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Abstract—Memory corruption attacks have been a major
vector of compromised computer systems for decades. Memory
safety techniques proposed in the literature provide spatial and
temporal safety properties to prevent such attacks. Since enforc-
ing full memory safety on legacy languages such as C/C++ often
incurs large runtime overhead, recent techniques have created a
trade-off between the granularity of enforcement and overhead.
By enforcing safety properties at the granularity of allocations
instead of objects, these technique incur only a fraction of the
overhead. Of particular note, are the recent software-based, so-
called low-fat schemes, that encode a pointer’s bound information
in the pointer value itself, thus avoiding a separate metadata store,
and additional lookup overhead. In this paper, we show that
trading granularity with overhead is insecure. Specifically, we
illustrate a new type of attack, which we call Pointer Stretching,
that can bypass the recently proposed low-fat schemes using intra-
object spatial corruption. Because of the limitations imposed
by the low-fat schemes we devise some tricks that allows us
to chain ROP gadgets together before a successful stack pivot.
We illustrate a real-world exploit against Nginx that successfully
hijacks control even when both stack and heap are protected with
the software-based low-fat schemes. Furthermore, we show that
the vulnerability is inherent in the design of such techniques, and
not easily fixable without significant additional implementation
and overhead. In addition, we develop an analysis tool to find
such vulnerabilities and analyze many popular applications and
servers. We find that the exploitable conditions are abundantly
found in real-world code bases. Our findings strongly suggest
that effective memory defenses must operate at the granularity
of objects (and sub-objects) for them to provide meaningful
protection against memory corruption attacks.

I. INTRODUCTION

Memory corruption attacks have been used as a major vector
of attack against computer systems for decades [1], [2]. Such
attacks have evolved from simple code injection attacks [2]
to various forms of code reuse (ROP) attacks [3]-[8] as a
result of widespread deployment of defenses such as WHX
in modern operating system [9]. Even though the methods of
memory corruption attacks have evolved over the years, the
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underlying cause has remained the same: the lack of memory
safety properties in legacy languages like C/C++.

Memory safety techniques prevent the exploitation of mem-
ory bugs by enforcing spatial and temporal safety properties
[10]. Some memory safety techniques require manual anno-
tations [11], [12], while others such as SoftBound [13] and
CETS [14] automatically annotate the code with the necessary
safety checks. Moreover, metadata information (i.e., bounds
or temporal IDs) can either be stored in conjunction with
each pointer by converting a pointer to a structure in what is
known as the fat pointer schemes [11], [12], or in a separate
memory region as in SoftBound [13]. Since expanding pointers
to include metadata information breaks memory compatibility,
a so-called low-fat pointer technique was proposed by Kwon et
al. [15] that uses extra/unused bits in a pointer to store bounds
information.

Since previous automated techniques (e.g., SoftBound and
CETS) impose a large runtime performance overhead on the
running code (~ 2x slowdown on average), recently proposed
techniques attempt to trade-off performance overhead with
enforcement granularity. Such techniques, for example, enforce
spatial bounds on memory allocations instead of individual
objects. Of particular note are two recent software-based
schemes that protect stack [16] and heap [17] allocations. These
techniques leverage the idea of low-fat pointers by encoding
the metadata in the pointers themselves; however, unlike the
hardware-based scheme proposed by Kwon et al. [15], they do
not use extra or unused bits for this purpose. Instead, they create
a correlation between an allocation’s location in memory and
its size. For example, in these schemes, allocations in the region
of 0x100000000 to 0x200000000 all have a certain size (e.g.,
16 bytes), while allocations in the region of 0x200000000 to
0x300000000 all have another size (e.g., 32 bytes). Thus, simply
by observing the base address of a pointer, its valid bounds can
be calculated without extra information. The implicit hypothesis
in these schemes is that allocation protection prevents or “raises
the bar” against spatial memory attacks.

In this paper, we refute this hypothesis by demonstrating that
allocation protection is too coarse grained to prevent or “raise
the bar” for spatial memory corruption attacks. We demonstrate
an attack we call Pointer Stretching that can generically bypass
such schemes. The underlying problem is composite data types
in C/C++ (e.g., structs). A pointer to a field of a composite



data type should have bounds that encompass only that field.
This is known as the problem of narrowing [18], [19]. For
example, a buffer inside a st ruct should not be allowed to
overflow into other elements of that st ruct. However, in the
software-based low-fat schemes, due to the correlation between
an allocation’s location and its bounds, any pointer to a field (or
sub-field) of a composite data type gets the same bounds as the
entire data type. We illustrate that an attacker can cause spatial
corruption inside composite data types to perform control
hijacking. Note that while the original hardware-based low-fat
scheme can properly narrow each pointer to its appropriate field
because the bounds information can be modified independently
of the pointer value (we discuss some caveats later in the
paper), this flaw is inherent in the design of recent software-
based schemes that correlate pointer values with their bounds,
and cannot be easily mitigated without some major redesign
or alteration of the entire scheme.

While the problem of intra-object corruption and narrowing
has been mentioned in the related work [18], we are the first to
build full exploits using just intra-object corruption. Doing so
uncovers some of the caveats and intricacies of such exploits.
Moreover, we are also the first to analyze the prevalence of
exploitable conditions, which in itself highlights the importance
of this problem.

To illustrate the feasibility of our attack, we present a
real-world exploit against Nginx that can successfully hijack
application control and launch a malicious shell in the presence
of both stack and heap-based protections.

Since the protection schemes initially make it difficult to use
the stack as a chaining mechanism for the ROP gadgets, we
devise new tricks in our pointer stretching attack. In our exploit,
initially each ROP gadgets go directly to the next gadget (via
jump or call) without returning to the stack or a trampoline [5].
This continues until enough gadgets are executed to properly
modify the stack pointer to an allocated region under our
control. We call this strategy delayed pivoting. After the stack
pointer is modified, the rest of the attack can proceed as a
traditional ROP attack.

With this exploit as our motivation, we develop an automated
analysis tool to find such vulnerabilities in code bases. In order
to assess the prevalence of opportunities for pointer stretching
attacks, we use our tool to perform an automated analysis of
twenty four commonly used applications and packages. Our
results indicate that conditions necessary for pointer stretching
attacks, that is function pointers stored in structures that
simultaneously contain data buffers, are abundant in many
popular applications.

Our contributions are as follows:

o We present an attack, we call Pointer Stretching, that
generically bypasses allocation protection schemes, and
demonstrate against two such defenses that encode meta-
data in the pointer values themselves. We thus refute
the hypothesis that allocation protection is an effective
granularity for preventing spatial memory corruption, and
question efficiency gains at the cost of coarser-grained
protections.

o We craft a real-world exploit against Nginx that succeed in
hijacking control of a machine remotely while protected
by both the stack-based and the heap-based allocation
protection techniques.

e We develop an automated analysis tool to find the
conditions necessary for pointer stretching attacks in real-
world code bases.

o We use our tool to perform an analysis of the prevalence of
such conditions and demonstrate that they exist abundantly
in popular applications.

II. THREAT MODEL

The threat model assumed in this paper is that of a remote
attacker who tries to exploit a memory bug in the application or
server to hijack its control and achieve remote code execution.
The application or server under attack is assumed to have a
memory bug which permits writing beyond the bounds of a
particular buffer (similar to CVE-2016-5017 or CVE-2014-
0133). The hardware and operating system are trusted.

We assume the software-based stack [16] and heap [17]
protection low-fat schemes are both enabled on the targeted
application and all of its linked libraries. Furthermore, we
assume that the implementation of these schemes is correct
and bug-free. These defenses are really meant to be sufficient
on their own, but since protections such as W ¢ X and Address
Space Layout Randomization (ASLR) are widely deployed in
modern operating systems, we assume that those are enabled
as well.

Since the software-based low-fat schemes focus on spatial
memory safety, we treat temporal memory violations as out of
scope, and do not use them in our attacks.

Our threat model is consistent with related work in the
area of memory defense and the threat model assumed by the
low-fat schemes.

III. LOW-FAT POINTER TECHNIQUES
A. Low-Fat Schemes

The original implementation of the low-fat pointer scheme
was introduced in hardware [15]. This hardware low-fat scheme
provides fine-grained spatial safety while reducing the overhead
of fat pointers. It uses 18 bits of a 64-bit word to contain a
block size, lowest valid multiple of the block size, and largest
valid multiple of the block size. The other 46 bits are used
to store the pointer address. These four values are then used
to reconstruct the base and bounds. Whenever a computed
pointer goes out of bounds, it is permanently changed to be
an Out-of-Bounds Pointer hardware type. This type of
pointer will produce an error if there is ever an attempt to
dereference it.

It is important to note that due to the dependence on a fixed
block size, this scheme by default offers only an approximation,
albeit a relatively accurate one, to the actual bounds. This
problem can be remedied by having the compiler pad sub-
objects, so that every sub-object is aligned to the exact block
size. Note that the bounds can be set independently of the
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Fig. 1: An overview of how heap regions are designated in the
low-fat software scheme to store objects of a particular size.

pointer address in the hardware scheme. Thus, a pointer can be
properly narrowed to a sub-object’s bounds when necessary.

Similar to its hardware counterpart, the recently proposed
low-fat pointer software schemes rely on bits stored in the
64-bit pointer representation to determine bounds on stack [16]
or heap [17]. However, instead of storing separate bits and
reducing the representable address space, they encode the
bounds into the address itself. For this setup to work, pointers
are assigned to specific address ranges based on the size of
the object they point to as shown in Figure 1. Then, pointer
arithmetic is instrumented to check the size corresponding to a
particular region. Given the size of a region and the fact that
all objects in a region are of equal size, the code can then
safely determine if pointers resulting from pointer arithmetic
are outside of these bounds.

Consequently, this strategy encodes the bounds information
quite efficiently and reduces he runtime overhead of safety
checks. However, this efficiency comes at a cost to precision
compared to the hardware scheme. Because there is a corre-
lation between a pointer’s value and its bounds, there is no
inherent ability to narrow bounds for sub-objects. Hence, the
software scheme is described as only protecting allocation
bounds rather than object bounds. We demonstrate that this
trade-off between efficiency and security is too weak in most
popular code bases.

The idea of protecting allocation bounds instead of object
bounds predates the low-fat software pointer scheme. Baggy
Bounds [18], PAriCheck [20], Jones and Kelly’s GCC patch
(J&K) [21], and other schemes directly based on it [22],
[23] also protect at the allocation granularity, and are thus
vulnerable to our attacks. Note, however, that the attacks are
fundamental to the design of the recent software-based low-fat
schemes because the correlation between a pointer address and
its bounds makes it difficult to fix the inability to establish
narrower bounds.

IV. POINTER STRETCHING ATTACK

Since both the stack-based and the heap-based low-fat
schemes focus on spatial memory safety, we also illustrate
the pointer stretching attack using spatial corruption. A pointer

typedef struct ({
char buf[124];
void xfptr;

} mystruct;
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mystruct s;

Fig. 2: A struct vulnerable to intra-object corruption.

Bounds Checking Instructions
mov rsi, gword ptr [rax + 0x80];
jmp rsi;

Gadget {

Fig. 3: Selecting a gadget to avoid including bounds checks.

stretching attack' starts by causing an intra-object corruption.
Consider the code snippet in Figure 2. The st ruct is stored in
a region (on stack or heap) that has a designated allocation size.
To demonstrate the power of the pointer stretching attack, we
can even assume that the allocation size is chosen ideally to fit
the struct, so that no inter-object corruption is possible. In
this case, the st ruct is stored in a region with the designated
size of 128 bytes that matches its size perfectly. Any pointer
to any field of this struct is inherently pointing to the same
region where the struct is stored, thus it can point to any
field of the struct even when the protection is enabled.
For example, the bounds of xs.buf encompass the entire
struct, while it should legitimately only point to buf. As
a result, we can overflow the buffer inside mystruct to
control the function pointer »ftpr. Since this modification
of the function pointer is done through an overflow, and not
the intrinsic instructions in the application itself, it is not
instrumented by the low-fat schemes. As a result, after the
overflow, *ftpr can point to any region in memory. Note
again that the underlying weakness is the association between
an allocation’s address and its bounds which inherently prevents
the technique from properly narrowing the bounds of xs.buf.
Selecting the gadgets themselves from a hardened binary
is not problematic. In most cases, the start of a gadget can
be selected to avoid including bounds checking instructions
as shown in Figure 3. When the checks cannot be avoided,
such as for consecutive memory accesses in one gadget, the
only restriction imposed is that the bounds on the start address
for any indexing done in the instruction must correspond to
the bounds of the resulting address. This scenario is shown in
Figure 4. We use both cases in our real-world exploit.
Although it may seem like such an overwrite can be
dangerous, what we have at this point is far from a complete
attack. The overwritten function pointer can point to a ROP
gadget, but for an attack to succeed, we need to be able to run
a series of ROP gadgets. Even if the goal is to ultimately run
one gadget that issues a system call, for example to launch a
shell, we need to be able to set the arguments (%rax, %rdi,
%rsi, etc.) properly, which necessitates a chaining mechanism.
However, so far we do not have control over the stack (or a

IThe name refers to the fact that buffer pointer bounds are “stretched” to
corrupt other sub-objects stored in a composite data structure.



mov rbx, rdi;

Bounds Checking Instructions

mov rsi, gword ptr [rdi +
0x40] ;

Bounds Checking Instructions

call gword ptr [rdi + 0x30];

Gadget

bounds (rdi) = bounds (rdi + 0x40) v

= bounds (rdi + 0x30) Vv

Fig. 4: An out of bounds error can be avoided by ensuring
accesses in a gadget do not go out of bounds when used.
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Fig. 5: Gadget hopping compared to traditional ROP and JOP
techniques.

trampoline) to chain gadgets together. Moreover, it is unlikely
to find a gadget that loads the stack pointer (%rsp) from an
area currently under our control (the struct). To overcome
these challenges, we leverage a trick we call gadget hopping.

A. Gadget Hopping

It is possible to find a series of gadgets that ultimately modify
Yorsp to point to the area under our control (stack pivoting),
but we need to initially chain these gadgets somehow without
relying on the stack. In previous code reuse attacks, the control
always comes back to a central location that contains a list
of gadget addresses. This central location is the stack in ROP
attacks, and a trampoline in JOP attacks [5], [6]. We observe
that this central location is not necessary, particularly for short
sequences of gadgets. By carefully selecting gadgets, we can

come up with a set of gadgets in a way that each gadget directly
transfers control to the next one either through a call or a jump,
until the last gadget properly pivots the stack. We call this trick
gadget hopping that can be used for delayed pivoting. Figure 5
illustrates this technique and its comparison with ROP and JOP.
In traditional ROP attacks, such a technique is not necessary
since the attacker controls the stack and a simple pop rsp;
gadget can be used for pivoting. However, when the system is
protected by allocation protection techniques, gadget hopping
is necessary since the area under the control of the attacker is
initially very small (e.g., the inside of a struct).

Our real-world exploits use three gadgets for gadget hopping.
After this step, the attack proceeds as a traditional ROP attack;
chaining enough gadgets together to setup the arguments
properly and issuing a system call. By issuing a system call with
the arguments of their choice, attackers can achieve arbitrarily
malicious behavior including launching a shell, creating a
backdoor socket, adding an account to a system, efc.

V. REAL-WORLD EXPLOITS

In this section we present a real-world exploit targeting
Nginx using the pointer stretching attack described in the
previous section. The attack succeed in the presence of the
combined software-based low-fat stack and heap protection
schemes [16], [17]. We have also developed a similar attack
against Apache, which we do not include in this paper because
of space limitations.

The gadgets used in the exploit are all indeed from the
hardened binary. Note that after the buffer is overflown in the
first step and the code pointer is overwritten, the code pointer
can point to any location of our choosing. We can thus skip
the any accompanying check added by the protection scheme
that may precede each gadget. In other words, for most of the
gadgets, the protection provides no impediment after the initial
corruption since the bounds checking snippets are just skipped
by pointing the code pointer to the instructions following such
checks. In a few cases, we use gadgets where that is not
possible; for example, we make successive memory accesses
in one gadget. In those cases, the checks do not fail since the
arithmetic done for the memory accesses is still within the
bounds derived from the original address.

A. Nginx Attack

The objective of this attack is to achieve arbitrary code
execution using the pointer stretching attack and demonstrate
that allocation protection is an insufficient granularity for
bounds checking. We search for a structure containing both
a buffer and a function pointer we can corrupt to ultimately
execute a shell. After inspecting the source code, we find the
structure ngx_http_request_s, shown in Figure 6. It is
allocated for each request and has both of these features: a
buffer, lowcase_header, which contains part of the header
as it is parsed and a function pointer, 1og_handler, which
is called if there is an issue processing the request.

The buffer is located below the function pointer in the
structure, so overwriting it requires a buffer underflow. Similar



struct ngx_http_request_s {
uint32_t
ngx_connection_t

/% "HTTP"

signature;
connection;
ngx_http_log_handler_pt log_handler;

u_char

lowcase_header [NGX_HTTP_LC_HEADER_LEN];
unsigned http_minor:16;
unsigned http_major:16;

200 ® a0 u e W -

Fig. 6: A snippet of the definition of the
ngx_http_request_s struct.

lowcase_header Underflow | Gadget 1:
mov rbx, rdi;

mov rsi, qword ptr [rdi +
0x40];

call gword ptr [rdi + 0x30];

log_handler —

Gadget 1 1

SYSCALL Gadget Q Gadget 2:

rax], al;

SYSCALL register setup

/bin/sh

pop rl5;
POP Gadget [« ret;

add byteptr [
cwde;
POP Gadget sbb edx, edi;
Gadget 3 — Jmp Esti
° POP Gadget
Gadget 2 [ Gadget 3:
pop rsp;
POP Gadget o pop rl3;
{ pop rld;

Beginning of
ngx_http_request_s

Uncorrupted Heap

Fig. 7: A general overview of the attack and how the stack

looks after the stack pivot (i.e. part of the overwritten struct).

The POP and SYSCALL gadget entries refer to a gadgets of
the form INSTRUCTION; ret;.

memory bugs have been discovered in Nginx in the past, for
example CVE-2009-2629 [24]; we assume such a memory
bug exists. This assumption is consistent with related work in
this domain [25]-[29] and also the threat model assumed by
the software-based low-fat schemes [16], [17].

The underlying weakness arises from the fact that any pointer
to any sub-field of the ngx_http_request_s can point
to the entire struct, thus such a buffer underflow is not
prevented by the software-based low-fat schemes as long as
the corruption is contained in the st ruct and does not corrupt
the areas outside of it. Note that the corruption happens purely
based on intra-object (struct) overwrites, so the function
pointer 1og_handler can be corrupted without causing out-
of-bound violations.

First, we observe when the corruptible function gets called.
Whenever there is any issue processing a request, a worker pro-
cess calls ngx_http_log_error.Towards the end of this
function, the corruptible pointer 1og_handler is invoked. To
ensure a problem is detected and control is eventually passed
to this function, we simply request a nonexistent page.

Now, for the initial step of the attack we overwrite the
function pointer 1og_handler with a ROP gadget to do a
stack pivot. We need the stack pointer to point to a region
of memory we control, so that we can continue executing

further instructions. Analyzing the call site reveals that there is
a pointer to the same struct we are underflowing (named r). At
the default optimization level, this pointer ends up stored in a
register. Furthermore, it gets passed as the first and second argu-
ment to 1og_handler since ctx—>current_request is
an alias to the same pointer. Per x86_64-bit calling convention
this setup means registers rdi and rsi contain pointers to
this structure which we control.

Unfortunately, there are no available single stack pivot
gadgets for the 64-bit registers we can use here. Nevertheless,
we can create a delayed pivot by gadget hopping. As described
earlier, the idea is to create a chain of gadgets that call or jump
to addresses set by previous gadgets in the chain. Only the
last gadget ends with a ret instruction, by which point we
have completed the pivot. More concretely, here we can use a
chain of three gadgets to achieve the delayed pivot. The first
gadget runs three important instructions: move rdi (the struct
pointer) into rbx, move the contents at address rdi+0x40
into rsi, and call the address stored at rdi+0x30. Thus,
we set 1log_handler to the first gadget, rdi+0x30 to the
second gadget, and rdi+0x40 to the third gadget as shown in
Figure 7. Since rdi is simply a pointer to the start of the struct,
we use the same original underflow to set all these addresses.
Given our setup, after the first gadget executes, the instruction
pointer moves to the address stored at rdi+0x30, which is the
address of the second gadget. The relevant instructions in this
gadget are pushing rbx onto the stack and then jumping to rsi.
Since the first gadget set rsi to the address at rdi+0x40,
it now points to the address of the third gadget. This gadget
completes the stack pivot by popping rsp and then popping
three other arbitrary data registers. The sole purpose of popping
the extra registers is to move the stack pointer beyond the very
beginning of the struct in order to preserve the connection
member of the struct. This data pointer is used between the
location of the underflow and the corrupted call site, so it is
easier to simply preserve the value for this exploit.

With the stack pivot complete, we can proceed to execute
many more gadgets from the new stack owing to the large size
of the struct. In particular, we create a chain of gadgets that
sets the arguments for an execve system call. In order to do
complete the system call though, we need to the base address
of the 1ibc library to obtain a gadget for the final syscall
instruction. We obtain this address by using a known libc
pointer on the stack. Since we know the offset of this pointer
from the base pointer, we add it to the address in the rbp
register to get the address of the 1ibc pointer on the stack.
Then, we simply make the address provided for the syscall
gadget relative to the known address. Note that 1ibc itself
is also “hardened” by the low-fat bounds, but those have no
impact on our usage of the gadgets, as described earlier.

At this point, anything currently in the data registers is
irrelevant going forward, so we reuse some registers used for
the stack pivot. Moreover, for simplicity, the remaining system
call setup is done through gadgets of the form instruction;
ret; and we refer to them only by the corresponding
instruction. First, we pop off the next value on the (pivoted)



stack into register r10. Through the underflow, we set this
value to be the string “/bin/sh”. Then, we use a gadget to
set another register, rdi, to the address of an arbitrary valid
object in memory. The only constraint is that it needs to be
large enough to hold two pointers. Once we have some valid
address in the register, we use a gadget to store the pointer in
r10 into the address of rdi. We can use the same gadgets to
store a null byte in the address of rdi+8, but since inserting
a null byte in the underflow is problematic, we xor a register
with itself so that it gets zeroed and execute a mov to the
correct address.

Finally, we use further pop gadgets to set the actual
arguments to the syscall instruction. This includes setting
the execve syscall number of 0x3b in rax, setting rdi to
the “/bin/sh” string, rsi to the data pointer that contains
the string pointer and NULL, and rdx to that pointer + 8 (so
it points to NULL).

We bootstrap the exploit by sending the malicious payload
to cause the underflow and consequently overwrite the various
parts of the struct. Upon completion, the process image switches
to a shell. Through a similar construction, we can execute any
arbitrary command restricted only by the permissions given to
the process (which depends on the web server configuration).

VI. ANALYSIS TOOL

Using the successful exploit as our motivation and in order to
obtain an estimate of how prevalent the exploitable conditions
for the pointer stretching attack are, we developed a tool to
automatically find structures containing both function pointers
and buffers. Specifically, we create a Clang plugin to find
struct definitions with those characteristics and an LLVM
pass to assess the frequency of accesses to such structs.
We categorize the accesses to members of these structs as
buffer accesses, function pointer accesses, and other accesses.
These values do not take into account a member’s identity,
so in the case of multiple buffers or function pointers, access
numbers are aggregated based solely on their type.

A. Struct Existence

We use the Clang plugin to find struct definitions that
contain both a buffer and a function pointer. The plugin first
searches through a package’s type declarations for structs.
Then, it iterates through the members of those st ructs to find
a buffer and a function pointer. Buffers are found by checking
if the type of a member is an array. A pointer is determined
to be a function pointer only if it is a pointer directly to a
function. The results from this plugin serve as a starting point
for finding potential exploitable conditions.

B. Struct Access

To calculate the number of times these vulnerable st ructs
are accessed, we use an LLVM pass. The core of the pass’
code is shown in Figure 8. It iterates through basic blocks,
which represent a single entry single exit piece of code, to
find GetElementPointer instructions. These instructions,
which occur whenever there is an attempt to get one of a

virtual bool runOnBasicBlock (BasicBlock &BB) {
for (BasicBlock::iterator ii = BB.begin(),
ii_e = BB.end(); 1ii != ii_e; ++ii) {
if (GetElementPtrInst *gep =
dyn_cast<GetElementPtrInst> (&+ii)) {
Type *srcElem = gep->getSourceElementType();
if (StructType #srcStruct =
dyn_cast<StructType> (srcElem)) {

- NV RSO R

9 // Uses 1 onPointer

10 if (isStructWithBufPtr (srcStruct)) {

11 printDebugInfo (&xii);

12 errs () << srcStruct->getName().str() << ": ";

13 if (gep->getResultElementType () ->isArrayTy()) {

14 errs () << "Found struct access to array member."

15 << '\n’;

16 } else if

17 (isFunctionPointer (gep->getResultElementType ())) {
18 errs () << "Found struct access to FP member."

19 << '\n’;

20 } else {

21 errs () << "Found struct access to other member."
2 << '\n’;

23 }

24 }

25 }

26 }

27 }

28

29 return false;

30 }
31
32 bool isFunctionPointer (Type #ptrType) {

33 // Recursively follow pointer

34 while (PointerType #xptr = dyn_cast<PointerType> (ptrType)) {
35 Type* pointeeType = ptr->getTypeAtIndex ((unsigned)O0);

36 if (pointeeType->isFunctionTy()) return true;

37 ptrType = pointeeType;

38 }

39

40 return false;

41 }

Fig. 8: Core snippet of the LLVM pass used to find accesses
into vulnerable structures.

struct’s members, are then inspected in a similar manner
to the Clang plugin. We iterate through the struct being
accessed to check whether it contains both a function pointer
and an array. The array is detected by simply checking that the
member’s type is an array. In the LLVM pass, the check for a
function pointer is done recursively. In other words, the pointer
is recursively followed to check whether the final reference is
to a function. If the access is to a relevant st ruct, then the
type of the member being accessed is examined in order to
correctly categorize the access.

C. Unsound Analysis

The technique we use to detect function pointers is unsound.
Alternatively, we could have used an analysis that provided
soundness guarantees such as LLVM’s alias analysis. However,
these algorithms tend to be conservative in order to provide
soundness guarantees. Thus, they are likely to provide false
positives for ambiguous cases. In this scenario, we prefer
to have an underestimation instead of an overestimation of
the exploitable conditions. Thereby, the results provided here
represent a lower bound on the prevalence of these structs
and accesses in the analyzed code bases.
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Fig. 9: Vulnerable struct finding tool: a Clang plugin (definitions) and an LLVM pass (usage).

TABLE I: A summary of structs containing a buffer and a
function pointer. The top section is a selection of widely used
programs, web servers, and databases. The bottom section is
the set of top installed C source packages according to
Ubuntu’s Popularity Contest [30].

Version | Definition | Buffer Fptr Other Total
Access Access Access Access

git 2.12.0 8 140 51 965 1156
httpd 2.4.25 7 68 15 842 925
lighttpd 1.4 1 0 7 468 475
nginx 1.10.3 3 55 60 2789 2904
openssl 1.4.45 6 6 217 2674 2897
postgresql 9.6 8 1 26 709 736
redis 3.2.7 1 0 5 10 15
acl 22.52 0 0 0 0 0
bash 44 2 3 14 76 93
coreutils 8.26 1 6 2 19 27
e2fsprogs 1.43.3 6 13 235 5446 5694
findutils 4.6.0 0 0 0 0 0
gce 6.3 1 0 2 62 64
grep 2.27 3 10 6 90 106
gzip 1.6 0 0 0 0 0
hostname 3.18 0 0 0 0 0
ncurses 6.0 2 68 37 1158 1263
pam 1.1.3 1 0 1 33 34
perl 5.20.2 0 0 0 0 0
sed 44 1 0 0 0 0
slang 2.3.0 8 103 103 953 1159
tar 1.29 0 0 0 0 0
util-linux 2.19 1 0 3 24 27
zlib 1.2.8 0 0 0 0 0

D. Tool Usage

In order to use our analysis tool, we compile packages using
Clang and provide the proper flags in order to invoke the plugin
and the pass. Both the plugin and the pass are set to output
their findings to stderr, so we redirect stderr to a file in
order to collect the output and parse it. The tool is also set to
print extra debug information if there is any available (using
the —g flag in Clang). This extra output is useful when later
checking the data against the source for further inspection or
analysis. The overall flow of the analysis is shown in Figure 9.

The results of these analyses are shown in Table 1. Note
that for some packages, there appear to be no buffer accesses

despite the existence of a vulnerable struct. This scenario
is often caused by the buffer being modified exclusively by
some external function such as memset or memcpy which
goes undetected by the pass. As can be observed, structs
containing buffers and function pointers are prevalently used in
popular applications and servers. This finding strongly suggests
that effective memory safety must be at least at the granularity
of sub-objects, and that allocation bounds checking does not
provide sufficient protection against control hijacking attacks.

VII. POSSIBLE COUNTERMEASURES

Our attacks could be prevented by incorporating full memory
safety defenses that ensure spatial and temporal safety proper-
ties on pointers at the granularity of sub-objects. SoftBound
[13] and CETS [14] are two such techniques providing spatial
and temporal pointer safety properties, respectively.

Another option for composite data structures is to automati-
cally allocate sub-objects separately and keep only pointers to
these sub-objects in the original composite object. However,
this approach has various issues. One is that it requires an
extra memory access for any sub-object member of a composite
object. It can also incur significant memory overhead since the
object containing the pointers to sub-objects still needs to be
of full size to maintain alignment. Furthermore, it may impose
a significant performance penalty due to the poor locality of
sub-objects and potentially reduced cache hit ratio.

A potential improvement to this strategy is to store only
vulnerable arrays separately rather than all sub-objects. This
idea then raises the question of how to accurately determine
what arrays are vulnerable. Thus, let us assume any array in a
vulnerable structure has the potential to be vulnerable through
some programmer error. The precise memory overhead and
performance impact would depend on the specific runtime usage
of an application, but at least some index can be surmised from
the number of problematic buffers accessed in an application.
There will be one more memory dereference for every buffer
access, so the number of buffer accesses shown in Table I
would essentially double in terms of memory accesses.



As a variation of storing only vulnerable arrays separately,
the arrays can instead be stored contiguously but with added
padding such that the bounds lie on protected object bounds.
This approach is only practical when the array’s parent structure
is small or primarily composed of the array. The reason is that
the array takes as much space as the parent structure since
the corresponding bounds to the memory section will be the
same ones used for the parent structure. Nevertheless, this
approach has the potential to increase locality and thereby
cache effectiveness and overall performance at the expense of
greater memory overhead. In this case the memory overhead
can potentially be as high as 2 4+ n times the original usage
where n is the number of vulnerable arrays in the structure.
Thus, in the best case the overhead will be 3x the size of the
parent structure.

Alternatively, just the metadata for each sub-object could be
stored in a separate region referenced by indexes stored in those
data structures. While this technique prevents our attack, it
also adds possibly significant overhead to the bounds checking
schemes by essentially making them more similar to SoftBound
(with a separate metadata region) than the fat-pointer schemes.
Such a remediation would also add memory overhead to the
scheme. A hybrid approach that uses the pure low-fat scheme
for non-compound objects and a metadata based scheme for
compound objects is also a possibility.

In general, the software-based low-fat schemes’ strict de-
pendence on pointer addresses to determine bounds makes
it difficult to modify them so as to provide sub-object
protection while remaining a pure low-fat approach. Either
sub-objects need to be moved to different addresses or extra
information independent of the pointer address needs to be
stored somewhere in memory. These options increase time
and space overheads and/or diverge away from the fat pointer
strategy.

VIII. CONCLUSION

In this paper, we have illustrated a new type of attack that
can bypass bounds checking spatial memory safety techniques
that protect allocations. We used intra-object corruption to
overwrite code pointers and hijack control. We illustrated
our attack using a real-world exploit. We further developed
an automated tool and analyzed the vulnerable conditions in
many popular applications and packages, and found that such
conditions are prevalent in the wild. Our findings indicate
that allocation protection does not provide sufficient defense
against spatial memory corruption attacks, and the trade-off
between the granularity of protection and the performance gain
contributes to major security weakness in such schemes.
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