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Abstract—Unlike conventional machine learning (ML) or deep
learning (DL) methods, Large Language Models (LL.M) possess
the ability to tackle complex tasks through intricate chains
of reasoning, a facet often overlooked in existing work on
vulnerability detection. Nevertheless, these models have demon-
strated variable performance when presented with different
prompts (inputs), motivating a surge of research into prompt
engineering — the process of optimizing prompts to enhance
their performance. This paper studies different prompt settings
(zero-shot and few-shot) when using LLMs for software vul-
nerability detection. Our exploration involves harnessing the
power of both natural language (NL) unimodal and NL-PL
(programming language) bimodal models within the prompt
engineering process. Experimental results indicate that LLM,
when provided only with source code or zero-shot prompts,
tends to classify most code snippets as vulnerable, resulting in
unacceptably high recall. These findings suggest that, despite
their advanced capabilities, LLMs may not inherently possess
the knowledge for vulnerability detection tasks. However, few-
shot learning benefits from additional domain-specific knowl-
edge, offering a promising direction for future research in
optimizing LLMs for vulnerability detection.

Index Terms—Software vulnerability detection, software vul-
nerability detection using LLM

1. Introduction

Software vulnerabilities are steadily growing year over
year, and despite decades of effort in improving saniti-
zation capabilities, there is still a need for more robust
vulnerability detection frameworks [1], [2]. Large Language
Models (LLMs) have become popular recently and utilized
in multiple security domains including intrusion detection
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[3], anomaly detection [4], and program repair [5], among
others. LLMs are also used in software vulnerability de-
tection [6], [7], [8], [9], although more research is needed
to thoroughly understand their capabilities. Some of the
existing efforts have shown that LLMs were not performing
well compared to State-of-The-Art (SOTA) techniques [10],
[8]. Others have used various prompts to analyze their
results among different prompt settings [11], [12]. However,
the nascence of research in this area means that additional
work is needed to fully understand the capability of LLMs
for software vulnerability detection. For example, existing
work focuses on a limited number of samples [8], [7], [11],
and larger-scale studies are necessary.

Prompt engineering is a specific aspect of Al engi-
neering, which involves the design and optimization of
instructions given to an LLM to achieve desired outputs or
behaviors [13]. Prompt Engineering is commonly applied
for the purpose of improving downstream natural language
processing (NLP) tasks and LLM applications [14]. Prompt
engineering encompasses various techniques, such as exper-
imenting with different phrasing, specifying desired answer
formats, providing context, or adding instructions to guide
the model’s behavior. This iterative process empowers de-
velopers to fine-tune the model’s behavior and enhance its
performance without relying solely on labeled data.

Zero-shot and few-shot are terms used in the context
of ML and NLP models, especially for LLMs [15]. They
refer to different ways of utilizing the model’s capabilities
to perform tasks for which it was not explicitly trained [16].
Zero-shot learning refers to the ability of a model to perform
a task without any specific training data or examples for that
task. Instead, it relies on general knowledge learned during
its training on a diverse range of tasks. The model under-
stands the task’s requirements from the provided input and
attempts to generate a relevant response. Few-shot learning
is a step beyond zero-shot, referring to the model’s ability to
perform a task with only a few examples or demonstrations,
rather than having a complete training dataset [17]. The
model can generalize from these limited examples to grasp
the essence of the task and produce reasonable results [18].

In this paper, our objective is to shed light on whether
LLMs inherently possess the knowledge required for iden-
tifying vulnerabilities in source code effectively. We un-
dertake a systematic exploration of this question, initially



evaluating LLMs in their raw form without any supple-
mentary knowledge. Later, we delve into the process of
extracting domain knowledge (auxiliary information to be
provided to the LLM) when it is not readily available.
Our experimentation involves utilizing both unimodal and
bimodal deep learning models to extract domain information
for LLMs, aiming to determine if any of these approaches
are more effective than the basic prompt. We conducted a
large-scale analysis with 17,761 samples from the BigVul
[19] dataset and our experiments reveal several limitations
and difficulties (Sec.5) while using LLMs in real-world
practical scenarios.

Furthermore, we introduce multiple strategies for op-
timizing the utilization of LLMs in classifying vulnerable
methods in code. Our efforts focus on enhancing both zero-
shot and few-shot learnings, aiming to elevate the overall
performance of automatic vulnerability detection.

The primary goal of this paper is to serve as a re-
source that inspires and aids future researchers and engi-
neers to appropriately exploit LLMs for the classification
of vulnerabilities. Our experimental result on a large-scale
dataset shows that applying the above-mentioned strategies
improves accuracy over the basic prompt. All artifacts of
this study are available'.

2. Related Work

This section provides a summary of the related efforts
that use LLM for software vulnerability detection. There are
several studies that show well-structured prompts lead to im-
proved LLM performance in various downstream tasks [20],
[21], [22]. Vulnerability detection using prompt engineering
is still a nascent research area.

Chen et al. [23] investigated the effectiveness of vulner-
ability detection of smart contracts using ChatGPT. To find
the optimized prompt, they used ChatGPT itself as a prompt
optimizer and later used those prompts for vulnerability
detection. Cheshkov et al. [10] worked on a performance
comparison of two widely used LLMs ChatGPT and GPT-
3. They used several prompts and tested their impact, finding
that the results were consistent among different prompts.

Lu et al. [9] introduced GRACE, where they provided
LLM with several auxiliary information, including a Code
Property Graph (CPG) along with several similar code snip-
pets. In their analysis, providing additional information was
helpful and yielded better results. In another work, Zhou
et al. [8] provided auxiliary information—role description,
Top CWE information, randomly sampled similar neighbors,
and similar neighbors based on CodeBERT neighbors—
expecting a better result.

Hu et al. [24] proposed a new prompting paradigm
“open-ended prompting” in addition to existing binary class
and multi-class prompt. The idea of their approach is to de-
tect any potential vulnerability and describe them in natural
language without any predefined vulnerability information.

1. https://github.com/research7485/vulnerability_detection

Two recent efforts have delved into the application of
LLMs to vulnerability [7], [11]. The former primarily con-
centrates on evaluating the performance of multiple LLMs
for this task, without making alterations to the fundamental
prompts used [7], while the latter focuses on the addition of
API calls to ChatGPT4 to improve its performance.

In contrast, we aim to design prompts to be automati-
cally augmented with the most useful additional information
about the most relevant CWEs to a given function according
to the function’s context. A recent work, Vul-RAG [25], uses
aretrieval-augmented generation (RAG) framework to facili-
tate vulnerability detection by retrieving external knowledge
from a pre-built knowledge base. While Vul-RAG relies on
external knowledge retrieval, our approach focuses on op-
timizing prompts with domain-specific information directly
within the LLM context, particularly improving few-shot
learning performance without the need for external retrieval
systems.

3. Basic Prompt

For our experiment, we used the closed-source LLM
Gemini-pro’>. We used the API it provides to collect the
information. We used Gemini-pro because its API supports
querying on large-scale data and it has been used recently
in the literature for other security-related tasks [26], [27],
[28]. Another advantage of Gemini-pro API is that it ac-
cepts around 32k tokens which helps us provide additional
information to the LLM while prompting it>.

For our preliminary experiment, we used the Big-
Vul [19] dataset. Big-Vul is a C/C++ code vulnerability
dataset curated from 348 open-source projects on GitHub.
The vulnerable code is identified by the public CVE
database and CVE-related source code repositories. The
dataset incorporates descriptive information about the vul-
nerabilities from the CVE database, such as CVE IDs,
related CWE, CVE severity scores, and CVE summaries.
In total, Big-Vul contains 11,823 vulnerable methods and
253,096 safe methods. We took 8,921 vulnerable methods
that have corresponding CVE and CWE information and
to create a balanced dataset, we took 8,740 non-vulnerable
methods.

In this preliminary analysis, our objective was to assess
whether LLMs inherently possess the ability to detect vul-
nerability in source code. In our experiment, we queried
a language model about vulnerabilities from the set of
methods in the BigVul dataset. The precise prompt that
we used is "Is the following function vulnerable to any
Common Weakness Enumeration (CWEs)?” + [function]?
We then calculated the number of actual vulnerable methods
correctly identified as such (true positives — TP), those
incorrectly classified as vulnerable (false positives — FP),
those incorrectly classified as safe (false negatives — FN),
and those correctly classified as safe (true negatives — TN).

2. https://gemini.google.com/app
3. https://ai.google.dev/gemini-api/docs/tokens



TABLE 1: Big-Vul: Results from the Basic Prompt.

Input TP TN FP FN Acc.

Pre. Rec. F1 F2

Method | 8,500 | 176 | 8,729 | 210

49.25%

4933 % | 97.59% | 65.54% | 81.62%

The results of this experiment are detailed in Table 1.
The overall accuracy of the model is 49.25%, which is
comparable to a dummy classifier. Additionally, the basic
prompt led the LLM to classify most instances as vulnerable,
resulting in an unacceptably high recall rate of 97.59%. This
result might be an indication that LLMs do not inherently
possess the ability to detect vulnerability in source code
without auxiliary information.

Another observation is that LLM did not provide a direct
”yes” or “no” answer. This led us to formulate a method
to correctly identify FP, FN, TP, and TN. We manually
analyzed the answers provided by the LLM, and, to detect if
the label is vulnerable, we only considered the records that
contain the following words “yes”, “is vulnerable”, “does
not validate”, etc. To detect if the label is safe, we used
the following keywords: “is not vulnerable”, “appears to
be non-vulnerable”, etc. The complete list of the keywords
is provided in Appendix A.

It is worth mentioning that despite formulating these
conditions, we encountered a small number of records that
could not be categorized based on our keywords. As a
result, the summation of TP, TN, FP, and FN is not equal
across all experiments. Additionally, in all the experiments,
while asking for responses through the API, we encountered
errors for a small number of records. These records are
not consistent, causing the count to vary among different
experiments.

4. Proposed Prompt Designs

As we observed in the previous section, providing only
the basic prompt did not show a good performance accuracy-
wise, rather recognizing most of the records as vulnerable
regardless of their actual vulnerability status. In this section,
we provided domain-specific information to analyze the
output provided by the model. Additionally, we try both
zero-shot and few-shot scenarios hoping for a better result
in few-shot learning.

For this purpose, we sought methods to acquire domain
knowledge with better accuracy. This section delves into our
two distinct designs, denoted as D and Dy with the pri-
mary objective of automatically extracting pertinent domain
knowledge.

In D;, we harnessed a text-code bimodal neural net-
work (CodeBERT) to enrich prompts with pertinent code
examples, thereby furnishing additional information to the
language model. In our study, we employed CodeBERT [29]
for bimodal-based similarity comparison, leveraging its
transformer-based architecture to effectively capture rela-
tionships between natural language and programming lan-
guage elements. Due to its bimodal nature, CodeBERT can
generate embeddings from both source code and natural lan-
guage. Since the original CodeBERT model was not trained
in the C language, we fine-tuned it on the Devign dataset
[30] for C. In D5, we acquired domain knowledge through

an unimodal neural network (SBERT), leveraging semantic
analysis to identify the most relevant vulnerabilities. For
unimodal semantic comparison, we utilized SBERT [31],
a transformer-based model well-suited for semantic analysis
tasks and used in the literature [32], [2]. The choice of these
models was motivated by the performance of transformer
architectures in understanding and processing complex rela-
tionships within code snippets and natural language expres-
sions. Our objective centered on evaluating and comparing
the efficacy of these two prompt designs in identifying code
vulnerabilities at the granularity of methods.

As illustrated in Figures 1 and 2, both designs incor-
porate experimentation with both zero-shot and few-shot
learning. In zero-shot experiments, we simply tried to iden-
tify the most similar CWEs and provide the description of
those CWEs in natural language to the LLM. While in few-
shot learning after gaining this information we perform an
additional approach and find multiple method examples that
map to the found CWE along with an equal number of
non-vulnerable examples (so that the model is not biased
towards vulnerable examples) and pass this information
to the LLM. The underlying assumption here is that the
model will utilize the provided examples to better recognize
an existing vulnerability within a given method. To detect
similar examples, we used the widely used cosine similarity
metric that is used in the literature to compare similarity
between embeddings [33], [34], [35].

During this step, records without a matching CWE in
the function description data file were discarded (around
20% depending on different settings). At that time, the
‘Vulnerability Assessment’ step described below was not
planned. The main goal was to compare how closely the
CWEs returned by SBERT and CodeBERT matched the
actual CWEs. To avoid skewing the results, those records
were excluded. Even though the ‘Vulnerability Assessment’
step was later added, these records were not reinstated. We
accept that as a limitation of our approach.

4.1. D; - Augmenting with Code Examples

While “bimodal” denotes a model that integrates in-
formation from two different modalities, such as natural
language and programming language, “unimodal” refers to
a model that operates within a single mode, specifically
natural language in this context [36].

In this particular design, we leveraged an NL-PL deep
neural model to measure the similarity between the CWE
descriptions in NL and the methods in PL as a measure of
similarity. Unlike an unimodal model, the bimodal model
is mutually trained on both, programming and natural lan-
guages, overcoming potential limitations associated with
using a single modality. As such, the model is adept at
comparing artifacts from both modalities, enabling it to learn
implicit relationships between NL and PL components.
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Figure 1: An overview of the design using a bimodal neural model in zero- and few-shot learning.

The assumption here is that the model’s versatility in
processing both natural language and code within a shared
space allows for a direct comparison between the method’s
source code and the English descriptions of CWE entities.
As such, bimodality offers a more direct and efficient means
of comparing code and English descriptions to assess se-
curity vulnerabilities in the method. This modification is
expected to enhance the precision of identifying relevant
CWE:s for a given method. This design consists of two steps:

o Step 1 - Bimodal Information Space Construction:
In the initial step, we created a bimodal space that in-
corporates both NL and PL information. Each sample is
evaluated and placed in this space based on both NL and
PL attributes. This process yields the most relevant CWEs
(based on cosine similarity) for a given function, taking
into account semantic aspects as well as semantic and
syntactic information from provided code examples. The
bimodal model allows for a comprehensive comparison
of data across different modalities. Integrating semantic
and syntactic properties are proposed in the literature to
enhance the ability to detect vulnerability [2], [37].

Step 2 - Vulnerability Assessment: The method, together
with the identified CWE:s, is presented to the LLM again
for detecting vulnerability. This time the LLM assesses
whether the method’s code or implementation is suscep-
tible to the most probable vulnerabilities associated with
its function.

In this design, within our zero-shot experiments, the fo-
cus is on identifying the most similar CWEs and conveying
the description of those CWESs in natural language to the
LLM. However, in the few-shot learning approach, after ac-
quiring this information, we adopted an additional strategy.
We sought out multiple method examples that correspond
to the identified CWE along with an equal number of non-
vulnerable methods and presented this enriched information
to the LLM. This approach aims to provide the model with
a more comprehensive understanding of the identified CWE
and its manifestations in various code instances, potentially
enhancing the model’s ability to discern and classify vul-
nerabilities in a broader context. The reason we incorporate
the non-vulnerable methods is to reduce any bias caused by
only providing vulnerable information to the LLMs.

4.2. D, - Integrating Semantic Knowledge

In this approach, as illustrated in Figure 2, we devised
an automated pipeline that initially harnesses an LLM to
extract a description of a method’s functionality and purpose
in natural language. Later, we utilize a pre-trained neural
network to semantically identify vulnerabilities that share
similar terminologies with the given method’s objectives in
natural language. The resulting set of CWEs, along with
the method itself, are then fed into an LLM to ascertain the
method’s vulnerability to the most probable ones associated
with its function. This design, therefore, contains the three
primary steps as follows:

Step 1 - Automated Objective Identification: The
method body is passed to the LLM, leveraging the model
to extract a description of the functionality. This de-
scription provides the model with contextual knowledge
describing what the method is supposed to do.

Step 2 - Semantic Vulnerability Matching: Once the
method’s description is extracted, a pre-trained neural net-
work, SBERT is used to semantically identify vulnerabili-
ties that share similar terminology with the method based
on the cosine similarity metric. This involves analyzing
the language used to describe the method and finding
vulnerabilities with terminology or context that is related
to the method’s functionality.

Step 3 - Vulnerability Assessment: The method along
with the list of identified CWEs are then passed to
the LLM again. The LLM is used here for the second
time to assess whether or not the method is vulnerable
with respect to the most likely vulnerabilities associated
with that function. In other words, it evaluates whether
the method’s code or implementation is susceptible to
the vulnerabilities identified in Step 3. Similar to the
bimodal approach, we are passing an equal number of
non-vulnerable methods to the LLM to minimize the bias
caused by only providing vulnerable samples.

We then, first provide the source code along with CWE
descriptions for zero-shot implementation. In the few-shot
learning variant of this design, after obtaining the initial
information, we augment it with multiple method-level code
examples, containing the same CWE associated with them
along with a similar number of non-vulnerable methods,
and pass this enriched information to another instance of
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Figure 2: An overview of the design using an unimodal neural model in zero- and few-shot learning.

the same LLM, albeit through a new API and conversation
thread. The adoption of an independent model here is to
mitigate potential biases in the initial LLM, ensuring a
more unbiased and comprehensive evaluation of the model’s
accuracy in identifying the method’s vulnerability.

5. Evaluation

For evaluation purposes, we used the same BigVul
dataset that we used in Section 3. We also chose the Gemini-
pro API that we used in our preliminary study.

5.1. Interplay of Precision and Recall

We employed two distinct strategies to investigate the
trade-offs between precision and recall, which are labeled
as Precision Focus and Precision Focus approaches in
Tables 2.

In the former strategy, we applied a stringent threshold
for similarity measures, excluding all samples showing any
degree of semantic similarity (above zero) to the method
under examination, with the exception of the top three most
similar samples. In this scenario, regardless of the magnitude
of the similarity score, ranging from zero to one, we only
retained those with the highest similarity measures in the
method. Consequently, this experiment places a stronger
emphasis on precision than recall.

In the latter strategy, we relaxed the threshold to some
extent, opting to sacrifice precision in order to enhance
recall. This approach aims to potentially decrease the likeli-
hood of retrieving fewer false negatives while increasing the
likelihood of retrieving a larger number of false positives.
This threshold was defined as those instances with similarity
scores within the top 90% of all similar CWEs for all
methods. Consequently, some CWEs with insufficient simi-
larity to the method were excluded. In this situation, certain
methods, which had lower similarity to the collection of
CWE:s and were considered safe in the previous experiment,
were now categorized as vulnerable.

It is worth noting that, for the few-shot experiments,
we are looking for samples from the same BigVul dataset
and when we do not find the relevant CWE samples in this
dataset, we are randomly selecting a CWE sample to provide
to the LLM.

Note that the implementation of this variant was with
the intention of achieving a balance in the trade-off between
precision and recall. Lowering the similarity threshold may
increase recall as more CWEs are included, but it might
reduce precision by introducing more false positives. On
the other hand, raising the similarity threshold can improve
precision by reducing false positives, but it might lower
recall as fewer CWEs are included, potentially missing some
true positive cases.

5.2. Results and Discussion

The final results of the LLM classification of methods
are reported in Table 2, for both bimodal and unimodal DL
models.

If we compare Table 2 with Table 1, we can notice an
improved accuracy in most cases compared to the model
provided with only source code. Additionally, the number of
true negatives and false negatives increases while providing
more examples, specifically in the few-shot scenario. While
this increase gives a worse recall rate, it indicates that the
model is using the provided auxiliary information to change
its decision and shows improved accuracy.

5.2.1. Zero-shot vs. Few-shot Learning. Analyzing Table
2 against Table 1 reveals an overall improvement in accuracy
for most cases when models are provided with additional
context, such as source code paired with examples or se-
mantic knowledge. Notably, the few-shot learning examples
demonstrated superior accuracy compared to zero-shot ex-
amples. This suggests that incorporating domain knowledge
can enhance the model’s reasoning capabilities. However,
the difference in accuracy between zero-shot and few-shot
examples was minimal.

5.2.2. Threshold Adjustment and Sample Size. The im-
pact of adjusting the similarity threshold to balance recall
and precision was also examined. The results indicate that
such adjustments did not significantly alter outcomes, imply-
ing that increasing the sample size does not necessarily yield
more true positives. This finding highlights the complex-
ity of fine-tuning model performance to balance precision
and recall, suggesting that simply providing more data or
lowering the similarity threshold does not straightforwardly
improve model performance.



TABLE 2: The accuracy of LLM in detecting method-level vulnerability with “bimodal-generated” and “unimodal-
generated” domain information. The circled numbers are associated with circled numbers in Figure 2.

Approach [TP | TN [ FP [ FN || Ace. | Pre. | Rec. | F1 | F2

Bimodal

Zero-Shot é Precision Focus | 4,681 1,493 | 4,726 729 45.58% | 49.76% | 6391% | 55.96% | 60.47%

Zero-Shot é Recall Focus 4,646 | 1,045 | 4,940 624 50.56% | 48.47% | 88.16% | 62.55% | 75.75%

Few-Shot 6 Precision 2,896 | 4,169 | 2,883 2655 56.06% | 50.11% | 52.17% | 51.12% | 51.75%

Few-Shot 6 Recall 3,603 | 4,047 | 2,944 | 2,643 57.79% | 55.03% | 57.68% | 56.33% | 57.13%
Unimodal

Zero-Shot o Precision Focus | 4,829 | 1,049 | 5,394 702 49.09% | 47.24% | 87.31% | 61.31% | 74.64%

Zero—Shoto Recall Focus 4,927 937 5,373 563 49.69% | 47.83% | 89.74% | 62.41% | 76.37%

Few-Shot 6 Precision Focus | 3,247 | 4,190 | 2,888 | 3,088 55.45% | 52.93% | 51.25% | 52.08% | 51.58%

Few-Shot 6 Recall Focus 3,369 | 3,873 | 2,905 | 2,576 56.92% | 53.70% | 56.67% | 55.14% | 56.05%

5.2.3. Unimodal vs. Bimodal Models. Comparison be-
tween unimodal and bimodal models revealed minimal dif-
ferences. The unimodal model, which uses method de-
scriptions provided by the LLM to detect similarity with
corresponding CWEs, was nearly as effective as the bi-
modal model that directly compares source code with CWE
descriptions. This reinforces that both types of additional
information help the model to detect vulnerability.

5.2.4. Experimental Limitations and Practical Consid-
erations. The decision not to explore other LLMs in this
study was influenced by time limitations. Querying LLMs
through an API is computationally expensive and time-
consuming. Conducting the experiments in this paper took
approximately 218 hours on three NVIDIA A100 Tensor
Core GPUs with a memory bandwidth of 2TB.

It is important to note that the total number of instances
might vary among different experiments due to certain
challenges encountered during the process. Specifically, for
both unimodal and bimodal scenarios, we used the LLM
twice and encountered more vague results or errors in some
instances. As a result, these instances were removed from
the experiments. These exclusions were not intentional but
were necessitated by technical issues encountered during the
experimentation process. This issue should be considered
when planning to utilize LLMs in real-world practical sce-
narios.

6. Threats to Validity

We acknowledge certain threats to the validity of our
work. First, we conducted our experiments solely with one
LLM. We thus cannot claim the generalizability of our
findings to all LLMs. Not all LLMs permit automated
querying processes, owing to the absence of an APIL. To
mitigate this limitation, we carefully selected an LLM that
has strong performance and has been used widely in the
research community.

Another limitation of our approach is that we evaluated
only one dataset in a specific language. Therefore, we cannot
claim the generalizability of our results to other settings.
However, our research serves as a starting point, and addi-
tional studies are needed to further explore and understand
this area.

Additionally, because of ambiguous responses from the
LLM, we were unable to generate true or false results for
every sample. Importantly, no records were intentionally
omitted from our study. A portion of the records was lost
during the LLM steps due to the safety settings of the LLM,
which were unchangeable at the time of the experiment.
Further, some records were lost during the cosine similarity
step as explained earlier.

In addition, we acknowledge the potential concern of
data leakage, as the BigVul dataset was curated in 2020, and
closed-source LLMs like Gemini-pro may have been trained
on similar data sources. However, we did not observe any
direct evidence of data leakage influencing the results of our
experiments.

7. Conclusion and Future Work

In summary, our exploration of vulnerable code classifi-
cation using LLMs has yielded insightful revelations regard-
ing the intricacies of prompt engineering. Few-shot learning
demonstrated superior performance compared to zero-shot
learning, while the basic prompt detected most records as
vulnerable, irrespective of their actual vulnerability status.
Our study highlights the importance of domain knowledge
and emphasizes the need for incorporating such information
in prompt design.

Moving forward, multiple avenues for future research
emerge from our current study. First, it is informative to
expand the experimentation with multiple LLMs to provide a
more comprehensive understanding of their generalizability
in vulnerability detection tasks. Second, exploring the scala-
bility of these models and their effectiveness across diverse
programming languages and codebases is important. Third,
qualitative analysis of false negatives to understand the drop
in recall can provide additional insights.

The insights gained from this study lay the founda-
tion for future endeavors in refining vulnerability detection
methodologies using LLMs and advancing the understand-
ing of prompt engineering in the context of code analysis.
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Appendix

1. Keywords

ELINRT]

1.1. Keywords to detect vulnerable label. ’yes”, ”is vul-
nerable”, ”does not validate”, ’doesn’t validate”, ”doesn’t al-

EERNET)

locate”, "input validation”, ”does not check™, is likely to be
applicable”, “’likely vulnerable”, "doesn’t perform”, ”doesn’t

ERINET)

seem to perform”, “function does not perform”, ”could be a

CEINET)

security issue”, ’has a potential issue”, “may be vulnerable”,
”is associated with”, ”is potentially vulnerable to”, “cwe-
7, Rcwe-”, V¥kowe-", THRFkcwe-", VH#fcwe-”, TH##cwe-”,
”could be vulnerable”, ”seems to be vulnerable”, ”doesn’t

CIEET]

check”, ”appears to be vulnerable”, ’potential vulnerability”,
“potentially be vulnerable”, “are vulnerable to cwe are”,

ELINT) 9% 99

“might be vulnerable”, ”is a potential cwe”, is a potential
vulnerability”, “vulnerable to cwe”, “violation of cwe-”,

39 99 9% 9 33 9

”Possibly contains a”, ”could occur”, ’could lead to”, ’can
lead to”, “might lead to”, “has a potential cwe”, “could
be exploited”, “without checking”, ”This function has a”,

3% 9

“following Common Weakness Enumeration”, suffer from

EERNET) 9% 99

cwe”, “related to cwe”, "it’s vulnerable to”, ”is susceptible

29

to”, “can be a security risk”, “potentially be vulnerable”,

CERE L)

”To mitigate this vulnerability”, ”to fix this issue”, list of

EPETRNET) CLINEE)

vulnerable cwe’s”, ”potential violation of cwe”, ’contains a

CIIRT)

cwe”, ’the following cwe”

1.2. Keywords to detect non-vulnerable label. "not vul-
nerable”, “appears to be non-vulnerable”, ”doesn’t exhibit
any vulnerabilities”, ”doesn’t seem to have any vulnerabil-
ities”, ”doesn’t seem to be vulnerable”, ”doesn’t appear to
be vulnerable”, ”doesn’t have the issue”, ”doesn’t appear to
have”, "doesn’t contain any”, ”doesn’t present any vulnera-
bilities”, ”doesn’t seem vulnerable”, “doesn’t have a vulner-
ability”, “doesn’t seem to have any obvious vulnerabilities”,
”doesn’t look vulnerable”, doesn’t have any”, ’looks fine”,
“appears to be free of any”, “doesn’t meet the criteria for

cwe”, “unlikely to be vulnerable”, ”does not appear to be
vulnerable”



