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Abstract

Motivated by recent work of Renegar [22], we present new computational methods and
associated computational guarantees for solving convex optimization problems using first-order
methods. Our problem of interest is the general convex optimization problem f∗ = minx∈Q f(x),
where we presume knowledge of a strict lower bound fslb < f∗. [Indeed, fslb is naturally known
when optimizing many loss functions in statistics and machine learning (least-squares, logistic
loss, exponential loss, total variation loss, etc.) as well as in Renegar’s transformed version of
the standard conic optimization problem [22]; in all these cases one has fslb = 0 < f∗.] We
introduce a new functional measure called the growth constant G for f(·), that measures how
quickly the level sets of f(·) grow relative to the function value, and that plays a fundamental role
in the complexity analysis. When f(·) is non-smooth, we present new computational guarantees
for the Subgradient Descent Method and for smoothing methods, that can improve existing
computational guarantees in several ways, most notably when the initial iterate x0 is far from
the optimal solution set. When f(·) is smooth, we present a scheme for periodically restarting the
Accelerated Gradient Method that can also improve existing computational guarantees when x0

is far from the optimal solution set, and in the presence of added structure we present a scheme
using parametrically increased smoothing that further improves the associated computational
guarantees.

1 Problem Statement and Overview of Results

1.1 Problem Statement, Strict Lower Bound, and Function Growth Constant

Motivated by recent work of Renegar [22], we present new computational methods and associated
computational guarantees for solving convex optimization problems using first-order methods. Our
problem of interest is the following optimization problem:

P : f∗ := minimumx f(x)
s.t. x ∈ Q ,

(1)

∗MIT Sloan School of Management, 77 Massachusetts Avenue, Cambridge, MA 02139 (mailto: rfreund@mit.edu).
This author’s research is supported by AFOSR Grant No. FA9550-15-1-0276 and the MIT-Belgium Université
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where Q ⊆ Rn is a closed convex set and f(·) : Q→ R is a convex function. Let the set of optimal
solutions of (1) be denoted as Opt := {x ∈ Q : f(x) = f∗}. For x ∈ Q, let Dist(x,Opt) denote
the distance from x to the set of optimal solutions, namely Dist(x,Opt) := miny{‖y − x‖ : y ∈
Opt}.

Strict Lower Bound fslb and Function Growth Constant G. Let fslb be a known and
given strict lower bound on the optimal value f∗ of (1), namely fslb < f∗. Such a known strict
lower bound arises naturally when optimizing many loss functions in statistics and machine learning
(least-squares loss, logistic loss, exponential loss, total variation loss, etc.) perhaps with the addition
of a regularization term; in all these cases fslb = 0 < f∗. A known strict lower bound also arises in
Renegar’s transformed version of the standard conic optimization problem [22].

Let ε′ > 0 be given. Given the knowledge of the strict lower bound fslb, it is natural to work with
the notion of a relative measure of optimality. Let us define an ε′-relative solution of (1) to be a
point x̂ that satisfies:

x̂ ∈ Q and
f(x̂)− f∗

f∗ − fslb
≤ ε′ . (2)

Note that (2) is a relative error measure, relative to the optimal bound gap f∗ − fslb. We focus on
an ε′-relative solution rather than on an ε-absolute solution (f(x̂) ≤ f∗ + ε), as the former seems
more natural in the setting where a strict lower bound is part of the problem description. Indeed,
consider the context of loss functions f(·) in statistics and machine learning where fslb = 0, in

which case an ε′-relative solution x̂ corresponds to f(x̂)
f∗ ≤ (1 + ε′), and hence is a multiplicative

measure of optimality tolerance.

Let G denote the smallest scalar Ḡ satisfying:

Dist(x,Opt) ≤ Ḡ · (f(x)− fslb) for all x ∈ Q . (3)

By its definition one sees that G measures how fast the distances from the optimal solution set Opt
grow relative to the bound gap f(x)−fslb. Therefore G is a measure of the growth rate of the level
sets of f(·). We call G the “growth constant” of the function f(·) for the given strict lower bound
fslb. Note that an equivalent definition of G is given by:

G = sup
x∈Q

{
Dist(x,Opt)

f(x)− fslb

}
. (4)

Unlike the strict lower bound fslb, we do not assume that G is known, nor do we need any upper
bounds on G. Indeed, neither knowledge of G nor the finiteness of G are needed in order to
implement the computational methods presented herein; however the finiteness of G is needed for
the analysis of the methods to be meaningful.

We will see in Sections 3 and 4 that the knowledge of the fixed strict lower bound fslb and the
concept of the function growth constant G lead to different versions of first-order methods with dif-
ferent computational guarantees than the traditional analysis of first-order methods would dictate.
Furthermore, these different computational guarantees can dominate the traditional guarantees in
many cases but most notably when the initial iterate x0 is far from the optimal solution. Roughly
speaking, for several of the algorithms developed herein our computational guarantees grow like
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ln(1 + Dist(x0,Opt)) in contrast to traditional guarantees where the growth is proportional to
Dist(x0,Opt) and Dist(x0,Opt)2 (in the smooth and nonsmooth settings, respectively).

In a departure from typical optimization approaches to lower bounds such as those arising from
duality theory wherein one desires as tight a lower bound as possible, herein the lower bound
fslb is strict, namely fslb < f∗, and it is fixed, i.e., it is not updated as part of a computational
procedure. It is best to think of this lower bound as a structural lower bound that is easily
connected to known properties of the function f(·). Such a strict lower bound on f(·) arises
naturally in the settings of statistics and machine learning in the case of loss functions and/or
regularization functions, see for example [11]. Consider when f(·) is the logistic loss function
f(x) = 1

m

∑m
i=1 ln

(
1 + e−Aix

)
or the exponential loss function f(x) = ln

(∑m
i=1 e

−Aix
)
, perhaps

with the addition of a regularization term λ‖x‖rp for some p ≥ 1, r ≥ 1, and λ ≥ 0. If the sample
data is not strictly separable, which translated herein means that there is no x satisfying Ax ≥ 0
unless Ax = 0, then it follows that f∗ > 0 and so fslb := 0 is a strict lower bound and is quite
natural in this setting. Another example is regularized least-squares regression such as the LASSO
and its cousins, wherein f(β) = 1

2‖y−Xβ‖2 +λ‖β‖rp; it follows that f∗ ≥ 0 and one can assert that
f∗ > 0 =: fslb under a variety of mild assumptions involving either λ or the data matrix X. Other
classes of examples for which fslb = 0 is a strict lower bound on f∗ include total variation (TV) loss
functions which are used in image de-noising, as well as the broad class of minimum norm problems
in general, under mild assumptions. Another class of problems for which there is a natural strict
lower bound on f∗ is the class of projectively transformed conic convex optimization problems under
a particularly clever projective transformation, as developed by Renegar [22]; indeed it was this
problem class and the results in [22] that gave rise to the line of research described herein.

We can interpret G as connected to a lower estimator of f(·): rearranging (3), we obtain:

f(x) ≥ f̄(x) := fslb +G−1Dist(x,Opt) for all x ∈ Q . (5)

Therefore the convex function f̄(x) = fslb + G−1Dist(x,Opt) is a lower estimator of the function
f(·) on Q. This interpretation is illustrated in Figure 1. As Figure 1 illustrates, the concept of
the growth constant G is somewhat related to the notion of the modulus of weak sharp minima
for (1), see Polyak [18] and Burke and Ferris [6]; this relationship is discussed further in Appendix
A.1.

A natural question to ask is under what circumstances is the growth constant G finite? Roughly
speaking, it holds that G is finite except when the objective function level sets are ill-behaved
relative to their recession cone. This is made precise in the following theorem, whose proof is given
in Appendix A.2. For ε > 0, let Optε := {x ∈ Q : f(x) ≤ f∗ + ε} denote the ε-optimal level
set of f(·) on Q, and let S denote the recession cone of Optε, namely S := {d ∈ Rn : x + θd ∈
Q and f(x + θd) ≤ f∗ + ε, for all x ∈ Optε and θ ≥ 0}. Note that S is the (common) recession
cone of Optε for all ε ≥ 0.

Theorem 1.1. Suppose that for some ε > 0 there exists a bounded set Eε for which Optε ⊂ Eε+S
where S is the recession cone of Optε. Then for any given strict lower bound fslb < f∗, the growth
constant G is finite.

Let us briefly examine special cases of Theorem 1.1. Consider the case when Opt = E + T where
E is a bounded convex set and T is a subspace. Then for any ε > 0 it is easy to show that
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f(x)	
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Dist(x,Opt)	≤  G  		(	f(x)	-	fslb	)	

f*	
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Figure 1: Illustration of G and fslb for a function with multiple optimal solutions.

Optε = Eε + T for some bounded set Eε, in which case Theorem 1.1 implies that G is finite. In
particular, when Opt itself is a bounded set, then we can set T = {0}, and so Theorem 1.1 implies
that G is finite.

For an example wherein G =∞, consider the function f(x1, x2) :=
x2

2
x1

on Q := {(x1, x2) : x1 ≥ 1}.
It is straightforward to check that the Hessian matrix ∇2f(x) is positive semidefinite on Q and
hence f(·) is convex on Q. We have f∗ = 0 and Opt = {(x1, 0) : x1 ≥ 1}. However, the growth
constant G = ∞ for any strict lower bound fslb, since by letting (x1, x2) = (β2, β) for any β ≥ 1
we obtain using (4) that

G ≥ lim
β→+∞

Dist
(
(β2, β),Opt

)
f (β2, β)− fslb

= lim
β→+∞

β

1− fslb
= +∞ .

1.2 Overview of Results

We use the knowledge of the fixed strict lower bound fslb and the concept of the function growth
constant G to design and develop computational guarantees for new versions of first-order methods
for solving the optimization problem (1). In Section 3 we present such methods when f(·) is
non-smooth and Lipschitz continuous with Lipschitz constant M . In Theorem 3.1 we present an

iteration complexity of O
(
M2G2

[
ln
(

1 + f(x0)−f∗
f∗−fslb

)
+ 1

(ε′)2

])
for a version of Subgradient Descent

that simultaneously runs with two step-sizes and occasional re-starting, which strictly improves the
standard computational complexity bound for Subgradient Descent when x0 is a “cold start,” i.e.,
Dist(x0,Opt) is large. In the special case when the optimal objective function value f∗ is known,
Theorem 3.2 shows that the standard step-size rule for Subgradient Descent yields the same result.
And when f(·) can be smoothed, we present further improved computational guarantees for a new
method (Algorithm 4) that successively smooths and restarts the Accelerated Gradient Method,
see Theorem 3.3 herein.

4



In Section 4 we present computational guarantees for new first-order methods when f(·) is smooth
and has Lipschitz gradient with Lipschitz constant L. We present a new first-order method (Al-
gorithm 5) based on periodically restarting the Accelerated Gradient Method, that leads to an

iteration complexity of O
(
G
√
L
[√

f(x0)− fslb +
√
f∗−fslb√

ε′

])
(Theorem 4.1), which in many cases

can improve the standard computational complexity bound for the Accelerated Gradient Method,
most notably when f(x0) is far from the optimal value f∗ and ε′ is small. And when f(·) has
appropriate adjoint structure, we use parametric increased smoothing and restarting of the Accel-
erated Gradient Method to achieve a further improvement in the above computational guarantee
(Theorem 4.2).

Algorithm A in Renegar [23] provides an interesting approach to the general convex optimization
setting, that bears comparison to the approach and results contained herein – which are also
designed for the general convex optimization setting. Both Algorithm A in [23] and the algorithms
herein generalize the methodology for conic optimization developed in Renegar [20, 22] to the
general convex optimization problems, but they do so in different ways. Herein the generalization
is obtained by introducing the new function measure G based on the strict lower bound fslb,
while in Algorithm A in [23] the original problem is transformed (implicitly or explicitly) to a
conic optimization problem in a slightly lifted space. The resulting algorithms appear to be very
different, and have different computational requirements and convergence bounds – Algorithm A
in [23] requires a 1-dimensional root finding procedure each iteration, whereas Algorithm 3 herein
requires orthogonal projection onto the feasible region. (And indeed it is rather remarkable that
Algorithm A of [23] does not require such projection.) Algorithm A does not need a Lipschitz
constant; however in the case of a smooth objective function Algorithm A cannot take advantage
of such smoothness, unlike Algorithm 5 (and also Algorithm 4) herein.

The paper is organized as follows. Section 2 contains a brief review of the Subgradient Descent
and an Accelerated Gradient Method. Section 3 contains first-order methods and computational
guarantees when f(·) is non-smooth. Section 4 contains first-order methods and computational
guarantees when f(·) is smooth.

Notation. Unless otherwise specified, the norm is the Euclidean (inner product) norm ‖x‖ :=√
xTx. We occasionally refer to the `p norm of a vector v, which is denoted by ‖v‖p. For Q ⊂ Rn,

let ΠQ(·) denote the Euclidean projection operator onto Q, namely ΠQ(x) := arg miny∈Q ‖y − x‖.
We define Dist(x, S) := miny{‖x − y‖ : y ∈ S}. The set of optimal solutions of (1) is denoted by
Opt := {x ∈ Q : f(x) = f∗}.

2 Review of Subgradient Descent and an Accelerated Gradient
Method

We briefly review the Subgradient Descent Method and an Accelerated Gradient Method (as ana-
lyzed in Tseng [27]) for solving the convex optimization problem (1).

2.1 Subgradient Descent

Recall that g is a subgradient of f(·) at x if the following subgradient inequality holds:

f(y) ≥ f(x) + gT (y − x) for all y ∈ Q .
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Let ∂f(x) denote the set of subgradients of f(·) at x. Here we assume that f(·) is Lipschitz
continuous on a relatively open set Q̂ containing Q, namely, there is a scalar M for which

|f(y)− f(x)| ≤M‖y − x‖ for all x, y ∈ Q̂ . (6)

It follows from (6) that for all x ∈ Q and g ∈ ∂f(x) it holds that ‖g‖ ≤M .

Algorithm 1 presents the standard subgradient scheme. In this method xk is the iterate at iteration
k, the best objective value among the first k iterates is fkb , and the best iterate among the first k
iterates is xkb .

Algorithm 1 Subgradient Method for Non-Smooth Optimization

Initialize. Initialize with x0 ∈ Q, f0
b ← f(x0), x0

b ← x0 . i← 0 .

At iteration i :
1. Compute Subgradient. Compute gi ∈ ∂f(xi) .
2. Determine Step-size. Determine αi ≥ 0 .
3. Perform Updates. Compute xi+1 ← ΠQ(xi − αigi) ,

f i+1
b ← min{f ib , f(xi+1)} ,

xi+1
b ← arg min

x∈{xib, xi+1}
{f(x)} .

The following theorem summarize well-known computational guarantees associated with the sub-
gradient descent method.

Theorem 2.1. (Convergence Bounds for Subgradient Descent [19, 14])
(i) Consider the subgradient descent method (Algorithm 1). Then for all k ≥ i ≥ 0, the following
inequality holds:

fkb ≤ f∗ +
Dist(xi,Opt)2 +

∑k
l=i ‖gl‖2α2

l

2
∑k

l=i αl
≤ f∗ +

Dist(xi,Opt)2 +M2
∑k

l=i α
2
l

2
∑k

l=i αl
.

(ii) Suppose that f∗ is known, and let the step-sizes for Algorithm 1 be αi = (f(xi) − f∗)/‖gi‖2.
Then for all k ≥ i ≥ 0, the following inequality holds:

fkb ≤ f∗ +
MDist(xi,Opt)√

k − i+ 1
.

Suppose that we seek to bound the number of iterations N of the Subgradient Descent method
required to compute an (absolute) ε-optimal solution of (1), which is a point x̂ ∈ Q that satisfies
f(x̂) ≤ f∗ + ε. If ε > 0 is given, and the step-sizes are chosen as αi = ε/‖gi‖2, then it follows from
part (i) of Theorem 2.1 that fNb ≤ f∗ + ε for all

N ≥ N̄ :=
M2Dist(x0,Opt)2

ε2
− 1 . (7)
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If instead we know (or can bound from above) Dist(x0,Opt), and the step-sizes are chosen as
αi = Dist(x0,Opt)/(

√
N + 1‖gi‖) whereN satisfies (7), then it also follows from part (i) of Theorem

2.1 that fNb ≤ f∗ + ε. And if f∗ is known, then the bound (7) is also sufficient to guarantee
fNb ≤ f∗ + ε if the steps-sizes are chosen as in part (ii) of Theorem 2.1. Furthermore, it follows
from [13] that the bound (7) cannot in general be improved in the black-box oracle model of
computation with complexity bounds depending only on M , Dist(x0,Opt), and ε. In this regard,
we note that the dependence on additional parameters, namely the strict lower bound fslb and
the function growth constant G, which are used throughout this paper, shows how we can achieve
different (and better in many cases) complexity bounds by including additional parameters and
appropriately amending algorithms and their analysis.

2.2 Accelerated Gradient Method for Smooth Optimization

Here we assume that f(·) is differentiable on an open set containing Q, and that ∇f(·) is Lipschitz
on Q with scalar L, namely:

‖∇f(y)−∇f(x)‖ ≤ L‖y − x‖ for all x, y ∈ Q . (8)

Algorithm 2 presents a standard Accelerated Gradient Method as in Tseng [27].

Algorithm 2 Accelerated Gradient Method

Initialize. Initialize with x0 ∈ Q and z0 := x0, and i← 0 . Define step-size parameters θi ∈ (0, 1]
recursively by θ0 := 1 and θi+1 satisfies 1

θ2
i+1
− 1

θi+1
= 1

θ2
i

.

At iteration i :
1. Perform Updates. Define yi ← (1− θi)xi + θiz

i, and compute ∇f(yi) ,

zi+1 ← arg minx∈Q{f(yi) +∇f(yi)T (x− zi) + 1
2θiL(x− zi)T (x− zi)} ,

xi+1 ← (1− θi)xi + θiz
i+1 .

For δ ≥ f∗ define the level set Sδ := {x ∈ Q : f(x) ≤ δ}. For x ∈ Q, let Dist(x, Sδ) denote
the distance from x to the level set Sδ, namely Dist(x, Sδ) := miny{‖y − x‖ : y ∈ Sδ}. The
following theorem is a computational guarantee for the Accelerated Gradient Method due to Tseng
[27].

Theorem 2.2. (Convergence Bound for Accelerated Gradient Method [27]) Consider the
Accelerated Gradient Method (Algorithm 2). Let δ ≥ f∗ and Sδ := {x ∈ Q : f(x) ≤ δ}. Then for
all k ≥ 0, the following inequality holds:

f(xk)− δ ≤ 2LDist(x0, Sδ)
2

(k + 1)2
.

Note that in the case when δ = f∗, then Sδ = Opt whereby Theorem 2.2 specializes to the standard
result for the Accelerated Gradient Method. We will utilize the more general result in Theorem
2.2 in the context of smoothing of a non-smooth function, in Sections 3.3 and 4 herein.
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3 Computational Guarantees when f(·) is Non-Smooth

Let ε′ > 0 be given. We aspire to compute an ε′-relative solution of (1), which recall from (2)

is a point x̂ ∈ Q satisfying: f(x̂)−f∗
f∗−fslb

≤ ε′. In this section we present three new computational

guarantees for first-order methods applied to computing a ε′-relative solution of problem (1) that
are based on the strict lower bound fslb and growth constant G. The first guarantee is for a
new algorithm based on Subgradient Descent that runs two different step-sizes simultaneously
with occasional re-starts. The second guarantee is for the standard Subgradient Method using a
standard step-size rule in the case when the optimal value f∗ is known. The third guarantee is for
the case when the function f(·) can be smoothed and then solved using an algorithm based on the
Accelerated Gradient Method.

3.1 Subgradient Descent using Two Step-Size Rules Running Simultaneously

We consider solving (1) using a version of subgradient descent that simultaneously runs two ver-
sions of the Subgradient Descent Method – each with a different step-size rule – with occasional
simultaneous re-starts of both versions. The formal description of our method is given in Algo-
rithm 3. In the algorithm, the notation “(xi,j+1, f

i,j+1
b , xi,j+1

b ) ← SDM(f(·), xi,j , αij , gij)” denotes
assigning to xi,j+1 the next value of the Subgradient Descent Method applied to the optimization
problem (1) with objective function f(·) with current point xi,j ∈ Q using the step-size αij and the

subgradient gij , along with updates of the best objective function value obtained thus far f i,j+1
b

with the corresponding best iterate computed xi,j+1
b .

We now walk through the structure of Algorithm 3. The algorithm requires as input the starting
point x0 and the desired relative accuracy value ε′ used to define an ε′-relative solution, see (2).
The algorithm then defines an absolute constant ε̄′ := 0.9. The two values ε′ and ε̄′ are then
used as aspirational goals for simultaneously running the standard Subgradient Descent Method in
search of either an ε′-relative solution of (1) or an ε̄′-relative solution of (1). For notational ease,
both ε′ and ε̄′ are converted to a slightly different form by defining ε and ε̄. At the start of the
ith outer iteration, Algorithm 3 runs the Subgradient Descent Method simultaneously using two
different step-size rules (but starting at the same point xi,0 = x̄i,0), and so generates inner iterations
{xi,j} and {x̄i,j} for j = 0, 1, . . . based on computed subgradients {gij} and {ḡij} and step-sizes
{αij} and {ᾱij}, respectively. The only structural difference between the two instantiations of
Subgradient Descent is that the steps-sizes {αij} use ε in their definition whereas {ᾱij} use ε̄ in
their definition. The number of inner iterations j that are run in the ith outer iteration is initially
set to be Ki ← +∞. If either f(xi,j) or f(x̄i,j) makes sufficient progress relative to the starting
value f(xi,0)(= f(x̄i,0)) as determined in the ratio test at the start of Step (2.), then the outer
iteration i is concluded and Ki, which counts the number of inner iterations therein, is updated to
Ki ← j. Finally, the next outer iteration starting values xi+1,0 = x̄i+1,0 are re-set to either xi,j or
x̄i,j , depending on which of xi,j or x̄i,j satisfies the ratio test.

Many of the ideas used in the construction of Algorithm 3 were motivated from similar notions
developed in Algorithm 2 of [22] as well as the algorithm “MainAlgo” in [21] (which uses the
construct of running two algorithms simultaneously with different parameters).

Regarding counting of iterates xi,j , x̄i,j that are computed by Algorithm 3, we will say that the
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Algorithm 3 Non-Smooth Method with Two Step-Size Rules Running Simultaneously

Initialize. Initialize with x0 ∈ Q and ε′ > 0 .
Define constants ε̄′ := 0.9 , ε := ε′

1+ε′ , ε̄ := ε̄′

1+ε̄′ , B := 1/
√
e , F :=

√
e .

Set x1,0 ← x0 , x̄1,0 ← x0, i← 1 .

At outer iteration i :
1. Initialize inner iterations. f i,0b ← f(xi,0) , f̄ i,0b ← f(x̄i,0)

xi,0b ← xi,0 , x̄i,0b ← x̄i,0

Ki ← +∞ , j ← 0 .

2. Test/update current iterates. At inner iteration j:

If
f(xi,j)− fslb

f(xi,0)− fslb
> B and

f(x̄i,j)− fslb

f(xi,0)− fslb
> B, then

Compute subgradients. Compute gij ∈ ∂f(xi,j) , ḡij ∈ ∂f(x̄i,j)

Set step-sizes. αij ← ε(f(xi,0)−fslb)
F‖gij‖2 , ᾱij ← ε̄(f(x̄i,0)−fslb)

F‖ḡij‖2

Update: (xi,j+1, f
i,j+1
b , xi,j+1

b )← SDM(f(·), xi,j , αij , gij)

(x̄i,j+1, f̄
i,j+1
b , x̄i,j+1

b )← SDM(f(·), x̄i,j , ᾱij , ḡij)

Else if
f(xi,j)− fslb

f(xi,0)− fslb
≤ B , then:

Ki ← j , xi+1,0 ← xi,j , x̄i+1,0 ← xi,j , i← i+ 1 , and Goto Step 1.

Else
f(x̄i,j)− fslb

f(x̄i,0)− fslb
≤ B , and:

Ki ← j , xi+1,0 ← x̄i,j , x̄i+1,0 ← x̄i,j , i← i+ 1 , and Goto Step 1.

algorithm has computed an iterate whenever it computes a subgradient and then calls SDM(·, ·, ·).
There are therefore two iterates computed at each inner iteration. We have:

Theorem 3.1. (Complexity Bound for Algorithm 3) Within a total number of iterates com-
puted that does not exceed

18M2G2

(
2.7 ln

(
1 +

f(x0)− f∗

f∗ − fslb

)
+

(
1 + ε′

ε′

)2
)

,

Algorithm 3 will compute an iterate xi,j for which

f(xi,j)− f∗

f∗ − fslb
≤ ε′ .

Since f(x0) ≤ f∗ + MDist(x0,Opt), the computational guarantee in Theorem 3.1 can itself be
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bounded by:

18M2G2

(
2.7 ln

(
1 +

MDist(x0,Opt)

f∗ − fslb

)
+

(
1 + ε′

ε′

)2
)
, (9)

which is qualitatively different from the guarantee of the standard Subgradient Descent Method
(Algorithm 1) in (7) in two interesting ways. First, the dependence in (7) on Dist(x0,Opt) is
quadratic, whereas in (9) it is logarithmic. Second, although both guarantees are linear in the
inverse square of the desired relative accuracy ε′ (from (2) an ε′-relative solution corresponds to
an absolute ε′ · (f∗ − fslb) solution of (1)), however x0 affects this factor multiplicatively through
Dist(x0,Opt)2 in (7), whereas the factor is independent of x0 in (9).

Let us also quantitatively compare the computational guarantee of Theorem 3.1 with the standard
guarantee for Subgradient Descent given by (7). The standard computational guarantee (7) can be
written as:

M2Dist(x0,Opt)2

ε′2 (f∗ − fslb)2 .

Let us presume that ε′ is small, whereby 1+ε′

ε′ ≈
1
ε′ . Then the ratio of the new guarantee (9) from

Theorem 3.1 to the standard guarantee (7) is at most

Guarantee of Theorem 3.1

Standard Guarantee (7)
≤ 18(f∗ − fslb)2G2

2.7(ε′)2 ln
(

1 + MDist(x0,Opt)
f∗−fslb

)
+ 1

Dist(x0,Opt)2

 . (10)

Notice from (10) that for any instance of (1), when Dist(x0,Opt) is sufficiently large the right-hand
side of (10) can be made arbitrarily small, thereby showing that in these cases the computational
guarantee in Theorem 3.1 can be made arbitrarily better than the standard guarantee (7) for
Subgradient Descent.

We will prove Theorem 3.1 by first establishing eight propositions. The reader familiar with [22]
will notice certain resemblances between aspects of the proof constructs below and the proof of
Theorem 3.8 of [22], see also [23]. Throughout, for notational convenience, we will work with three
constants B, F , and ε̄′ that must be chosen to satisfy the conditions:

B ∈ (0, 1) , F >
1

2B
, and ε̄′ > 0 ,

and whose specific values in Algorithm 3 are set to B = 1/
√
e, F =

√
e, and ε̄′ = 0.9, where e is

the base of the natural logarithm.

Let δ′ > 0 play the role of either ε′ or ε̄′, and also define δ := δ′

1+δ′ (analogous to the definitions of
ε and ε̄).

The first two propositions below apply to the generic setting of the Subgradient Descent Method.

Proposition 3.1. Let δ ∈ (0, 1) be given, and suppose we run the Subgradient Descent Method
(Algorithm 1) with starting iterate x̂0, using step-sizes:

αj :=
δ(f(x̂0)− fslb)

F‖gj‖2

10



for all iterations j. Then for all j ≥ 0 it holds that

f jb − fslb ≤ f∗ − fslb +

[
G2M2F

2δ(j + 1)
+

δ

2F

]
(f(x̂0)− fslb) .

Proof: Define α := δ(f(x̂0)−fslb)
F . Then αj = α

‖gj‖2 ≥
α
M2 . It follows from part (i) of Theorem 2.1

that

f jb − fslb ≤ f∗ − fslb +
Dist(x̂0,Opt)2

2
∑j

l=0 αl
+

∑j
l=0 ‖gl‖

2α2
l

2
∑j

l=0 αl

≤ f∗ − fslb +
M2Dist(x̂0,Opt)2

2α(j + 1)
+
α

2

≤ f∗ − fslb +
M2G2F (f(x̂0)− fslb)2

2(j + 1)δ(f(x̂0)− fslb)
+
δ(f(x̂0)− fslb)

2F
,

where the second inequality uses the definition of αl and the inequality ‖gj‖ ≤ M , and the third
inequality uses the definitions of α and G. Simplifying the last expression completes the proof.

Proposition 3.2. Under the identical set-up as Proposition 3.1, let δ′ := δ/(1− δ), and define:

W :=

⌊
FM2G2

2δ2
[
B − 1

2F

]⌋ .

Then either
fWb −f

∗

f∗−fslb
≤ δ′ , or fWb − fslb ≤ B(f(x̂0)− fslb), or both.

Proof: Suppose that
fWb −f

∗

f∗−fslb
> δ′. This rearranges to: δ′ <

fWb −fslb

f∗−fslb
− 1, whereby

f∗ − fslb

fWb − fslb
<

1

1 + δ′
= 1− δ . (11)

Invoking Proposition 3.1 we have:

fWb − fslb ≤ f∗ − fslb +
[
G2M2F
2δ(W+1) + δ

2F

]
(f(x̂0)− fslb)

< f∗ − fslb +
[
δ
(
B − 1

2F

)
+ δ

2F

]
(f(x̂0)− fslb)

= f∗ − fslb + δB(f(x̂0)− fslb)

< (1− δ)(fWb − fslb) + δB(f(x̂0)− fslb) ,

where the second inequality follows since W + 1 > FM2G2

2δ2[B−1/(2F )]
, and the last inequality uses (11).

Rearranging the final inequality and dividing by δ then yields fWb − fslb ≤ B(f(x̂0)− fslb), which
completes the proof.

In the next two propositions we apply Proposition 3.2 directly to the setting of Algorithm 3.
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Proposition 3.3. Consider outer iteration i of Algorithm 3. Define:

U :=

⌊
FM2G2

2ε2
[
B − 1

2F

]⌋ .

If Ki > U , then
f ijb −f

∗

f∗−fslb
≤ ε′ for all j = U, . . . ,Ki .

Proof: Let us apply Proposition 3.2 with δ′ := ε′, W := U , and x̂0 := xi,0. If Ki > U , then by

definition of Ki it holds that f i,Ub − fslb > B(f i,0b − fslb). Thus, from Proposition 3.2 it holds that
f i,Ub −f∗
f∗−fslb

≤ ε′. Therefore
f ijb −f

∗

f∗−fslb
≤ ε′ for all j = U, . . . ,Ki, since f ijb is by definition monotonically

nonincreasing in j.

Proposition 3.4. Consider outer iteration i of Algorithm 3. Define:

V :=

⌊
FM2G2

2ε̄2
[
B − 1

2F

]⌋ .

If Ki > V , then
f(xi,0)−fslb

f∗−fslb
≤ 1+ε̄′

B .

Proof: Let us similarly apply Proposition 3.2 with δ′ := ε̄′, W := V , and x̂0 := xi,0 = x̄i,0. Let us
suppose Ki > V . First, notice that for 0 ≤ j < Ki, it holds that

f(x̄i,j)− fslb > B(f(x̄i,0)− fslb) = B(f(xi,0)− fslb) .

Therefore the left-hand term above can be replaced by f̄ ijb − fslb, and setting j = V we obtain

f̄ i,Vb −fslb > B(f(xi,0)−fslb). Therefore from Proposition 3.2 it holds that
f̄ i,Vb −f∗
f∗−fslb

≤ ε̄′. Combining
these inequalities we obtain:

B(f(xi,0)− fslb) < f̄ i,Vb − fslb = f̄ i,Vb − f∗ + f∗ − fslb ≤ ε̄′(f∗ − fslb) + f∗ − fslb ,

and rearranging yields the result.

In the next proposition we use the standard notation a+ for the nonnegative part of a scalar a.

Proposition 3.5. Let m denote the number of outer iterations i of Algorithm 3 for which

f(xi,0)− fslb

f∗ − fslb
>

1 + ε̄′

B
.

Then

m ≤


ln
(

1 + f(x0)−f∗
f∗−fslb

)
− ln

(
1+ε̄′

B

)
ln(1/B)


+

.

Proof: If m = 0 then the result holds trivially, so let us suppose that m ≥ 1. It then follows using
induction on f(xi+1,0)− fslb ≤ B(f(xi,0)− fslb) that

1 + ε̄′

B
<
f(xm,0)− fslb

f∗ − fslb
≤ Bm−1(f(x1,0)− fslb)

f∗ − fslb
,
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and taking logarithms yields

m− 1 <
ln
(
f(x1,0)−fslb

f∗−fslb

)
− ln

(
1+ε̄′

B

)
ln(1/B)

=
ln
(

1 + f(x0)−f∗
f∗−fslb

)
− ln

(
1+ε̄′

B

)
ln(1/B)

,

from which the result follows.

In the following proposition, as well as others later on, we use the standard notational convention
that

∑n
i=1 · := 0 for n ≤ 0.

Proposition 3.6. Let V and m be as defined in Propositions 3.4 and 3.5. Then xm+1,0 exists, and
and let Tm denote the total number of iterates computed prior to and including xm+1,0. It holds
that:

f(xm+1,0)− fslb

f∗ − fslb
≤ 1 + ε̄′

B
,

and furthermore Tm ≤ 2mV .

Proof: If m = 0 then the results holds trivially from the definition of m.

Next suppose that m ≥ 1, and consider any outer iteration i ≤ m. Then since

f(xi,0)− fslb

f∗ − fslb
>

1 + ε̄′

B
,

it follows from Proposition 3.4 that Ki ≤ V . This also implies that xm+1,0 exists and therefore
must satisfy

f(xm+1,0)− fslb

f∗ − fslb
≤ 1 + ε̄′

B
.

Finally, since Tm = 2
∑m

i=1Ki, it therefore follows that Tm ≤ 2mV .

Proposition 3.7. Let p denote the number of outer iterations i for which Ki is finite. Then

p ≤ m+

 ln
(

1+ε̄′

B

)
ln(1/B)

 ,

where m is as defined in Proposition 3.5.

Proof: It follows from Proposition 3.6 that p ≥ m. Therefore f∗ − fslb ≤ f(xp,Kp) − fslb =

f(xp+1,0) − fslb ≤ Bp−m(f(xm+1,0) − fslb) ≤ Bp−m
(

1+ε̄′

B

)
(f∗ − fslb), where we have used the

properties of xm+1,0 in Proposition 3.6. Taking logarithms yields

p−m ≤
ln
(

1+ε̄′

B

)
ln(1/B)

,

from which the result follows.

Proposition 3.8. Let U , m, and p be as defined in Propositions 3.3, 3.5, and 3.7. Within a total
number of computed iterates after xm+1,0 that does not exceed 2(p − m + 1)U , Algorithm 3 will
compute an iterate xî,ĵ for which

f(xî,ĵ)− f
∗

f∗ − fslb
≤ ε′ .
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Proof: Let î denote the index of the first outer iteration i ∈ {m+ 1, . . . , p+ 1} for which Ki > U .
Notice that since Kp+1 = +∞ it must hold that î ≤ p + 1. It follows from Proposition 3.3 that
f î,Ub −f∗
f∗−fslb

≤ ε′ and hence for some ĵ ≤ U it holds that
f(xî,ĵ)−f

∗

f∗−fslb
≤ ε′. Let us now count the number

of iterates computed after xm+1,0 and prior to and including xî,ĵ . This number is bounded above
by:

2

 î−1∑
i=m+1

Ki + U

 ≤ 2
(

(̂i−m− 1)U + U
)

= 2(̂i−m)U ≤ 2(p−m+ 1)U ,

where the first inequality follows since Ki ≤ U for i < î, and the last inequality uses î ≤ p +
1.

We now use these propositions to prove Theorem 3.1.

Proof of Theorem 3.1: Utilizing the definitions of U , V , m, p, and xî,ĵ in Propositions 3.3,
3.4, 3.5, 3.7, and 3.8, it follows from Propositions 3.6 and 3.8 that the total number of iterates
computed prior to and including xî,ĵ is at most 2[mV + (p−m+ 1)U ]. Substituting the values of
U and V and using the bounds on m and p in Propositions 3.5 and 3.7 yields:

2


ln

(
1+

f(x0)−f∗
f∗−fslb

)
−ln

(
1+ε̄′
B

)
ln(1/B)


+ ⌊

FM2G2

2ε̄2
[
B− 1

2F

]
⌋

+ 2

⌊
1 +

ln
(

1+ε̄′
B

)
ln(1/B)

⌋⌊
FM2G2

2ε2
[
B− 1

2F

]
⌋

≤ 2

 ln

(
1+

f(x0)−f∗
f∗−fslb

)
ln(1/B)

[ FM2G2

2ε̄2
[
B− 1

2F

]
]

+ 2
[
2 + ln(1+ε̄′)

ln(1/B)

] [
FM2G2

2ε2
[
B− 1

2F

]
]

≤ M2G2

(
48.5 ln

(
1 + f(x0)−f∗

f∗−fslb

)
+ 18

(
1+ε′

ε′

)2
)
,

where the second inequality follows from substituting in the values B = 1/
√
e, F =

√
e, and

ε̄′ = 0.9, and rounding terms upward. This last expression then is rounded upward to yield the
desired iteration bound.

3.2 Subgradient Descent when f ∗ is known

In the special case when f∗ is known, we can obtain a computational guarantee that is of the
same order as that of Theorem 3.1 by directly using the standard Subgradient Descent Method
(Algorithm 1) with the (standard) step-size rule αi := (f(xi) − f∗)/‖gi‖2. This is shown in the
following theorem.

Theorem 3.2. (Complexity Bound for standard Subgradient Descent when f∗ is known)
Let the step-sizes for the Subgradient Descent Method (Algorithm 1) applied to solve problem (1)
be chosen as:

αi :=
f(xi)− f∗

‖gi‖2
,
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and suppose that N ≥ 0 and satisfies

N ≥ 2M2G2

(
1 + 2.9 ln

(
f(x0)− f∗

f∗ − fslb

)
+ 2.9 ln

(
1

ε′

)
+ 6.8

(
1

ε′

)
+ 2

(
1

ε′

)2
)

.

Then:
f(xNb )− f∗

f∗ − fslb
≤ ε′ . (12)

The computational guarantee above is an almost-exact generalization of Theorem 3.7 of Renegar
[22], which therein pertains to a specific transformed conic optimization problem. The proof of this
theorem follows the logic for the proof of Theorem 3.7 of [22] in many respects as well.

Notice that up to an absolute constant, the computational guarantee of Theorem 3.2 is essentially
the same as that of Theorem 3.1 in the worst case.

Proof of Theorem 3.2: We will presume that f(x0)−f∗
f∗−fslb

> ε′, since otherwise (12) is satisfied
trivially for all N ≥ 0. Let B ∈ (0, 1) be a given fractional quantity. Define K0 := 0, and for all
i such that fKib − f

∗ > 0 define Ki+1 inductively as the smallest iteration index of Subgradient

Descent for which f
Ki+1

b − f∗ ≤ B(fKib − f
∗). Notice that so long as fKib − f

∗ > 0 it follows using
part (ii) of Theorem 2.1 that Ki+1 exists (i.e., is finite). Let i′ be the smallest sub-index i for which
f
Ki′
b −f∗
f∗−fslb

≤ ε′. It follows from the initial presumption above that i′ ≥ 1, and it holds for any i ≥ 0

satisfying i < i′ that ε′(f∗ − fslb) < f(xKi)− f∗ ≤ Bi(f(xK0)− f∗) = Bi(f(x0)− f∗), from which
it follows that i, and hence also i′, is finite. Furthermore, it holds for any i ≥ 0 satisfying i < i′

that:
ε′(f∗ − fslb) < f(xKi′−1)− f∗ ≤ Bi′−1−i(f(xKi)− f∗) , (13)

since xKi = xKib by the definition of Ki. Using i = 0 in (13) and taking logarithms yields:

i′ < 1 +
ln
(

1
ε′

)
+ ln

(
f(x0)−f∗
f∗−fslb

)
ln(B−1)

. (14)

If Ki+1 exists (i.e., is finite), then it follows from part (ii) of Theorem 2.1 that:

f(x
Ki+1−1
b )− f∗ ≤ MDist(xKi ,Opt)√

Ki+1 − 1−Ki + 1
.

This last inequality can be rearranged to yield:

Ki+1−Ki ≤
M2Dist(xKi ,Opt)2(
f(x

Ki+1−1
b )− f∗

)2 <
B−2M2G2

(
f(xKi)− fslb

)2
(f(xKi)− f∗)2 = B−2M2G2

(
1 +

f∗ − fslb

f(xKi)− f∗

)2

(15)
where the second inequality uses the definition of the growth constant G as well as the fact that
f(x

Ki+1−1
b )− f∗ > B(f(xKi)− f∗). Now putting all of this together we obtain:

Ki′ =

i′−1∑
i=0

(Ki+1 −Ki)
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≤ B−2M2G2
i′−1∑
i=0

(
1 +

f∗ − fslb

f(xKi)− f∗

)2

≤ B−2M2G2
i′−1∑
i=0

(
1 +

1

ε′
Bi′−1−i

)2

= B−2M2G2
i′−1∑
j=0

(
1 +

(
2

ε′

)
Bj +

(
1

ε′

)2

(B2)j

)

≤ B−2M2G2

(
i′ +

(
2

ε′

)
1

1−B
+

(
1

ε′

)2 1

1−B2

)

≤ B−2M2G2

1 +

ln

(
1

ε′

)
+ ln

(
f(x0)− f∗

f∗ − fslb

)
ln(B−1)

+

(
2

ε′

)
1

1−B
+

(
1

ε′

)2 1

1−B2

 ,

where the first inequality is from (15), the second inequality uses (13), the third inequality replaces
the two finite geometric series with corresponding infinite series, and the fourth inequality uses (14).
Finally, using the value of B = 1/

√
2 and substituting into the above yields the result.

We remark that one obtains the precise constants of Theorem 3.7 of [22] by using B = 1/2. Choosing
B to optimize the absolute constant of the (1/ε′)2 term yields B = 1/

√
2 and the absolute constants

as presented in the statement of the threorem. Choosing B to optimize the absolute constant of

the ln
(
f(x0)−f∗
f∗−fslb

)
term would yield B = 1/

√
e with the coefficient of 2 in the ln(·) terms.

To conclude this subsection, consider the case when f∗ is known and G can be upper-bounded
by a constant for any fslb (as is the case when f(·) is piecewise-linear or, more generally, when
f(·) has weak sharp minima (30)). Then given an absolute tolerance ε, we can set ε′ = 1 and
fslb = f∗ − ε, whereby Theorem 3.2 implies linear convergence of Algorithm 1 in term of the
absolute tolerance ε. However, this is not as favorable a result as that in Yang and Lin [28], which
obtains linear convergence without requiring that f∗ is known. Also, this result can be considered
a slight variation of Gilpin, Peña and Soheli [10], which assumes f(·) is piecewise-linear but does
not require that f∗ is known.

3.3 Non-Smooth Optimization using a New Smooth Approximations Method

As first proposed by Nesterov [15], there are many practical settings wherein one can approximate
the non-smooth convex function f(·) by a smooth convex function fµ(·), where the sense of the
approximation depends on the parameter µ. If the smooth approximation fµ(·) is computationally
easy to work with, one can then use the Accelerated Gradient Method (Algorithm 2) to approxi-
mately optimize fµ(·) (thereby also approximately optimizing f(·)) on the feasible set Q. There are
a variety of techniques that can be used to construct a parametric family of smooth functions fµ(·)
depending on the known structure of f(·) and Q, see [15] as well as [16] and Beck and Teboulle [1]
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among others. For our purposes herein, we will suppose that there is a smoothing technique with
the following two properties:

(i) there is a known constant D̄ > 0 such that for any given µ > 0 we can construct a smooth
convex function fµ(·) : Q→ R which is not far from f(·), namely:

f(x)− D̄µ ≤ fµ(x) ≤ f(x) for all x ∈ Q , and (16)

(ii) fµ(·) has Lipschitz continuous gradient on Q with Lipschitz constant Lµ satisfying

Lµ ≤ Ā/µ (17)

for some known positive constant Ā.

These properties can be used to design an implementation of the Accelerated Gradient Method
(Algorithm 2) applied to fµ(·), that can be used to compute an absolute ε-optimal solution of the
original optimization problem (1). The scheme developed in [15] in conjunction with the Accelerated
Gradient Method (Algorithm 2) yields an iteration complexity bound of

Ň :=

⌈√
8ĀD̄Dist(x0,Opt)

ε
− 1

⌉
(18)

to obtain an (absolute) ε-optimal solution of (1) for a suitably designed version of the basic
method.

Herein we develop a variant of the basic smoothing method to solve the optimization problem (1)
that yields a new computational guarantee that can improve on (18) in many cases. Algorithm 4
presents parametric smoothing and restarting method for computing an ε′-relative solution of the
optimization problem (1) for the non-smooth objective function f(·) based on successive smooth
approximations and re-starting of the Accelerated Gradient Method (Algorithm 2). In the descrip-
tion of Algorithm 4 the general notation “xi,j ← AGM(fµ(·), xi,0, j)” denotes assigning to xi,j
the jth iterate of the Accelerated Gradient Method applied to the optimization problem (1) with
objective function fµ(·) using the initial point xi,0 ∈ Q.

At the ith outer iteration of Algorithm 4, the algorithm sets two different smoothing parameters in
Step (1.), namely µ1

i and µ2
i , where µ2

i differs from µ1
i by the relative accuracy input value ε′. The

algorithm then runs the Accelerated Gradient Method with starting point xi,0 simultaneously on
the two smoothed functions fµ1

i
(·) and fµ2

i
(·), using the double indexing notation of xi,j and yi,j to

denote iteration j of the Accelerated Gradient Method initialized at the point xi,0 for optimizing
fµ1

i
(·) and fµ2

i
(·) on Q, respectively. Notice that the smoothing parameters µ1

i and µ2
i decrease over

the course of the outer iterations, as it makes more sense to set these values higher at first and
then decrease them as the solution is approached. The outer iteration i runs until the ratio test in
Step (3a.) fails, at which point the current point xi,j becomes the starting point of the next outer
iteration, namely xi+1,0 ← xi,j . The counter Ki records the number of inner iterations j of outer
iteration i. Regarding counting of iterates computed in Algorithm 4, we will say that the algorithm
has computed an iterate whenever it calls AGM(·, ·, ·). There are therefore two computed iterates
at each inner iteration.

17



Algorithm 4 Parametric Smoothing/Restarting Method using fµ(·)

Initialize. Initialize with x0 ∈ Q and ε′ > 0 .
Define B := 1

2 , t := 1
8 .

Set x1,0 ← x0 , i← 1 .

At outer iteration i :

1. Set smoothing parameters. µ1
i ←

t · (f(xi,0)− fslb)

D̄
, µ2

i ←
tε′ · (f(xi,0)− fslb)

D̄
.

2. Initialize inner iteration. Ki ← +∞ , j ← 0

3. Run inner iterations. At inner iteration j:

(3a.) If
f(xi,j)− fslb

f(xi,0)− fslb
> B , then

xi,j+1 ← AGM(fµ1
i
(·), xi,0, j + 1) ,

yi,j+1 ← AGM(fµ2
i
(·), xi,0, j + 1) ,

j ← j + 1, and Goto (3a.)

Else Ki ← j, xi+1,0 ← xi,j , i← i+ 1, and Goto Step 1.

Restarting for accelerated gradient methods for strongly convex functions has been studied in [17]
and [26]. To the best of our knowledge, restarting of accelerated methods in the absence of strong
convexity was first used in Renegar [20], and Algorithm 4 exploits this and other ideas from [20] and
[21] as well. We have the following computational guarantee associated with Algorithm 4.

Theorem 3.3. (Complexity Bound for Parametric Smoothing/Restarting Method (Al-
gorithm 4) for Non-smooth Optimization) Suppose that fµ(·) satisfies the smoothing condi-
tions (16) and (17). Within a total number of computed iterates that does not exceed

23G
√
ĀD̄

(
1 + 1.42 ln

(
1 +

f(x0)− f∗

f∗ − fslb

)
+ 2

(
1

ε′

))
,

Algorithm 4 will compute an iterate yi,j for which

f(yi,j)− f∗

f∗ − fslb
≤ ε′ .

Similar to Theorem 3.1, the dependence in Theorem 3.3 on the quality of the initial iterate is
logarithmic in the initial optimality gap f(x0) − f∗. Also, the factor involving 1/ε′ in Theorem
3.3 is independent of the quality of the initial iterate, unlike that of the standard bound for the
smoothing method given in (18). We will prove Theorem 3.3 by first establishing several proposi-
tions. Throughout, for notational convenience, we will work with two constants B and t that must
be chosen to satisfy

B > 0 , t > 0 , B −B2 ≥ 2t , and B ≥ 4t ,

and whose specific values are set to B = 1/2 and t = 1/8 in Algorithm 4.
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The following proposition applies to the generic setting of the Accelerated Gradient Method applied
to the smoothed function fµ(·). Recall that Lµ denotes the Lipschitz constant of the gradient of
fµ(·) on Q.

Proposition 3.9. Given the smoothing parameter µ > 0 and a given constant β > 0, define

Y :=
⌈
G
√

2β − 1
⌉
. Let xk ← AGM(fµ(·), x̂0, k) denote the kth iterate of the Accelerated Gradient

Method applied to the function fµ(·) with starting point x̂0. For k ≥ Y it holds that:

f(xk)− f∗ ≤
Lµ
β

(f(x̂0)− fslb)2 + µD̄ . (19)

Proof: Note that for any x ∈ Opt it holds that fµ(x) ≤ f∗, whereby Opt ⊂ S := {x ∈ Q : fµ(x) ≤
f∗}. It then follows from Theorem 2.2 applied to the function fµ(·) and using δ = f∗ that for any
k ≥ Y we have:

fµ(xk)− f∗ ≤ 2Lµ
(Y+1)2 Dist(x̂0, S)2

≤ 2Lµ
(Y+1)2 Dist(x̂0,Opt)2 ≤ 2Lµ

(Y+1)2G
2
(
f(x̂0)− fslb

)2 ≤ Lµ
β

(
f(x̂0)− fslb

)2
,

where the second inequality uses the fact that Opt ⊂ S, the third inequality uses the definition of
G, and the last inequality uses the value of Y .

Note from (16) that f(x) ≤ fµ(x) + µD̄, whereby:

f(xk)− f∗ ≤ fµ(xk)− f∗ + µD̄ ≤ Lµ
β

(
f(x̂0)− fslb

)2
+ µD̄ .

We now apply Proposition 3.9 to the setting of the Parametric Smoothing/Restarting Method
(Algorithm 4).

Proposition 3.10. Let i be the index of an outer iteration of Algorithm 4. Define T :=
⌈
G
√

2ĀD̄
t − 1

⌉
.

If k ≥ T and xi,k exists, then it holds that:

f(xi,k)− f∗ ≤ 2t(f(xi,0)− fslb) .

Proof: The proof follows by applying Proposition 3.9 with µ = µ1
i =

t·(f(xi,0)−fslb)

D̄
, β = ĀD̄

t2
,

Y = T , and x̂0 = xi,0. It then follows that

f(xi,k)− f∗ ≤
Lµ
β

(
f(x̂0)− fslb

)2
+ µD̄ ≤ Ā

µβ

(
f(x̂0)− fslb

)2
+ µD̄ = 2t(f(xi,0)− fslb) ,

where the second inequality uses Lµ ≤ Ā/µ from (17) and the last equality uses the values of µ
and β.

Proposition 3.11. Let i be the index of an outer iteration of Algorithm 4. Define U :=
⌈
G
√

2ĀD̄
ε′t − 1

⌉
.

If k ≥ U and yi,k exists, then it holds that:

f(yi,k)− f∗ ≤ 2ε′t(f(xi,0)− fslb) .
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Proof: The proof follows by applying Proposition 3.9 with µ = µ2
i =

tε′·(f(xi,0)−fslb)

D̄
, β = ĀD̄

t2(ε′)2 ,

Y = U , and x̂0 = xi,0. It then follows that

f(yi,k)− f∗ ≤
Lµ
β

(
f(x̂0)− fslb

)2
+ µD̄ ≤ Ā

µβ

(
f(x̂0)− fslb

)2
+ µD̄ = 2tε′(f(xi,0)− fslb) ,

where the second inequality uses Lµ ≤ Ā/µ from (17) and the final equality derives from substituting
in the values of µ and β.

The next three propositions pertain to Algorithm 4 as well as to a more general setting which will
be used in Section 4 to prove computational guarantees for algorithms when f(·) is smooth. The
more general setting is described in the body of the following proposition.

Proposition 3.12. Let B, v > 0 be constants satisfying B − B2 ≥ v, B ≥ 2v. Consider an
algorithm with outer and inner iterations indexed with counters i and j, respectively (such as
Algorithm 4), with initial iterate x0 that is used to set x1,0 = y1,0 ← x0 in simultaneous running
of the Accelerated Gradient Method using the same indexing notation as in Algorithm 4, and where

xi+1,0 = yi+1,0 ← xi,Ki where Ki ← j denotes the first index j for which
f(xi,j)−fslb

f(xi,0)−fslb
≤ B. Suppose

that there are nonnegative sequences {Ji} and {Ii} indexed over the outer iteration counter i such
that the following conditions are satisfied:

(i) for all k ≥ Ji it holds that f(xi,k)− f∗ ≤ v (f(xi,0)− fslb), and

(ii) for all k ≥ Ii it holds that f(yi,k)− f∗ ≤ vε′ (f(xi,0)− fslb).

Let p denote the number of outer iterations i for which Ki is finite. Then

p ≤

 ln
(

1 + f(x0)−f∗
f∗−fslb

)
ln(1/B)

 .

Furthermore, if i ≥ 1 and i ≤ p− 1, then Ki ≤ Ji.

Proof: If p = 0 the results follow trivially, so let us suppose that p ≥ 1, whereby Kp is finite and
xp+1,0 exists. It then follows that f∗ − fslb ≤ f(xp+1,0) − fslb ≤ Bp(f(x1,0) − fslb), and taking
logarithms yields the proof of the bound on p.

Suppose additionally that i ≥ 1 and i ≤ p− 1. Let us assume that Ki ≥ Ji + 1, from which we will
derive a contradiction. We have

f(xi,Ki−1)− f∗ ≤ v(f(xi,0)− fslb) ≤ (B −B2)(f(xi,0)− fslb) ,

where the first inequality uses condition (i) and the second inequality uses B−B2 ≥ v. Also, i+2 ≤
p+ 1, whereby xi+2,0 exists and therefore satisfies f∗ − fslb ≤ f(xi+2,0)− fslb ≤ B2(f(xi,0)− fslb).
Combining this inequality with that above yields f(xi,Ki−1) − f∗ ≤ B(f(xi,0) − fslb) − f∗ + fslb,
which rearranges to yield:

f(xi,Ki−1)− fslb

f(xi,0)− fslb
≤ B ,

and which contradicts the definition of Ki. Therefore Ki ≤ Ji.
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Proposition 3.13. Under the same setting, notation, and conditions (i) and (ii) of Proposition
3.12, let i be the index of an outer iteration. If j ≥ Ji and xi,j+1 exists, then:

f(xi,0)− fslb

f∗ − fslb
≤ 1

B − v
.

Furthermore, if also j ≥ max{Ji, Ii}, then

f(yi,j)− f∗

f∗ − fslb
≤ ε′ .

Proof: Since j ≥ Ji it follows from condition (i) that

f(xi,j)− f∗ ≤ v(f(xi,0)− fslb) ,

and also since xi,j+1 exists then Ki ≥ j + 1, whereby:

f(xi,j)− fslb

f(xi,0)− fslb
> B .

It then follows from these two inequalities that

f(xi,0)− fslb

f∗ − fslb
=

1
f(xi,j)−fslb

f(xi,0)−fslb
− f(xi,j)−f∗

f(xi,0)−fslb

≤ 1

B − v
. (20)

If also j ≥ Ii, then we have from condition (ii) that

f(yi,j)− f∗ ≤ vε′(f(xi,0)− fslb) ≤ vε′

B − v
(f∗ − fslb) ≤ (f∗ − fslb)ε′ ,

where the first inequality is from condition (ii), the second inequality uses (20), and the third
inequality uses B ≥ 2v.

Proposition 3.14. Under the same setting, notation, and conditions (i) and (ii) of Proposition
3.12, let N̂ count the total number of inner iterations prior to and including the first iteration for
which yi,j is an ε′-relative solution (2). Then

either (i) N̂ ≤
p+1∑
i=1

Ji + Ip+1 , or (ii) N̂ ≤
p+1∑
i=1

Ji + Ip + Ip+1 and Kp ≥ Jp + 1 . (21)

Proof: First consider the case when p = 0. Then K1 = +∞ and therefore with i = 1 we have xi,j+1

exists for j = max{J1, I1}, whereby from Proposition 3.13 it holds that y1,j satisfies (2). In this

case N̂ ≤ j = max{J1, I1} ≤ J1 + I1 =
∑p+1

i=1 Ji + Ip+1 and therefore (i) of (21) is satisfied.

Next consider the case where p ≥ 1 and Kp ≥ max{Jp, Ip}+1. Let i be the index of an outer iterate.
If i ≤ p − 1 it follows from Proposition 3.12 that Ki ≤ Ji. For i = p it holds for this case that
Kp ≥ max{Jp, Ip} + 1, and it follows from Proposition 3.13 that xp,j+1 exists for j = max{Jp, Ip}
and therefore yp,j satisfies (2). In this case N̂ ≤

∑p−1
i=1 Ki+max{Jp, Ip} ≤

∑p−1
i=1 Ji+max{Jp, Ip} ≤∑p

i=1 Ji + Ip and Kp ≥ Jp + 1 whereby (ii) of (21) is satisfied.
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Next consider the case where p ≥ 1 and Kp ≤ max{Jp, Ip} and also Kp ≤ Jp. Let i be the index of
an outer iterate. If i ≤ p − 1 it follows from Proposition 3.12 that Ki ≤ Ji. Since Kp+1 = +∞ it
follows that xp+1,j+1 exists for j = max{Jp+1, Ip+1}, whereby from Proposition 3.13 we have yp+1,j

satisfies (2). And since Kp ≤ Jp in this case, it follows that N̂ ≤
∑p−1

i=1 Ki+Jp+max{Jp+1, Ip+1} ≤∑p+1
i=1 Ji + Ip+1, and therefore (i) of (21) is satisfied.

The last case is where p ≥ 1 and Kp ≤ max{Jp, Ip} and also Kp ≥ Jp + 1. Then just as in the third

case above, we arrive at N̂ ≤
∑p−1

i=1 Ki + max{Jp, Ip} + max{Jp+1, Ip+1} ≤
∑p+1

i=1 Ji + Ip + Ip+1,
and thus (ii) of (21) is satisfied, thereby proving (21).

Proof of Theorem 3.3: Algorithm 4 satisfies the setting of Proposition 3.12, and it follows
from Propositions 3.10 and 3.11 that Algorithm 4 satisfies conditions (i) and (ii) of Proposition
3.12 by letting v = 2t, Ji = T , and Ii = U for all outer iterations i. Therefore the conclusions
of Propositions 3.12, 3.13, and 3.14 all hold true. Let N denote the total number of iterates of
Algorithm 4 computed prior to and including the first iterate yi,j that is an ε′-relative solution
(2). Since two iterates are computed at each iteration, we have N = 2N̂ (where N̂ is defined in
Proposition 3.14) and it follows from Proposition 3.14 that N = 2N̂ ≤ 2

∑p+1
i=1 Ji + 2Ip + 2Ip+1,

since the right-side of this inequality dominates both bounds (i) and (ii) of (21). Substituting in
the values of T and U and the bound on p from Proposition 3.12 we obtain:

N ≤ 2(p+ 1)T + 4U ≤ 2

1 +
ln

(
1+

f(x0)−f∗
f∗−fslb

)
ln(1/B)

⌈G√2ĀD̄

t
− 1

⌉
+ 4

⌈
G
√

2ĀD̄

ε′t
− 1

⌉

≤ G
√
ĀD̄

(
22.63 + 32.65 ln

(
1 + f(x0)−f∗

f∗−fslb

)
+ 45.26

(
1

ε′

))
,

where the third inequality follows from substituting in the values B = 1
2 and t = 1

8 , which then
rounds up to the desired bound in the theorem.

4 Computational Guarantees when f(·) is Smooth

In this section we study the computational complexity of solving (1) in the case when f(·) is convex
and differentiable on an open set containing Q. We assume that ∇f(·) is Lipschitz on Q as defined
in (8).

Let us first consider directly applying the Accelerated Gradient Method (Algorithm 2) to solve (1),
and let us apply Theorem 2.2. Let ε′ > 0 denote the relative accuracy, and note again that an
ε′-relative solution of (1) corresponds to an absolute ε-solution for ε := ε′ · (f∗ − fslb). Let x0 ∈ Q
be the initial point. It then follows from Theorem 2.2 using δ = f∗ (whereby Sδ = {x ∈ Q : f(x) ≤
f∗} = Opt) that if

N ≥
√

2
√
LDist(x0,Opt)√
ε′
√
f∗ − fslb

− 1 , (22)

then
f(xN )− f∗

f∗ − fslb
≤ ε′ .
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Herein we will derive a new computational guarantee for a version of the Accelerated Gradient
Method that can improve on (22) in many cases. Our new version of the Accelerated Gradient
Method periodically restarts the method with an appropriate rule for deciding when to do the
restarts, and is presented in Algorithm 5. At the ith outer iteration of Algorithm 5 the algorithm
starts the Accelerated Gradient Method at the point xi,0 for optimizing f(·) on Q. The outer
iteration i runs until the ratio test in Step (2a.) fails, at which point the current point xi,j becomes
the starting point of the next outer iteration, namely xi+1,0 ← xi,j . The counter Ki records the
number of inner iterations computed in outer iteration i. Similar to the notation in Algorithm 4,
the notation “xi,j ← AGM(f(·), xi,0, j)” in Algorithm 5 denotes assigning to xi,j the jth iterate of
the Accelerated Gradient Method applied to the optimization problem (1) with objective function
f(·) using the initial point xi,0 ∈ Q.

Algorithm 5 Accelerated Gradient Method with Simple Restarting

Initialize. Initialize with x0 ∈ Q .
Define B := 0.5
Set x1,0 ← x0 , i← 1 .

At outer iteration i :
1. Initialize inner iteration. Ki ← +∞, j ← 0

2. Run inner iterations. At inner iteration j:

(2a.) If
f(xi,j)− fslb

f(xi,0)− fslb
> B , then

xi,j+1 ← AGM(f(·), xi,0, j + 1) ,

j ← j + 1, and Goto (2a.).

Else Ki ← j, xi+1,0 ← xi,j , i← i+ 1, and Goto step 1.

We have the following computational guarantee associated with Algorithm 5.

Theorem 4.1. (Complexity Bound for Accelerated Gradient Method with Simple Restart-
ing) Within a total number of computed iterates that does not exceed

G
√
L

(
10
√
f(x0)− fslb + 12

[√
f∗ − fslb√

ε′

])
,

the Accelerated Gradient Method with Simple Restarting (Algorithm 5) will compute an iterate xi,j
for which

f(xi,j)− f∗

f∗ − fslb
≤ ε′ .

The computational guarantee in Theorem 4.1 can itself be bounded by:

G
√
L

(
10
√
f∗ − fslb + 10

√
L
2 Dist(x0,Opt) + 12

[√
f∗ − fslb√

ε′

])
, (23)
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which follows from the chain of inequalities:√
f(x0)− fslb =

√
(f∗ − fslb) + (f(x0)− f∗)

≤
√

(f∗ − fslb) + L
2 Dist(x0,Opt)2 ≤

√
(f∗ − fslb) +

√
L
2 Dist(x0,Opt) .

Comparing (23) with the standard bound for the Accelerated Gradient Method given in (22), we
see that the factor involving 1/

√
ε′ in (23) is independent of Dist(x0,Opt), unlike the standard

bound (22).

Towards the proof of Theorem 4.1, for notational convenience we will work with two constants B
and v that must be chosen to satisfy

B > 0 , v > 0 , B −B2 ≥ v , and B ≥ 2v , (24)

and whose specific values are set to B = 0.5 in Algorithm 4, and v = 0.25 .

Proposition 4.1. Let i be the index of an outer iteration of Algorithm 5. Define

Ji :=

⌈
G

√
2L(f(xi,0)−fslb)

v − 1

⌉
. If k ≥ Ji and xi,k exists, then it holds that:

f(xi,k)− f∗ ≤ v(f(xi,0)− fslb) . (25)

Proof: It follows from Theorem 2.2 applied to the function f(·) and using δ = f∗ that for any
k ≥ Ji we have:

f(xi,k)− f∗ ≤
2L

(Ji + 1)2
Dist(xi,0,Opt)2 ≤ 2L

(Ji + 1)2
G2 (f(xi,0)− fslb)2 ≤ v (f(xi,0)− fslb) ,

where the second inequality uses the definition of G, and the last inequality uses the value of
Ji.

Proposition 4.2. Let i be the index of an outer iteration of Algorithm 5. Define

Ii :=

⌈
G

√
2L(f(xi,0)−fslb)

vε′ − 1

⌉
. If k ≥ Ii and xi,k exists, then it holds that:

f(xi,k)− f∗ ≤ vε′(f(xi,0)− fslb) .

Proof: The proof follows using identical logic as in Proposition 4.1.

Proof of Theorem 4.1: Even though Algorithm 5 does not simultaneously run two versions of the
Accelerated Gradient Method, we can still view Algorithm 5 as an instance of the general algorithm
setting of Proposition 3.12 by simply defining yi,j := xi,j for all i, j. It follows from Propositions
4.1 and 4.2 that Algorithm 5 satisfies conditions (i) and (ii) of Proposition 3.12, and therefore
Propositions 3.12, 3.13, and 3.14 hold for Algorithm 5. Substituting in the values of Ji and using

24



the fact that f(xi,0)− fslb ≤ Bi−1(f(x1,0)− fslb) for all iteration counters i, we obtain:

p+1∑
i=1

Ji ≤
p+1∑
i=1

G

√
2L(f(xi,0)− fslb)

v

≤

(
p∑
i=0

B
i
2

)
G

√
2L(f(x1,0)− fslb)

v

<

( ∞∑
i=0

B
i
2

)
G

√
2L(f(x1,0)− fslb)

v
=

G

1−
√
B

√
2L(f(x0)− fslb)

v
.

Next observe that Kp+1 = ∞ ≥ Jp, whereby it follows from Proposition 3.13 with i = p + 1 that
f(xp+1,0)− fslb ≤ 1

B−v (f∗ − fslb), and therefore it holds that:

Ip+1 ≤ G
√

2L(f(xp+1,0)− fslb)

vε′
≤ G

√
2L(f∗ − fslb)

(B − v)vε′
.

Also, if Kp ≥ Jp + 1, then similarly applying Proposition 3.13 with i = p using the logic above

implies that Ip ≤ G
√

2L(f∗−fslb)
(B−v)vε′ .

Let N denote the total number of iterates of Algorithm 5 computed prior to and including the first
iterate xi,j that is an ε′-relative solution (2). Then N = N̂ where N̂ is defined in Proposition 3.14.
In either case (i) or (ii) of (21), it follows from Proposition 3.14 that:

N = N̂ ≤
p+1∑
i=1

Ji + Ip+1 +G

√
2L(f∗ − fslb)

(B − v)vε′

≤ G

1−
√
B

√
2L(f(x0)− fslb)

v
+ 2G

√
2L(f∗ − fslb)

(B − v)vε′

≤ G
√
L

(
9.66

√
f(x0)− fslb +

11.32
√
f∗ − fslb√
ε′

)
,

where the third inequality follows from substituting in the values B = 1
2 and v = 1

4 , which then
rounds up to the bound stated in the theorem.

It turns out that we can further improve the computational guarantee of Theorem 4.1 by further
modifying the Accelerated Gradient Method with Simple Restarting (Algorithm 5), if we know and
can easily work with an adjoint representation of f(·) to do “extra smoothing.” Let us see how this
can be done. We will assume that f(·) has the representation:

f(x) = max
λ∈P
{λTAx− d(λ)} , (26)

where P is a convex set and d(·) is a strongly convex function on P with strong convexity parameter
σ and for which minλ∈P d(λ) ≥ 0. (See [14] for properties of strongly convex functions.) It then
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follows that f(·) is a globally smooth convex function with Lipschitz constant at most L := ‖A‖2/σ,
see Nesterov [15]. We presume further that A, d(·), and P are given and that the optimization
problem in (26) is simple to solve. That being the case, for a given x ∈ Q, if λ̃ solves the optimization
problem (26), then it holds that f(x) = λ̃TAx− d(λ̃) and ∇f(x) = AT λ̃ .

In a similar spirit as the smoothing technique employed in Section 3.3, we will consider paramet-
rically working with a modification fµ(·) of f(·) that is more smooth than f(·) by increasing the
weight on the the strongly convex function d(·) in (26). For any µ ≥ 0 define the function fµ(·)
by:

fµ(x) = max
λ∈P
{λTAx− (1 + µ)d(λ)} . (27)

If P is bounded, then D̄ := maxλ∈P {d(λ)} is finite, and the above smoothing technique has the
following two properties:

(i) fµ(·) is not far from f(·),

f(x)− D̄µ ≤ fµ(x) ≤ f(x) for all x ∈ Q , and (28)

(ii) fµ(·) has Lipschitz continuous gradient on Q with Lipschitz constant Lµ satisfying

Lµ ≤ L/(1 + µ) . (29)

This setting is very similar to the properties we have for smoothing of a non-smooth function f(·)
in Section 3.3, and the only difference is that the Lipschitz constant Lµ here is bounded above by
L/(1 + µ) instead of by Ā/µ as was the case in (17).

Let ε′ > 0 be given. As before, we aspire to compute an ε′-relative solution of (1) as defined in
(2). We will use and analyze the Parametric Smoothing/Rescaling Method (Algorithm 4) but with
fµ(·) defined by (27) and hence satisfying (28) and (29). We have the following computational
guarantee associated with Algorithm 4 applied to the case when f(·) is smooth and fµ(·) is given
by (27).

Theorem 4.2. (Complexity Bound for Parametric Smoothing/Restarting Method (Al-
gorithm 4) for Smooth Optimization) Suppose that fµ(·) is given by (27) and hence satisfies
(28) and (29). Within a total number of computed iterates that does not exceed

G
√
LD̄

(
22.7 + 32.7 ln

(
1 +

f(x0)− f∗

f∗ − fslb

)
+ 32

√
f∗ − fslb

ε′

)
,

Algorithm 4 will compute an iterate yi,j for which

f(yi,j)− f∗

f∗ − fslb
≤ ε′ .

The dependence in Theorem 4.2 on the quality of the initial point is logarithmic in the optimality
gap f(x0) − f∗, while it is the square root of the optimality gap in Theorem 4.1. We will prove
Theorem 4.2 by first proving two propositions. For notational convenience we will work with two
constants B and t, whose specific values are B = 1

2 and t = 1
8 .
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Proposition 4.3. Let i be the index of an outer iteration of Algorithm 4. Define T :=

⌈
G
√

2LD̄
t2
− 1

⌉
.

If k ≥ T and xi,k exists, then:

f(xi,k)− f∗ ≤ 2t(f(xi,0)− fslb) .

Proof: The proof follows by applying Proposition 3.9 with µ = µ1
i =

t·(f(xi,0)−fslb)

D̄
, β = LD̄

t2
,

Y = T , and x̂0 = xi,0. It then follows that

f(xi,k)− f∗ ≤
Lµ
β

(
f(x̂0)− fslb

)2
+ µD̄ ≤ L

µβ
(f(xi,0)− fslb)2 + µD̄ = 2t(f(xi,0)− fslb) ,

where the second inequality uses Lµ ≤ L/(1 + µ) ≤ L/µ from (29) and the final equality derives
from substituting in the values of µ and β.

Proposition 4.4. Let i be the index of an outer iteration of Algorithm 4. Define

Ii :=

⌈
G

√
2L(f(xi,0)−fslb)

tε′ − 1

⌉
. If k ≥ Ii and yi,k exists, then:

f(yi,k)− f∗ ≤ 2tε′(f(xi,0)− fslb) .

Proof: The proof follows by applying Proposition 3.9 with µ = µ2
i =

tε′·(f(xi,0)−fslb)

D̄
, β =

L(f(xi,0)−fslb)
tε′ , Y = Ii, and x̂0 = xi,0. It then follows that

f(yi,k)− f∗ ≤
Lµ
β

(
f(x̂0)− fslb

)2
+ µD̄ ≤ L

β
(f(xi,0)− fslb)2 + µD̄ = 2tε′(f(xi,0)− fslb) ,

where the second inequality uses Lµ ≤ L/(1 +µ) ≤ L from (29) and the final equality derives from
substituting in the values of µ and β.

Proof of Theorem 4.2: Algorithm 4 satisfies the setting of Proposition 3.12, and it follows from
Propositions 4.3 and 4.4 that Algorithm 4 satisfies conditions (i) and (ii) of Proposition 3.12 by
letting v = 2t and Ji = T for all outer iterations i. Therefore the conclusions of Propositions 3.12,
3.13, and 3.14 all hold true. Let N denote the total number of iterates of Algorithm 4 computed
prior to and including the first iterate yi,j that is an ε′-relative solution (2). Since two iterates
are computed at each iteration, we have N = 2N̂ , where N̂ is defined in Proposition 3.14 and is
bounded by either (i) or (ii) of (21).

Note that Kp+1 = ∞ ≥ T = Ji, whereby it follows from Proposition 3.13 that f(xp+1,0) − fslb ≤
1

B−2t(f
∗ − fslb), and therefore

Ip+1 ≤ G
√

2L(f(xp+1,0)− fslb)

tε′
≤ G

√
2L(f∗ − fslb)

(B − 2t)tε′
.

Similarly, if Kp ≥ T + 1 = Ji + 1, similar logic demonstrates that Ip ≤ G
√

2L(f∗−fslb)
(B−2t)tε′ . Therefore,

in either case (i) or (ii) of (21) it holds that:
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N = 2N̂ ≤ 2
∑p+1

i=1 Ji + 2Ip+1 + 2G
√

2L(f∗−fslb)
(B−2t)tε′

≤ 2(p+ 1)

⌈
G
√

2LD̄
t2
− 1

⌉
+ 2Ip+1 + 2G

√
2L(f∗−fslb)
(B−2t)tε′

≤ 2

1 +
ln

(
1+

f(x0)−f∗
f∗−fslb

)
ln(1/B)

G
√

2LD̄
t2

+ 4G
√

2L(f∗−fslb)
(B−2t)tε′

≤ G
√
LD̄

(
22.7 + 32.7 ln

(
1 + f(x0)−f∗

f∗−fslb

)
+ 32

√
f∗−fslb

ε′

)
,

where the third inequality follows from substituting in the values B = 1
2 and t = 1

8 , which then
rounds up to the desired bound in the theorem.
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A Appendix

A.1 Growth Constant G and the Modulus of Weak Sharp Minima

The optimal solution set Opt of (1) is called a set of weak sharp minima with modulus α if it holds
that:

f(x) ≥ f∗ + α ·Dist(x,Opt) for all x ∈ Q . (30)

This concept was first developed by Polyak [18] when Opt is a singleton, and generalized by Burke
and Ferris [6] to include the possibility of multiple optima. The modulus of weak sharp minima has
been a useful tool in sensitivity analysis [8, 12], convergence analysis for certain problem classes
[7, 6], linear regularity and error bounds [3, 4, 5], perturbation properties of nonlinear optimization
[24, 25, 2], as well as in the finite termination of certain algorithms [19], [9], and [7].

Comparing (30) to (5), we see that the modulus α of weak sharp minima is a close cousin of the
growth constant G. Indeed, if we were to loosen the restriction that fslb be a strict lower bound
and instead allow it to take the value fslb = f∗ in the definition of G in (3), then we would obtain
precisely that G = α−1. However, the notion of fslb being a strict lower bound is fundamental for
the results herein.

Note that (30) specifies the exact local growth of f(·) away from the set of optimal solutions.
And although as defined in (30) the weak sharp minima is a global property, due to convexity it is
essentially a local property and indeed its usefulness derives from the local nature of the weak sharp
minima in a neighborhood of the optimal solution set. This is in contrast to the growth constant
G as defined in (3), which by its nature is a global property as illustrated in the constructions in
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Figure 1. Last of all we point out that while one can easily have α = 0 for weak sharp minima
(just let f(x) be a differentiable convex function whose optimum is attained in the relative interior
of Q), Theorem 1.1 shows that G is finite for all reasonably-behaved convex functions.

A.2 Proof of Theorem 1.1

Proof of Theorem 1.1: Let us fix an optimal solution x∗ ∈ Opt, and define δ := maxv∈Eε ‖v−x∗‖
and define Ḡ := max{ δε ,

δ
f∗−fslb

}. We will prove that for any x ∈ Q, the following inequality
holds:

Dist (x,Opt) ≤ Ḡ (f(x)− fslb) , (31)

which then implies that G ≤ Ḡ is finite. We consider two cases as follows:

Case (i): x ∈ Optε. In this case we have x = v + s where v ∈ Eε and s ∈ S. Since s is in the
recession cone of Optε it holds that x∗ + s ∈ Opt, whereby

Dist(x,Opt) ≤ ‖x− (x∗ + s)‖ = ‖v − x∗‖ ≤ δ , (32)

and therefore

f(x)− fslb ≥ f∗ − fslb ≥
(f∗ − fslb)(Dist(x,Opt))

δ
≥ Ḡ−1Dist(x,Opt) ,

which shows (31) in this case.

Case (ii): x /∈ Optε. Let x1 be the projection of x onto Opt and let x2 be the point on the line
segment from x1 to x that satisfies f(x2) = f∗ + ε. (Existence of x2 is guaranteed by continuity of
f(·).) Then

f(x)−fslb ≥ f(x)−f∗ ≥ (f(x2)−f∗) ‖x− x
1‖

‖x2 − x1‖
≥ ε‖x− x1‖

δ
=
εDist(x,Opt)

δ
≥ Ḡ−1Dist(x,Opt) ,

where the second inequality is from the convexity of f(·) which implies the chordal inequality
f(x)−f∗
‖x−x1‖ ≥

f(x2)−f∗
‖x2−x1‖ , and the third inequality uses ‖x2 − x1‖ = Dist(x2,Opt) ≤ δ (from (32)).

The last equality above uses the fact that Dist(x,Opt) = ‖x − x1‖. This proves (31) in this
case.
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