarantees
on the learning process itself, and resilience to vulnerabilities in third party libraries
it requires. These guarantees would remove the memory and platform vulnerabilities
from possible security problems, and disable the cross-sample attacks of the type
illustrated in this thesis. There has been research in using TEESs to separate sensitive
parts of the stack from the untrusted parts, but they rely on technology such as SGX,
which is known to be vulnerable to side channel attacks [86]. Furthermore, many Al
systems rely on GPUs for accelerating the training process, and support in enclaving
techniques should extend to the different hardware.

In addition to building enclaving technology, it is imperative that we reduce the
amount of potentially vulnerable dependencies for an Al system. Avenues for memory
safety vulnerabilities that are leveraged through a third party application will be
significantly reduced if we migrate them to fully memory safe languages. This will
reduce the attack surface for a Al platform significantly. However, as this requires a
significant and very costly development effort, new approaches are needed to 'sandbox’
linked libraries and isolate their potential compromises from the Al engine, itself.

In addition, there is a demand for performant memory encryption throughout the

system. Although there has been work in fully homomorphic encryption during both

49

the training and evaluation stages of a Al system, the performance overheads make
it prohibitive in practice for a commonly used system [79]. Thus, for guarantees on
privacy for the input data, we need memory encryption through the system.

In addition, the research in adversarial examples is still lacking. There are a large
number of techniques for combating adversarial examples, including input reconstruc-
tion [42], network verification [38|, network distillation [58], and adversarial retraining
[82]. However, these defenses each cover a fairly narrow range of possible attacks, and
the reason for the existence of adversarial samples is still unknown [90]. This causes

the design of robust proactive defenses to become difficult.

50

Chapter 6

Related Work

Many researchers have studied security in Al systems, and we discuss the attempts to
exploit and secure Al systems in various ways. However, we must note that there is
little, if not none, of research being done on the specific impact of platform vulnera-
bilities on Al systems. Thus, platform-based security analysis of our type is necessary

to provide a complete view of the robustness of Al systems.

6.1 Security in the Training Data

Several papers address the security and privacy concerns related to the training data.
Researchers have analyzed the effects of "poisoning" the training data, inserting a
small number of corrupted inputs in order to manipulate the model [36]. Slightly
further from the realm of model integrity, there have also been concerns on the privacy
of training data, and attempts to mitigate leakage of information about the initial

training data from the model outputs [71] [55].

6.2 Security in the Algorithm

The largest focus in security in Al systems have focused on exploiting fragility in
the algorithms used to generate the models through the use of adversarial examples

[57][14]. Adversarial examples exploit flaws in the algorithms used to generate the

51

models, using small perturbations to change the classifications of the images. There
has been a significant back-and-forth in the security community, with both attempts
to build adversarial examples [14] [47] [46] and attempts to develop systems that are
robust to such examples [58] or for detecting potential adversarial examples [48] [8§]

[51].

6.3 Security in the Trained Model

There have been a few researchers working on flaws in the trained model itself, but
they mostly focus on analysis assuming that the model is backdoored. Researchers
have considered the possibility of spreading malicious copycat networks that behave
similarly to the original with most inputs, but misbehave on a small class of inputs
that contain a special "trigger". The incorrectness of such a network is hard to iden-
tify, and thus could spread throughout users who mistakenly download the incorrect
model [50]. The techniques used here could be leveraged if we managed to get write
access on the system, as we could overwrite the weights in the way described in this
paper.

There has been efforts to combat such techniques by attempting to detect specific
triggers in the neural networks [84], but these rely on analyzing the backdoored model
itself. If we can find a system vulnerability that allows us to override model parameters

as it is running, such mitigation tactics would not be useful.

52

Chapter 7

Conclusion

There has been much research in securing Al systems, but most have focused on
robustness in the training process or the algorithms themselves. However, vulnerabil-
ities in the platform that the AI system relies on itself can lead to results in incorrect
classification. In fact, as the models used to classify data are difficult to check for
correctness through simple inspection, vulnerabilities that only interact with the data
segments of the program may have much larger impact than it would in a traditional
system. This thesis demonstrates how a simple platform vulnerability can result in
a targeted misclassification that may be hard to detect, and only requires a vulnera-
bility in a third party library. Furthermore, we perform a qualitative analysis of the
impact of broad classes of security vulnerabilities for Al systems as a whole, in order

to understand the impact of classic vulnerabilities on Al systems specifically.

53

o4

Bibliography

1]

2l

3]
4]

[5]

[6]

7]

18]

19]

[10]

Scott Alfeld, Xiaojin Zhu, and Paul Barford. Data poisoning attacks against
autoregressive models. In AAAI pages 1452-1458, 2016.

Ryann Alimuin, Aldrich Guiron, and Elmer Dadios. Surveillance systems inte-
gration for real time object identification using weighted bounding single neural
network. In 2017IEEE 9th International Conference on Humanoid, Nanotech-
nology, Information Technology, Communication and Control, Environment and
Management (HNICEM), pages 1-6. IEEE, 2017.

Ethem Alpaydin. Introduction to machine learning. MIT press, 2020.

Aditya Amberkar, Parikshit Awasarmol, Gaurav Deshmukh, and Piyush Dave.
Speech recognition using recurrent neural networks. In 2018 International Con-
ference on Current Trends towards Converging Technologies (ICCTCT), pages
1-4. IEEE, 2018.

Marios Anagnostopoulos, Georgios Kambourakis, Panagiotis Kopanos, Georgios
Louloudakis, and Stefanos Gritzalis. Dns amplification attack revisited. Com-
puters € Security, 39:475-485, 2013.

Katerina J Argyraki and David R Cheriton. Active internet traffic filtering:
Real-time response to denial-of-service attacks. In USENIX annual technical
conference, general track, volume 38, 2005.

Anish Athalye, Nicholas Carlini, and David Wagner. Obfuscated gradients give
a false sense of security: Circumventing defenses to adversarial examples. arXiv
preprint arXiw:1802.00420, 2018.

Sandeep Bhatkar and R Sekar. Data space randomization. In International Con-
ference on Detection of Intrusions and Malware, and Vulnerability Assessment,
pages 1-22. Springer, 2008.

Battista Biggio, Blaine Nelson, and Pavel Laskov. Poisoning attacks against
support vector machines. arXiv preprint arXiw:1206.6389, 2012.

Battista Biggio and Fabio Roli. Wild patterns: Ten years after the rise of adver-
sarial machine learning. Pattern Recognition, 84:317-331, 2018.

95

[11]

[12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

[20]

[21]

22]

23]

Gary Bradski and Adrian Kaehler. Learning OpenCV: Computer vision with the
OpenC'V library. " O’Reilly Media, Inc.", 2008.

Michael Brady. Artificial intelligence and robotics. Artificial intelligence,
26(1):79-121, 1985.

Jiirgen Kai-Uwe Brock and Florian Von Wangenheim. Demystifying ai: What
digital transformation leaders can teach you about realistic artificial intelligence.
California Management Review, 61(4):110-134, 2019.

Nicholas Carlini and David Wagner. Towards evaluating the robustness of neural
networks. In 2017 IEEE Symposium on Security and Privacy (SP), pages 39-57.
IEEE, 2017.

Yudong Chen, Constantine Caramanis, and Shie Mannor. Robust sparse re-
gression under adversarial corruption. In International Conference on Machine
Learning, pages 774-782, 2013.

Victor Costan and Srinivas Devadas. Intel sgx explained. TACR Cryptol. ePrint
Arch., 2016(86):1-118, 2016.

Dorothy E Denning. A lattice model of secure information flow. Communications
of the ACM, 19(5):236-243, 1976.

Jean-Francois Dhem, Francois Koeune, Philippe-Alexandre Leroux, Patrick
Mestré, Jean-Jacques Quisquater, and Jean-Louis Willems. A practical imple-
mentation of the timing attack. In International Conference on Smart Card
Research and Advanced Applications, pages 167—182. Springer, 1998.

Mark E Donaldson. Inside the buffer overflow attack: Mechanism, method &
prevention. GSEC Version, 1(3):5, 2002.

Derek Doran, Sarah Schulz, and Tarek R Besold. What does explainable
ai really mean? a new conceptualization of perspectives. arXiv preprint
arXiw:1710.00794, 2017.

Ulfar Erlingsson, Martin Abadi, Michael Vrable, Mihai Budiu, and George C
Necula. Xfi: Software guards for system address spaces. In Proceedings of the
7th symposium on Operating systems design and implementation, pages 75-88,
2006.

Reuben Feinman, Ryan R Curtin, Saurabh Shintre, and Andrew B Gardner.
Detecting adversarial samples from artifacts. arXiv preprint arXiv:1705.00410,
2017.

Matt Fredrikson, Somesh Jha, and Thomas Ristenpart. Model inversion attacks
that exploit confidence information and basic countermeasures. In Proceedings of
the 22nd ACM SIGSAC Conference on Computer and Communications Security,
pages 1322-1333, 2015.

56

[24]

[25]

[26]

[27]

28]

[29]

[30]

31

32]

[33]

[34]

[35]

[36]

Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we ready for autonomous
driving? the kitti vision benchmark suite. In 2012 IEEE Conference on Computer
Viston and Pattern Recognition, pages 3354-3361. IEEE, 2012.

Craig Gentry and Dan Boneh. A fully homomorphic encryption scheme, vol-
ume 20. Stanford university Stanford, 20009.

lan J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and
harnessing adversarial examples. arXww preprint arXiw:1412.6572, 2014.

Tianyu Gu, Brendan Dolan-Gavitt, and Siddharth Garg. Badnets: Identify-
ing vulnerabilities in the machine learning model supply chain. arXiw preprint
arXi:1708.06733, 2017.

Tianmei Guo, Jiwen Dong, Henjian Li, and Yunxing Gao. Simple convolutional
neural network on image classification. In 2017 IEEE 2nd International Confer-
ence on Big Data Analysis (ICBDA)(, pages 721-724. IEEE, 2017.

Michael Haenlein and Andreas Kaplan. A brief history of artificial intelligence:
On the past, present, and future of artificial intelligence. California management
review, 61(4):5-14, 2019.

Pavel Hamet and Johanne Tremblay. Artificial intelligence in medicine.
Metabolism, 69:S36-S540, 2017.

Sean Heelan, Tom Melham, and Daniel Kroening. Automatic heap layout ma-
nipulation for exploitation. In 27th { USENIX} Security Symposium ({ USENIX}
Security 18), pages 763-779, 2018.

Maurice Herlihy. Methods and systems for securing computer software, August 15
2002. US Patent App. 09/843,6009.

Tyler Hunt, Congzheng Song, Reza Shokri, Vitaly Shmatikov, and Emmett
Witchel. Chiron: Privacy-preserving machine learning as a service. arXiw
preprint arXiw:1803.05961, 2018.

Alefiya Hussain, John Heidemann, and Christos Papadopoulos. A framework for
classifying denial of service attacks. In Proceedings of the 2003 conference on
Applications, technologies, architectures, and protocols for computer commumni-
cations, pages 99-110, 2003.

Kyriakos K Ispoglou, Bader AlBassam, Trent Jaeger, and Mathias Payer. Block
oriented programming: Automating data-only attacks. In Proceedings of the
2018 ACM SIGSAC Conference on Computer and Communications Security,
pages 1868-1882, 2018.

Matthew Jagielski, Alina Oprea, Battista Biggio, Chang Liu, Cristina Nita-
Rotaru, and Bo Li. Manipulating machine learning: Poisoning attacks and coun-

termeasures for regression learning. In 2018 IEEE Symposium on Security and
Privacy (SP), pages 19-35. IEEE, 2018.

57

37]

138

[39]

[40]

[41]

42]

[43]

[44]

[45]

|46]

Chiraag Juvekar, Vinod Vaikuntanathan, and Anantha Chandrakasan.
{GAZELLE}: A low latency framework for secure neural network inference.
In 27th {USENIX} Security Symposium ({USENIX} Security 18), pages 1651—
1669, 2018.

Guy Katz, Clark Barrett, David L Dill, Kyle Julian, and Mykel J Kochenderfer.
Reluplex: An efficient smt solver for verifying deep neural networks. In Inter-

national Conference on Computer Aided Verification, pages 97-117. Springer,
2017.

Juntae Kim, GeunYoung Lim, Youngi Kim, Bokyeong Kim, and Changseok Bae.
Deep learning algorithm using virtual environment data for self-driving car. In

2019 International Conference on Artificial Intelligence in Information and Com-
munication (ICAIIC), pages 444-448. IEEE, 2019.

Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss, Werner
Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas Prescher, et al.
Spectre attacks: Exploiting speculative execution. In 2019 IEEE Symposium on
Security and Privacy (SP), pages 1-19. IEEE, 2019.

Samad S Kolahi, Kiattikul Treseangrat, and Bahman Sarrafpour. Analysis of udp
ddos flood cyber attack and defense mechanisms on web server with linux ubuntu
13. In 2015 International Conference on Communications, Signal Processing, and
their Applications (ICCSPA’15), pages 1-5. IEEE, 2015.

Jernej Kos, Tan Fischer, and Dawn Song. Adversarial examples for generative
models. In 2018 ieee security and privacy workshops (spw), pages 36-42. IEEE,
2018.

Roland Kunkel, Do Le Quoc, Franz Gregor, Sergei Arnautov, Pramod Bhatotia,
and Christof Fetzer. Tensorscone: A secure tensorflow framework using intel sgx.
arXiwv preprint arXiw:1902.04413, 2019.

Butler Lampson, Martin Abadi, Michael Burrows, and Edward Wobber. Au-
thentication in distributed systems: Theory and practice. ACM Transactions on
Computer Systems (TOCS), 10(4):265-310, 1992.

Felix Lau, Stuart H Rubin, Michael H Smith, and Ljiljana Trajkovic. Distributed
denial of service attacks. In Smec 2000 conference proceedings. 2000 ieece in-
ternational conference on systems, man and cybernetics.’cybernetics evolving to

systems, humans, organizations, and their complex interactions’(cat. no. 0, vol-
ume 3, pages 2275-2280. IEEE, 2000.

Jinfeng Li, Shouling Ji, Tianyu Du, Bo Li, and Ting Wang. Textbugger:
Generating adversarial text against real-world applications. arXiv preprint
arXiv:1812.05271, 2018.

58

[47]

48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

Shasha Li, Ajaya Neupane, Sujoy Paul, Chengyu Song, Srikanth V Krishna-
murthy, Amit K Roy-Chowdhury, and Ananthram Swami. Stealthy adversarial
perturbations against real-time video classification systems. In NDSS, 2019.

Xiang Ling, Shouling Ji, Jiaxu Zou, Jiannan Wang, Chunming Wu, Bo Li, and
Ting Wang. Deepsec: A uniform platform for security analysis of deep learning
model. In IEEE SEP, 2019.

Chang Liu, Bo Li, Yevgeniy Vorobeychik, and Alina Oprea. Robust linear regres-
sion against training data poisoning. In Proceedings of the 10th ACM Workshop
on Artificial Intelligence and Security, pages 91-102, 2017.

Yingqi Liu, Shiging Ma, Yousra Aafer, Wen-Chuan Lee, Juan Zhai, Weihang
Wang, and Xiangyu Zhang. Trojaning attack on neural networks. 2017.

Shiging Ma, Yingqi Liu, Guanhong Tao, Wen-Chuan Lee, and Xiangyu Zhang.
Nic: Detecting adversarial samples with neural network invariant checking. In

NDSS, 2019.

G McGraw, H Figueroa, V Shepardson, and R Bonett. An architectural risk
analysis of machine learning systems: Toward more secure machine learn-

ing. Berryville Inst. of Machine Learning, San Francisco,.[Online/. Available:
hitps://www. garymcgraw. com/wp-content/uploads///BIML-ARA. pdf, 2020.

Jan Hendrik Metzen, Tim Genewein, Volker Fischer, and Bastian Bischoff. On
detecting adversarial perturbations. arXwv preprint arXiw:1702.04267, 2017.

Payman Mohassel and Yupeng Zhang. Secureml: A system for scalable privacy-
preserving machine learning. In 2017 IEEE Symposium on Security and Privacy
(SP), pages 19-38. IEEE, 2017.

Milad Nasr, Reza Shokri, and Amir Houmansadr. Comprehensive privacy anal-
ysis of deep learning: Passive and active white-box inference attacks against
centralized and federated learning. In 2019 IEEE Symposium on Security and
Privacy (SP), pages 739-753. IEEE, 2019.

Oleksii Oleksenko, Bohdan Trach, Robert Krahn, Mark Silberstein, and Christof
Fetzer. Varys: Protecting {SGX} enclaves from practical side-channel attacks.
In 2018 {Useniz} Annual Technical Conference ({USENIX}{ATC} 18), pages
227-240, 2018.

Nicolas Papernot, Patrick McDaniel, Arunesh Sinha, and Michael P Wellman.
Sok: Security and privacy in machine learning. In 2018 IEEE European Sympo-
sium on Security and Privacy (EuroS€9P), pages 399-414. IEEE, 2018.

Nicolas Papernot, Patrick McDaniel, Xi Wu, Somesh Jha, and Ananthram
Swami. Distillation as a defense to adversarial perturbations against deep neu-

ral networks. In 2016 IEEE Symposium on Security and Privacy (SP), pages
582-597. IEEE, 2016.

59

[59]

[60]

|61

62]

63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

Nicolas Papernot, Patrick D McDaniel, Xi Wu, Somesh Jha, and Ananthram
Swami. Distillation as a defense to adversarial perturbations against deep neural
networks. corr abs/1511.04508 (2015). arXiv preprint arXiv:1511.04508, 2015.

Joongun Park, Naegyeong Kang, Taehoon Kim, Youngjin Kwon, and Jaehyuk
Huh. Nested enclave: Supporting fine-grained hierarchical isolation with sgx. In
2020 ACM/IEEE J7th Annual International Symposium on Computer Architec-
ture (ISCA), pages 776-789. IEEE, 2020.

Bradley Potteiger, Zhenkai Zhang, and Xenofon Koutsoukos. Integrated data
space randomization and control reconfiguration for securing cyber-physical sys-
tems. In Proceedings of the 6th Annual Symposium on Hot Topics in the Science
of Security, pages 1-10, 2019.

Md Atiqur Rahman, Tanzila Rahman, Robert Laganiére, Noman Mohammed,
and Yang Wang. Membership inference attack against differentially private deep
learning model. Trans. Data Priv., 11(1):61-79, 2018.

William K Robertson, Christopher Kruegel, Darren Mutz, and Fredrik Valeur.
Run-time detection of heap-based overflows. In LISA, volume 3, pages 51-60,
2003.

Bita Darvish Rouhani, M Sadegh Riazi, and Farinaz Koushanfar. Deepsecure:
Scalable provably-secure deep learning. In Proceedings of the 55th Annual Design
Automation Conference, pages 1-6, 2018.

Peter J Rousseeuw and Annick M Leroy. Robust regression and outlier detection,
volume 589. John wiley & sons, 2005.

Ahmed Salem, Yang Zhang, Mathias Humbert, Pascal Berrang, Mario Fritz, and
Michael Backes. Ml-leaks: Model and data independent membership inference at-
tacks and defenses on machine learning models. arXiv preprint arXiv:1806.01246,
2018.

Jeff Seibert, Hamed Okhravi, and Eric Séderstrom. Information leaks without
memory disclosures: Remote side channel attacks on diversified code. In Proceed-
ings of the 2014 ACM SIGSAC Conference on Computer and Communications
Security, pages 54—65, 2014.

Frank Seide and Amit Agarwal. Cntk: Microsoft’s open-source deep-learning
toolkit. In Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages 2135-2135, 2016.

Fermin J Serna. Cve-2012-0769, the case of the perfect info leak. In Blackhat
Conference, Feb, 2012.

Uri Shaham, Yutaro Yamada, and Sahand Negahban. Understanding adversarial
training: Increasing local stability of neural nets through robust optimization.
arXw preprint arXw:1511.05452, 2015.

60

[71]

[72]

73]

[74]

[75]

|76]

7]

78]

[79]

[80]

[81]

[82]

[83]

Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. Member-
ship inference attacks against machine learning models. In 2017 IEEE Sympo-
sium on Security and Privacy (SP), pages 3-18. IEEE, 2017.

Boris Sieklik, Richard Macfarlane, and William J Buchanan. Evaluation of tftp
ddos amplification attack. computers & security, 57:67-92, 2016.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja
Huang, Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian
Bolton, et al. Mastering the game of go without human knowledge. nature,
550(7676):354-359, 2017.

Lewis Smith and Yarin Gal. Understanding measures of uncertainty for adver-
sarial example detection. arXiv preprint arXiw:1803.08533, 2018.

Siddharth Sridhar, Adam Hahn, and Manimaran Govindarasu. Cyber—physical
system security for the electric power grid. Proceedings of the IEEE, 100(1):210—
224, 2011.

C Sudha and T Nirmal Raj. Analysis of suspicious pattern discovery using ai-
neural network in credit card fraud detection. Int J Cur Res Rev/ Vol, 9(10):80,
2017.

S Rajeswari Sujana, S Sudar Abisheck, A Tauseef Ahmed, and KR Sarath
Chandran. Real time object identification using deep convolutional neural net-
works. In 2017 International Conference on Communication and Signal Process-

ing (ICCSP), pages 1801-1805. IEEE, 2017.

Laszlo Szekeres, Mathias Payer, Tao Wei, and Dawn Song. Sok: Eternal war in
memory. In 2013 IEEE Symposium on Security and Privacy, pages 48-62. IEEE,
2013.

Hassan Takabi, Ehsan Hesamifard, and Mehdi Ghasemi. Privacy preserving
multi-party machine learning with homomorphic encryption. In 29th Annual
Conference on Neural Information Processing Systems (NIPS), 2016.

Luis Filipe Teofilo and Luis Paulo Reis. Building a no limit texas holdaAZem
poker agent based on game logs using supervised learning. In International
Conference on Autonomous and Intelligent Systems, pages 73—-82. Springer, 2011.

Florian Tramer and Dan Boneh. Slalom: Fast, verifiable and private execution
of neural networks in trusted hardware. arXiv preprint arXiv:1806.03287, 2018.

Florian Trameér, Alexey Kurakin, Nicolas Papernot, Ian Goodfellow, Dan Boneh,
and Patrick McDaniel. Ensemble adversarial training: Attacks and defenses.
arXw preprint arXiww:1705.07204, 2017.

David E Tyler. Robust statistics: Theory and methods, 2008.

61

[84]

[85]

[36]

[87]

[33]

[89]

190]

191]

Bolun Wang, Yuanshun Yao, Shawn Shan, Huiying Li, Bimal Viswanath, Haitao
Zheng, and Ben Y Zhao. Neural cleanse: Identifying and mitigating backdoor
attacks in neural networks. Neural Cleanse: Identifying and Mitigating Backdoor
Attacks in Neural Networks, page 0, 2019.

Jingyi Wang, Guoliang Dong, Jun Sun, Xinyu Wang, and Peixin Zhang. Adver-
sarial sample detection for deep neural network through model mutation test-
ing. In 2019 IEEE/ACM 41st International Conference on Software Engineering
(ICSE), pages 1245-1256. IEEE, 2019.

Wenhao Wang, Guoxing Chen, Xiaorui Pan, Yingian Zhang, XiaoFeng Wang,
Vincent Bindschaedler, Haixu Tang, and Carl A Gunter. Leaky cauldron on the
dark land: Understanding memory side-channel hazards in sgx. In Proceedings of
the 2017 ACM SIGSAC Conference on Computer and Communications Security,
pages 2421-2434, 2017.

Huang Xiao, Battista Biggio, Gavin Brown, Giorgio Fumera, Claudia Eckert,
and Fabio Roli. Is feature selection secure against training data poisoning? In
International Conference on Machine Learning, pages 1689-1698, 2015.

Weilin Xu, David Evans, and Yanjun Qi. Feature squeezing: Detecting adver-
sarial examples in deep neural networks. arXiv preprint arXiv:1704.01155, 2017.

Takuya Yoshioka, Hakan Erdogan, Zhuo Chen, and Fil Alleva. Multi-microphone
neural speech separation for far-field multi-talker speech recognition. In 2018

IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pages 5739-5743. IEEE, 2018.

Xiaoyong Yuan, Pan He, Qile Zhu, and Xiaolin Li. Adversarial examples: At-
tacks and defenses for deep learning. IEEFE transactions on neural networks and
learning systems, 30(9):2805-2824, 2019.

Fangyi Zhang, Jiirgen Leitner, Michael Milford, Ben Upcroft, and Peter Corke.
Towards vision-based deep reinforcement learning for robotic motion control.
arXw preprint arXiw:1511.03791, 2015.

62

