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We study the nonlinear dispersive characteristics in β-Fermi-Pasta-Ulam (FPU) chains in both thermal
equilibrium and nonequilibrium steady state. By applying a multiple scale analysis to the FPU chain, we analyze
the contribution of the trivial and nontrivial resonance to the renormalization of the dispersion relation. Our results
show that the contribution of the nontrivial resonance remains significant to the renormalization, in particular, in
strongly nonlinear regimes. We contrast our results with the dispersion relations obtained from the Zwanzig-Mori
formalism and random phase approximation to further illustrate the role of resonances. Surprisingly, these
theoretical dispersion relations can be generalized to describe dispersive characteristics well at the nonequilibrium
steady state of the FPU chain with driving-damping in real space. Through numerical simulation, we confirm
that the theoretical renormalized dispersion relations are valid for a wide range of nonlinearities in thermal
equilibrium as well as in nonequilibrium steady state. We further show that the dispersive characteristics persist
in nonequilibrium steady state driven-damped in Fourier space.
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I. INTRODUCTION

Dispersive dynamics play an important role in character-
izing many physical systems, e.g., atmosphere and ocean
dynamics [1–4]. For linear dispersive waves, the dispersion
relation, relating the wave frequency to the wave number,
can be naturally defined [5–7]. However, in physical sciences
and practical engineering, many systems are nonlinear and
open to environment, i.e., they exchange energy or matter
with their surroundings, such as waves in oceans [8–11]
and in the atmosphere [12–14]. For these driven-damped
nonlinear systems, it is natural to ask whether there exists a
dispersion relation that can capture oscillation features of these
waves. In this work, we focus on the β-Fermi-Pasta-Ulam
(FPU) chain to investigate this question, in particular, that
of how the linear dispersion relation becomes renormalized
for nonlinearly interacting waves in both equilibrium and
nonequilibrium.

The FPU lattice problem was first introduced to address
the issues of energy equipartition and ergodicity in statistical
physics [15]. The rich dynamics of the FPU system has moti-
vated various mathematical and physical theories, such as the
Kol’mogorov–Arnol’d–Moser theorem and soliton theories
[15–17]. It was found that when the total energy exceeds
the so-called stochastic threshold, the FPU system becomes
chaotic and eventually there is an energy equipartition in the
system [18]. However, despite chaotic behaviors in thermal
equilibrium, the β-FPU chain can still exhibit certain regular
structures, such as the effective dispersive characteristics
[19,20]. The wave-number–frequency spectral (WFS) analysis
[21–23] is applied to confirm the existence of the dispersion
relation of these turbulent waves. The dispersion relation
obtained from the WFS method, referred to as the renormalized
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dispersion relation, can deviate substantially from the linear
dispersion. The renormalized dispersion relation was early
numerically observed in Ref. [24] for the FPU chain in thermal
equilibrium. Later, the dispersion relations were derived in
Refs. [21,25] in the framework of the Zwanzig-Mori (ZM)
projection [26,27]. It is demonstrated that the dispersive
feature of those waves in thermal equilibrium can be induced
by noninear wave-wave interactions, instead of inherited from
their linear dispersive structures [19,21].

The study of resonance structures is one of the most
important problems in wave turbulence theory [28–31]. In
thermal equilibrium of the FPU chain, it is found that most
of resonant interactions are trivial [19]. In our work, we
demonstrate that both trivial and nontrivial quartet resonances
play an important role in the renormalization of the dispersion
relation by using a multiscale analysis [32,33]. We numerically
examine the validity of predictions of the renormalized
dispersion relation for a wide range of nonlinearities. Through
the numerical simulation, we confirm our results regarding
resonance structures in the renormalization of dispersion
relations.

For the FPU system, the validity of the theoretical disper-
sion relations has been so far only examined in thermal equi-
librium. As mentioned above, waves are often driven-damped
systems. In this work, we further address two important
questions: first, whether the dispersive characteristics of wave
turbulence as manifested by an effective dispersive relation
are still present for the FPU chain at a nonequilibrium steady
state; second, if it exists, whether the dispersion relationship
can be predicted theoretically for different scenarios of driving
and dissipation.

We will answer the above questions in two settings for
the FPU chain, one with driving-damping in real space and
another with driving-damping in Fourier space. In the case of
driving-damping in real space, we consider a β-FPU chain
in contact with two Langevin heat baths interacting with
particles at two ends [34,35]. We show that, for a wide
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range of driving strengths, there exists a dispersion relation
obtained through the measurement using the WFS method.
Our results further show that the measured dispersion relation
is in excellent agreement with theoretical predictions of the
renormalized dispersion relation. As will be seen below, the
renormalization arises from the nonlinear wave interactions
and is not a consequence of a frequency shift induced by the
driving-damping as for a typical driven-damped linear system.

For the case of driving-damping in Fourier space, we con-
sider a FPU chain driven at low k modes in the injection region
and damped at high k modes in the dissipation region. For the
weakly damped case, we find that our theoretical prediction
of the renormalized dispersion relation can well capture the
dispersive characteristics. However, for the strongly-damped
case, the width of the dispersion spectrum becomes rather
broad and theoretical predictions are no longer consistent with
the measured dispersion relation given by the WFS method.
However, these predictions are in qualitatively good agreement
with the dispersion relation measured by the center of the
dispersive band. For the broad band of spectrum, it seems that
the dispersive characteristics may be better described by the
center than by the peak of the band at a fixed k for the strongly
damped case.

In this work, we have focused only on the renormalized
dispersive behaviors of waves in the FPU system. However, we
believe that the scenario of the renormalized dispersion relation
may be extended to many other dispersive systems with general
nonlinear and external interactions in both equilibrium and a
driven-damped case.

This paper is organized as follows. In Sec. II, we consider
the β-FPU chain in thermal equilibrium. We demonstrate
that both trivial and nontrivial resonances contribute to the
renormalization of the dispersion relation through a multiscale
analysis. In Sec. III, we numerically study the dispersive
characteristics of the FPU system in contact with two heat
baths at the two ends. In Sec. IV, we investigate the dispersion
relation for the k-space driven-damped FPU chain in the
statistical steady state. In Sec. V, we present our conclusions
and discussions. We relegate some technical points to Appen-
dices. In particular, we present in Appendix A a derivation
of the renormalized dispersion relation using the effective
Lagrangian method.

II. MULTISCALE ANALYSIS

We begin our investigation of the renormalized dispersion
relation of the β-FPU chain by a multiple scale analysis. We
consider the FPU chain of N particles with periodic boundary
conditions. The system can be described by the Hamiltonian

H =
N∑

j=1

1

2
p2

j + 1

2
(qj − qj+1)2 + β

4
(qj − qj+1)4, (1)

where pj and qj denote the momentum and the displacement of
the j th particle, respectively, and the parameter β controls the
strength of nonlinearity. In the Fourier space, the Hamiltonian
can be written as

H =
N−1∑
k=0

1

2
|Pk|2 + 1

2

(
ω

(0)
k

)2|Qk|2 + V (Q), (2)

where Pk , Qk , and V (Q) are the Fourier transforms of pj , qj ,
and the quartic term in Hamiltonian (1), respectively. Here,
ω

(0)
k is the linear dispersion relation given by

ω
(0)
k = 2 sin

(
kπ

N

)
. (3)

Note that the quantities appearing in above equations are
all dimensionless. The corresponding dynamical equation to
Hamiltonian (1) is

q̈j − (qj+1 − 2qj + qj−1)

−β[(qj+1 − qj )3 − (qj − qj−1)3] = 0, (4)

where the overdot stands for the derivative with respect to
time. Without loss of generality, in what follows, the zeroth
mode of the displacement Q0 is set to zero, i.e.,

∑N
j=1 qj = 0.

The zeroth mode of the momentum P0 is also set to zero due
to the fact that the total momentum can be set to zero, i.e.,∑N

j=1 pj = 0.
Next, we consider the FPU system (4) in the weakly

nonlinear regime, i.e., β � 1. To study the renormalization
of waves, we seek an asymptotic expansion of displacement
qj and frequency ωk in powers of β,

qj = q
(0)
j + βq

(1)
j + O(β2), (5)

ωk = ω
(0)
k + βω

(1)
k + O(β2). (6)

We proceed by substituting expansions (5) and (6) into the
dynamical equation (4) and collecting terms in powers of β

in order to determine ω
(0)
k and ω

(1)
k . At the leading order, the

linear differential equation for q
(0)
j is obtained:

q̈j
(0) − (

q
(0)
j+1 − 2q

(0)
j + q

(0)
j−1

) = 0. (7)

To investigate effects of nonlinear interactions among all
modes k, we look for a multiwave solution with N − 1
components,

q
(0)
j = 1√

N

N−1∑
k=1

Qk exp(iθkj ), (8)

where Qk is the amplitude of plane wave of the kth mode, θkj =
2πkj/N − ωkt for k = 1, . . . ,N − 1. Substituting Eq. (8) into
Eq. (7), we obtain the linear dispersion relation (3) of the
leading frequency ω

(0)
k [36,37]. At the next order, the terms

proportional to β yield the equation for q
(1)
j ,

q̈j
(1) − (

q
(1)
j+1 − 2q

(1)
j + q

(1)
j−1

)
= 2ω

(0)
k ω

(1)
k q

(0)
j + [(

q
(0)
j+1 − q

(0)
j

)3 − (
q

(0)
j − q

(0)
j−1

)3]
. (9)

Because q
(0)
j satisfies Eq. (7), the fundamental harmonics

exp(iθkj ) on the right-hand side of Eq. (9) are secular terms.
After these secular terms are eliminated, the compatibility
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condition that q
(1)
j is solvable from Eq. (9) gives rise to

ω
(1)
k = 3

N

(
N−1∑
l=1

|Ql|24 sin2 lπ

N

)
sin

kπ

N

+ 1

N

N−1∑
l,m,s = 1
nontrivial
resonant

Q
∗
l QmQs

Qk

4 sin
lπ

N
sin

mπ

N
sin

sπ

N
, (10)

where the last summation
∑

on the right-hand side only
involves k,l,m,s that satisfy the nontrivial resonant condition:

k + l = m + s,

ω
(0)
k + ω

(0)
l = ω(0)

m + ω(0)
s . (11)

Substituting Eqs. (3) and (10) into Eq. (6), we arrive at the
approximation for frequency ωk to the second order of β,

ω2
k = (

ω
(0)
k

)2 + 3β

N

N−1∑
l=1

|Ql|2
(
ω

(0)
l

)2(
ω

(0)
k

)2

+ β

N

N−1∑
l,m,s = 1
nontrivial
resonant

QmQsQ
∗
l

Qk

ω(0)
m ω(0)

s ω
(0)
l ω

(0)
k + O(β2), (12)

which can be expressed as

ω2
k = ∂H eff/∂Q∗

k

Qk

+ O(β2) (13)

by noting that Qk = Qk exp(−iωkt). Here H eff is an effec-
tive Hamiltonian defined below and is not identical to the
Hamiltonian (2):

H eff = K + U + V tr + V nt, (14)

where K , U are kinetic energy and quadratic potential energy,
defined as

K = 1

2

N−1∑
k=1

|Pk|2, U = 1

2

N−1∑
k=1

(
ω

(0)
k

)2|Qk|2, (15)

respectively. The quartic potential energies V tr and V nt contain
only trivial resonant terms and nontrivial resonant terms,
respectively:

V tr = 3β

4N

N−1∑
k,l=1

(
ω

(0)
k

)2(
ω

(0)
l

)2|Qk|2|Ql|2, (16)

V nt = β

4N

N−1∑
k,l,m,s = 1

nontrivial
resonant

ω
(0)
k ω

(0)
l ω(0)

m ω(0)
s Q∗

kQ
∗
l QmQs. (17)

From the definition of H eff (14), it can be seen that not only the
trivial resonance but also the nontrivial resonance contributes
to the renormalization of the dispersion relation (13). In
general, the dispersion relation (13) obtained from the multiple
scale analysis is theoretically restricted to the weakly nonlinear
regime. However, we will see below that its time averaged

version is a natural extension for the state of equilibrium and
nonequilibrium and we will demonstrate through numerical
simulation that it is not restricted to the weakly nonlinear
limit.

To compare the results (13) with the dispersion relations
in Refs. [21,25], we will briefly review various theoretical
predictions of renormalized dispersion relations. In thermal
equilibrium, the dispersion relation was obtained for the β-
FPU chain from a linear Langevin equation via the Zwanzig-
Mori (ZM) projection method [21,25]:

(
ωL

k

)2 =
〈

∂H
∂Q∗

k

Q∗
k

〉
〈|Qk|2〉 , (18)

where 〈·〉 denotes thermal average. By employing the energy
equipartition theorem in Eq. (18), ωL

k can be written as [21]

ωN
k =

√
〈K〉
〈U 〉ω

(0)
k . (19)

Based on the equality 〈K〉 = 〈U 〉 + 2〈V (Q)〉 obtained from
the equipartition theorem, Eq. (19) can be written in the form
of ωN

k = √
1 + 2〈V 〉/〈U 〉ω(0)

k , which has the same form as
proposed in Refs. [24,38]. We will return below to discuss
how Eq. (19) can be generalized in the nonequilibrium setting.
In addition, through the application of random phase approx-
imation (RPA) in Eq. (18), another theoretical renormalized
dispersion was obtained as follows [20,21]:

(
ωM

k

)2 = (
ω

(0)
k

)2
(

1 + 6β

N
〈U 〉

)
. (20)

We note that the various approximations of the dispersion
relation ωL

k , ωN
k , and ωM

k are all obtained for the FPU chain in
thermal equilibrium.

We now turn to the comparison of the renormalized
dispersion relations mentioned above. We first discuss the
relation between Eqs. (13) and (18). Multiplying Q∗

k and taking
the thermal average for both numerator and denominator of
Eq. (13), we can obtain the dispersion relation

ω2
k =

〈
∂H eff

∂Q∗
k

Q∗
k

〉
〈|Qk|2〉 , (21)

which differes from Eq. (18) because H eff is involved. The
Hamiltonian H [Eq. (2)] possesses quartic terms of both
resonant and nonresonant types, whereas H eff [Eq. (14)]
possesses quartic terms only of resonant type. However, the
nonresonant terms have a total vanishing contribution in
Eq. (18) because of the long-time average in thermal equi-
librium [19]. Therefore, H eff can be viewed as equivalent to H

for long-time-averaged dynamics. That is, we can regard the
dispersion relation ωL

k [Eq. (18)] as induced by resonance inter-
actions only, including both trivial and nontrivial resonances,
in the thermalized FPU chain. Incidentally, we point out
that the Lagrangian approach [5] can be employed to obtain the
renormalized dispersion relation ωL

k [Eq. (18)]. This derivation
of ωL

k is presented in detail in Appendix A.
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Next, we reveal the resonance structure that underlies the
dispersion relation ωM

k (20) derived through the RPA. If
the nontrivial resonance term V nt in H eff is neglected, the
approximation for the renormalized frequency ωk [Eq. (12)]
reduces to

ω2
k = (

ω
(0)
k

)2

(
1 + 3β

N

N−1∑
l=1

|Ql|2
(
ω

(0)
l

)2

)
+ O(β2)

= (
ω

(0)
k

)2
(

1 + 6β

N
U

)
+ O(β2). (22)

We note that Eq. (22) is exactly the same as Eq. (20) upon
taking the thermal average in the above dispersion relation (22)
while ignoring higher order corrections O(β2). Therefore, the
renormalized dispersion relation (20) takes into account only
the trivial resonance with the nontrivial resonance neglected.
This trivial resonance-induced frequency shift has been well
discussed in the traditional weak turbulence theory [39].
As will be discussed below, it turns out that the nontrivial
resonance also plays an important role in the renormalization
of the dispersion relation.

To further understand the resonance contribution in the
renormalization of the dispersion relation, we numerically
study the FPU chain in thermal equilibrium. The chain was
simulated with the parameters of N = 256 and β = 100 for a
broad range of the energy H . Because the nonlinearity strength
is controlled by the parameter βH , the larger H is, the stronger
nonlinearity is when the parameter β is fixed. In order to
compare with the theoretical predictions of the renormalized
dispersion relation ωL

k , ωN
k , and ωM

k in Eqs. (18), (19), and (20),
respectively, we first need to obtain the numerically measured
dispersion relation �meas

k . For a fixed mode k, the measured
�meas

k is determined by the peak location of the spatiotemporal
spectrum |Q̂k(ω)|2, where Q̂k(ω) is the temporal Fourier
transform of Qk(t). The quantities 〈 ∂H

∂Q∗
k

Q∗
k〉, 〈|Qk|2〉, 〈K〉, and

〈U 〉, appearing in the renormalized dispersion relations ωL
k ,

ωN
k , and ωM

k , are numerically computed by using a long-time
average in thermal equilibrium instead of an ensemble average.
The waves in the initial condition used in our simulation have
their phases uniformly randomized [40] and we discard the
initial transient in performing these time averages. Because our
various predictions of the renormalized dispersion relation are
proportional to the linear dispersion relation ω

(0)
k , to compare

these predictions, it is natural to define the renormalization
factor

ηL = 1

N − 1

N−1∑
k=1

η̃L(k), (23)

ηN =
√

〈K〉
〈U 〉 , (24)

ηM =
√

1 + 6β

N
〈U 〉, (25)

where η̃L(k) is the renormalization factor corresponding to the
dispersion relation ωL

k ,

η̃L(k) = ωL
k

ω
(0)
k

. (26)
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η(
k)

k

H = 1000

FIG. 1. (Color online) The renormalization factors as functions
of the energy H . The chain was simulated using the parameters
of N = 256 and β = 100. Plotted is the renormalization factor
ηmeas [Eq. (27)] (red circles). For comparison, also plotted are the
renormalization factors ηL, ηN , and ηM from Eqs. (23), (24), and (25)
with black triangles, green hexagons, and blue squares, respectively.
It can be seen that ηmeas, ηL, and ηN almost overlap with each other.
(Inset) Near-k independence of the renormalization factors η̃meas(k).
The red circles correspond to η̃meas(k) for each mode k. The solid red
line corresponds to the mean value ηmeas [Eq. (27)].

To compare with the measured dispersion relation �meas
k ,

we also define the numerical renormalization factor ηmeas by
averaging the value of η̃meas(k) over all modes k, i.e.,

ηmeas = 1

N − 1

N−1∑
k=1

η̃meas(k), (27)

where

η̃meas(k) = �meas
k

ω
(0)
k

. (28)

The inset of Fig. 1 displays the renormalization factor η̃meas(k)
of each mode k (red circles) and its corresponding averaged
renormalized factor ηmeas (solid red line) for the case of
H = 1000. It can be observed from Fig. 1 (inset) that the
renormalized factor η̃meas(k) is nearly independent of k with
small variations of less than 3% around the mean value ηmeas.
Figure 1 displays the renormalization factors ηmeas, ηL, ηN ,
and ηM as functions of the total energy H . It can be seen from
Fig. 1 that the value of ηmeas coincides with those of ηL, ηN . The
renormalized ωL

k and ωN
k are in excellent agreement with the

measured dispersion relation �meas
k for a wide range of energy

H . In contrast, ωM
k provides a less accurate approximation to

�meas
k , but it can still capture the measured �meas

k quite well
when the energy is not too large. We note that ωL

k and ωN
k

have both trivial and nontrival resonant contributions, whereas
ωM

k has only the trivial resonant contribution. Therefore,
we can conclude from Fig. 1 that the nontrivial resonance
indeed contributes to the renormalization of dispersion relation
although the majority of the contribution comes from trivial
resonance at the thermal equilibrium of FPU chain. Here, it can
be seen from Fig. 1 that the nontrivial resonance contribution
becomes rather significant in strongly nonlinear regimes. Next,
we will turn to the discussion about dispersive characteristics
in the case of nonequilibrium steady state.
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III. x-SPACE DRIVEN-DAMPED SYSTEM

We now address the main issue of whether the dispersive
features of wave turbulence may still arise in nonequilibrium
steady state for the system with two ends in contact with two
thermal baths of different temperatures. The system will be
referred to as an x-space driven-damped system. To be specific,
we consider a one-dimensional system with the Hamiltonian

H ′ =
N∑

j=1

1

2
p2

j +
N−1∑
j=1

[
1

2
(qj − qj+1)2 + β

4
(qj − qj+1)4

]

+
[

1

2
q2

1 + β

4
q4

1

]
+

[
1

2
q2

N + β

4
q4

N

]
. (29)

The particles j = 1 and j = N at the two ends are connected
to Langevin thermal reservoirs; that is, the governing equations
are given by

q̇1 = p1, ṗ1 = −∂H ′

∂q1
− γLp1 + σLξL(t), (30a)

q̇j = pj , ṗj = −∂H ′

∂qj

, for j = 2, . . . ,N − 1, (30b)

q̇N = pN, ṗN = −∂H ′

∂qN

− γRpN + σRξR(t), (30c)

where ξL,R(t) are independent Gaussian white noises,
with 〈ξL(t)〉 = 0, 〈ξL(t)ξL(t ′)〉 = δ(t − t ′), and 〈ξR(t)〉 = 0,
〈ξR(t)ξR(t ′)〉 = δ(t − t ′). The driving coefficients σL,R char-
acterize the driving strength and are linked to the dissipa-
tion coefficients γL,R by the fluctuation-dissipation theorem
[27,41], σ 2

L = 2γLkBTL and σ 2
R = 2γRkBTR , where TL,TR are

the temperatures of the left and right Langevin heat reservoirs,
respectively.

We recall that the brackets 〈·〉 in the theoretical predictions
ωL

k , ωN
k , and ωM

k [Eqs. (18), (19), and (20), respectively], for
the thermalized FPU chain, are interpreted as thermal average.
In thermal equilibrium, the thermal average can be interpreted
either as an ensemble average or as a long-time average if
ergodicity holds for the system. In the nonequilibrium steady
state of the FPU chain, the brackets 〈·〉 in Eqs. (18), (19),
and (20) can no longer be interpreted as thermal average. A
natural possibility is that the time average should be used
instead. We note that the energy equipartition theorem is
invoked in the derivation of Eq. (19) from Eq. (18) for
the equilibrium case. What would be a possible theoretical
counterpart in the transition from Eqs. (18) to (19) for
the system in nonequilibrium steady state? In Appendix B,
we outline an intuitive argument underlying the theoretical
dispersion relation ωN

k [Eq. (19)] for nonequilibrium steady
state when the time average is used for the bracket 〈·〉. There,
it can be seen that ωL

k and ωN
k are still closely related.

In what follows, we will investigate the theoretical possibil-
ity that, for the nonequilibrium steady state, these formulas of
ωL

k , ωN
k , and ωM

k remain valid if the brackets 〈·〉 are interpreted
as a long-time average. An affirmative answer will clearly
extend the validity of these predictions to the nonequilibrium
steady state.

First, we numerically determine whether the renormalized
dispersion relation persists for an x-space driven-damped FPU
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FIG. 2. (Color online) Comparison of renormalized dispersion
relations for the x-space driven-damped β-FPU chain. The chain
is simulated with the nonlinear strengths (a) β = 100 and (b) β = 0.
The other parameters of the chain are N = 256, σL = 1, σR = 10,
and γL = γR = 1. Plotted is the logarithmic modulus ln |Q̂k(ω)|2 by
the WFS analysis with its magnitude color coded. The measured
dispersion relation �meas

k is the location of the frequency peak of
ln |Q̂k(ω)|2 for each mode k. For comparison, also shown are ωL

k

[Eq. (18)], ωM
k [Eq. (20)], ωN

k [Eq. (19)] and the linear dispersion
relation ω

(0)
k [Eq. (3)]. It can be seen in the left panel (a) that ωL

k and
ωN

k almost overlap with each other and with �meas
k . It can also be

observed in the right panel (b) that all the dispersion relations overlap
with the linear dispersion relation.

system. In Fig. 2(a) the result of the ω-k analysis is displayed
by the color coding of the logarithmic modulus, ln |Q̂k(ω)|2,
where Q̂k(ω) is the temporal Fourier transform of Qk(t). The
measured dispersion relation �meas

k [solid blue (dark gray)
line] for the kth mode is determined by the peak location of the
spectrum, |Q̂k(ω)|2. It can be clearly seen in Fig. 2(a) that there
is a dispersion relation, as indicated by the measured �meas

k .
For comparison, also displayed are the theoretical predictions
of renormalized dispersion relation ωL

k , ωN
k , and ωM

k . It can be
observed in Fig. 2(a) that the dispersion relations ωL

k (dashed
white line), ωN

k (dash-dot black line), and ωM
k [dashed blue

(dark gray) line] are good approximations to the measured
�meas

k . It can be clearly seen that the renormalized dispersion
relations ωL

k and ωN
k are both in excellent agreement with

the measured �meas
k , whereas ωM

k is a fair approximation
for the measured dispersion relation �meas

k . As discussed in
Sec. II, the nontrivial resonant contribution is contained in the
dispersion relations ωL

k and ωN
k , but neglected in the dispersion

relation ωM
k . As seen in Fig. 2(a), this difference gives rise

to the discrepancy between ωM
k and the measured �meas

k .
Clearly, nontrivial resonance has an important effect also on the
renormalization of the dispersion relation in nonequilibrium
steady state.

Figure 2(b) displays the spectrum ln |Q̂k(ω)|2 in the absence
of nonlinearity (i.e., β = 0) with the same strengths of drivings
and dampings as in Fig. 2(a). Here, we can see that all the
dispersion relations coincide with the linear dispersion relation
ω

(0)
k . That is, the driving and damping essentially do not affect

the oscillation frequency of each mode k significantly. Figure 2
clearly illustrates that the renormalization of the dispersion
relation arises from the nonlinear wave interactions.

Our numerical results further show that, for a wide range
of the driving strength σR , the measured �meas

k is observed
and the theoretical predictions of the dispersion relation ωL

k ,
ωN

k , and ωM
k are valid. The inset of Fig. 3 displays the

renormalization factors η̃meas(k) (circles) and η̃L(k) (triangles)
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FIG. 3. (Color online) The renormalization factor as a function
of driving strength σR . The chain was simulated with N = 256,
β = 100, σL = 1, and γL = γR = 1. The renormalization factor ηmeas,
ηL, ηN , and ηM are depicted with red curve with circles, black
curve with triangles, green curve with hexagons, and blue curve with
squares, respectively. It can be observed that ηmeas, ηL, and ηN nearly
overlap one another. (Inset) The renormalization factor η(k) versus
wave number k for the system corresponding to that in Fig. 2(a).
The parameter is σR = 10. The red circle corresponds to η̃meas(k) in
Eq. (28) and the black triangle corresponds to η̃L(k) in Eq. (26). The
solid red line and the dashed black line correspond to the mean values
ηmeas [Eq. (27)] and ηL [Eq. (23)], respectively.

for the driven-damped case which corresponds to the system
in Fig. 2(a). It can be seen from Fig. 3 (inset) that η̃meas(k) and
η̃L(k) are nearly independent of k. Their variations around the
mean values ηmeas (solid red line) and ηL (dashed black line) are
very small and are less than 3% and 2%, respectively. To study
the validity range of the theoretical prediction for dispersion
relations in nonequilibrium steady state of the x-space driven-
damped chain, we compare the renormalization factors for
a wide range of σR . Figure 3 displays the renormalization
factors ηmeas, ηL, ηN , and ηM as a function of the driving
strength σR , where ηmeas, ηL, ηN , ηM are defined in Eqs. (27),
(23), (24), and (25), respectively. It can be seen from Fig. 3
that the measured renormalization factor ηmeas becomes larger
with stronger driving strength σR . It can be further observed
that, for a wide range of σR , the theoretical predictions of the
dispersion relation are in good agreement with the numerically
measured one. Because, for large σR , the temperature is
rather high at one side for the system, we can conclude
that nonlinear effects play an increasingly important role in
the renormalized behavior of dispersive waves as the driving
force increases. Furthermore, the increasing discrepancy of
ηmeas and ηM as σR becomes larger shows that the nontrivial
resonance contribution becomes increasingly important to the
renormalized dispersion relation.

It is worthwhile to mention that we always verified
that the system had reached steady state in our simulation
before we used time average to compute the renormalized
dispersion relations. We summarize the flux method used for
the determination of the steady state of the systems in detail
in Appendix C.

IV. k-SPACE DRIVEN-DAMPED SYSTEM

We now turn to the issue of whether the dispersive
characteristics persist in the nonequilibrium steady state of

the β-FPU chain driven at low k modes and damped at high k

modes. We refer to this system as the k-space driven-damped
FPU chain, in contrast to x-space driven-damped FPU chain in
Sec. III. We consider the FPU chain with the Hamiltonian (2).
The driving forces are imposed at low k modes while the
damping forces are imposed at high k modes. Thus, the k-space
driven-damped system is described as follows:

Q̇kl
= Pkl

, Ṗkl
= − ∂H

∂Q∗
kl

+ σξkl
(t) (31a)

for a low driven mode kl in the injection range KL,

Q̇km
= Pkm

, Ṗkm
= − ∂H

∂Q∗
km

(31b)

for a mode km in the inertial range KM , and

Q̇kh
= Pkh

, Ṗkh
= − ∂H

∂Q∗
kh

− γPkh
(31c)

for a high mode kh in the dissipation range KH , where ξkl
(t)

is the independent Gaussian white noise, with zero mean and
〈ξkl

(t)ξkl
(t ′)〉 = δ(t − t ′) for kl ∈ KL, σ is a driving coefficient

for all driven modes kl ∈ KL, and γ is the damping coefficient
for all damped modes kh ∈ KH . The number of driven modes
is denoted by ndv and the number of damped modes is denoted
by ndp.

We study the system (31) in two regimes: one is a weakly
damped regime and the other is a strongly damped regime.
From our numerical study, it turns out that these two regimes
possess similar dispersive behaviors of waves. However, they
differ in many important aspects as will be discussed below. We
first verify the existence of the renormalized dispersive relation
for the FPU chain in the weakly-damped regime. Figure 4(a)
displays the measured dispersion relation �meas

k in comparison
with the theoretical renormalized dispersion relations ωL

k , ωN
k ,

and ωM
k , respectively. Here, the theoretical ωL

k , ωN
k , and ωM

k are
still in the form of Eqs. (18), (19), and (20), respectively, but
〈·〉 in them are again interpreted as a long-time average as in
Sec. III. From Fig. 4(a), it can be again observed that there is a
good agreement between numerically measured �meas

k and the-
oretical predictions for the renormalized dispersion relation.
As in the case of thermal equilibrium and the x-space driven-
damped system, ωL

k and ωN
k capture �meas

k better than ωM
k .

However, in the strongly damped case, the dispersive
characteristics become rather different. Figure 4(b) shows an
example of the strongly damped regime. Here, the measured
dispersion relation �meas

k no longer possesses a strong dis-
persion characteristics as in the weakly damped case. For a
mode k in the inertial range KM , the width of the dispersion
peak now is rather broad and the measured �meas

k no longer
closely coincides with theoretical predictions ωL

k , ωN
k , or ωM

k .
However, it turns out that these theoretical predictions are in
qualitatively good agreement with the center of the dispersive
band as indicated in Fig. 4(b), where the center is defined as

�c
k =

∫
ω|Q̂k(ω)|2dω∫ |Q̂k(ω)|2dω

. (32)

For a broad peak, the center �c
k may be a better representation

of the band than the peak location �meas
k , as can be seen in

Fig. 4(b). Incidentally, it is worth mentioning that we also

032925-6



RENORMALIZED DISPERSION RELATIONS OF β- . . . PHYSICAL REVIEW E 90, 032925 (2014)

50 100 150 200 250
0

10

20

30

k

ω

(a)

6

8

10

12

14

16
ω

k
N

ω
k
(0)

ω
k
L

Ω
k
meas

ω
k
M

50 100 150 200 250
0

10

20

30

k
ω

(b)

0

5

10

15ω
k
N

ω
k
(0)

ω
k
M

Ω
k
meas

ω
k
L

Ω
k
c

FIG. 4. (Color online) Comparison of renormalized dispersion
relations for the k-space driven-damped β-FPU chain. The left panel
(a) displays the renormalized dispersion relations of the β-FPU chain
for the weakly damped case. The parameters are N = 256, β = 100,
σ = 2, γ = 0.1, ndv = 16, and ndp = 16. The right panel (b) displays
the dispersion relations for the strongly damped β-FPU chain with
the parameters N = 256, β = 100, σ = 2, γ = 10, ndv = 16, and
ndp = 32 (note that more damping modes are used here than in (a),
in addition to the stronger damp coefficient, for this strongly damped
case). The spatiotemporal spectrum ln |Q̂k(ω)|2 is plotted with its
value color-coded; its corresponding peak �meas

k is the measured
dispersion relation. Also plotted are the theoretical predictions for
the renormalizations ωL

k [Eq. (18)], ωM
k [Eq. (20))], ωN

k [Eq. (19)],
and linear dispersion relation ω

(0)
k [Eq. (3)]. Note that ωL

k , ωN
k nearly

overlap with �meas
k in the left panel (a). The right panel (b) displays

the center of the dispersive band �c
k [Eq. (32)] with the dash-dot cyan

(light gray) curve.

monitored our numerical simulation so as to ensure our results
are obtained from a steady state.

Next, we make an attempt to understand the reason for
the different behaviors of dispersive waves in these two
regimes. As is expected, the dispersive characteristics of a
near-equilibrium system could be very similar to that of an
equilibrium system. Our numerical measurement of the kinetic
energy indeed indicates that the weakly damped system is
near equilibrium whereas the strongly damped system is far
from equilibrium. Figures 5(a) and 5(b) display the kinetic
energy 〈|Pk|2〉 for the systems corresponding to Figs. 4(a) and
4(b), respectively, where the bracket 〈·〉 denotes the long-time
average. Clearly, in thermal equilibrium, the kinetic energy
〈|Pk|2〉 is equal among all modes k due to energy equipartition.
In the weakly damped case [Fig. 5(a)], the maximum value
of the kinetic energy is estimated to be 8% larger than the
minimum value in the inertial range KM . However, this ratio
becomes much larger and is about 37% in the strongly damped
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FIG. 5. (Color online) The kinetic energy 〈|Pk|2〉 for modes k in
the inertial range for (a) the weakly damped and (b) the strongly
damped FPU chain whose spatiotemporal spectrum is shown in
Figs. 4(a) and 4(b), respectively.

case [Fig. 5(b)]. As indicated by this ratio, the weakly damped
system is much closer to an equilibrium system than the
strongly damped system.

To further quantify whether a k-space driven-damped
system is near equilibrium or not, we investigate how close the
distribution of the real part of Pk , Re(Pk), is to the Gaussian
distribution for the modes in the inertial range. The distribution
of Re(Pk) should be nearly Gaussian for a near-equilibrium
FPU chain as can be seen from the momentum part of Boltzman
factor. We examine the distribution by computing the ratio of
central moments r4, r6, r8:

r4(k) =
〈
R4

k

〉〈
R2

k

〉2 , r4 = 1

N − ndv − ndp

∑
k∈KM

r4(k),

r6(k) =
〈
R6

k

〉〈
R2

k

〉3 , r6 = 1

N − ndv − ndp

∑
k∈KM

r6(k), (33)

r8(k) =
〈
R8

k

〉〈
R2

k

〉4 , r8 = 1

N − ndv − ndp

∑
k∈KM

r8(k),

where Rk = Re(Pk) − 〈Re(Pk)〉. For the weakly damped case,
we find that these ratios (r4 = 3.02, r6 = 15.3, and r8 = 109.0)
have very small deviations from the corresponding values for
the Gaussian distribution (r4 = 3, r6 = 15, and r8 = 105).
Therefore, the weakly damped system can be viewed as a
near-equilibrium system. In contrast, for the strongly damped
case, the distribution of Re(Pk) is far from Gaussian (r4 =
3.29, r6 = 19.9, and r8 = 187.5), and hence this system is far
away from equilibrium.

Incidentally, we also have computed these moment ratios
for the x-space driven-damped FPU system in Fig. 2(a) (r4 =
2.97, r6 = 14.6, and r8 = 99.1). In that case, the distribution
of Re(Pk) is nearly Gaussian. In addition, we also have
numerically verified that 〈|Pk|2〉 are equal for all Fourier
modes. However, the system is away from equilibrium as can
be confirmed by the kinetic energy profile 〈p2

j 〉 [Fig. 7(b)] in
Appendix C. (In equilibrium, the kinetic energy profile should
be independent of the location by the equipartition theorem
from the Boltzmann distribution). In this case, it appears
that if Pk is nearly Gaussian, the renormalized dispersion
relations can be well captured by our theoretical predictions.
It is important to systematically investigate this possibility
theoretically in the future for various dynamical scenarios of
driving and dissipation.

In summary, the dispersive characteristics can still persist
and those theoretical dispersion relations are valid in predicting
the measured �meas

k in the k-space weakly damped FPU chain
in near equilibrium. However, for a strongly damped case,
because the chain is far from equilibrium and Pk strongly
deviates from Gaussianity, the dispersive structures are no
longer as prominent as those in the near-equilibrium situation.
In this regime, our theoretical results can only qualitatively
describe the dispersive characteristics.

V. CONCLUSIONS AND DISCUSSIONS

We have applied a multiple scale analysis to study the
renormalization of the dispersion relation in the β-FPU chain
with periodic boundary conditions. We have theoretically
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shown both trivial resonances V tr and nontrivial resonances
V nt contribute to the renormalized dispersion ωL

k and ωN
k ,

whereas there are only trivial resonance contributions in ωM
k .

This clarifies the contributions of various resonant structures in
these renormalized dispersion relations that have appeared in
previous literature. For the FPU chain in thermal equilibrium,
ωL

k and ωN
k are shown to be in much better agreement

with the measured �meas
k than ωM

k for a wide range of
nonlinearity strengths. For an x -space driven-damped FPU
chain, we have demonstrated that the renormalized dispersion
relation again arises as a consequence of the nonlinear wave
interactions. The renormalization of the dispersion relation
also comes from the contribution of both trivial and nontrivial
resonant interactions. For the nonequilibrium steady state
of a k-space driven-damped β-FPU chain, if the damping
is weak in the dissipation region, dispersive characteristics
are still strong and can be well captured by our theoretical
predictions. However, for the k-space strongly damped case,
the theoretical predictions can only provide a qualitatively
good approximation to the center of the dispersive band �c

k .
We have also examined possible underlying reasons for this
contrast between the weakly damped and the strongly damped
cases, and point out a possible connection between the near
Gaussianity of Pk and the validity of our theoretical predictions
for renormalized dispersion relations.

Finally, we briefly discuss the renormalization of dispersion
relations in thermal equilibrium for a purely quartic chain
[38] with the Hamiltonian H = ∑N

j=1
1
2p2

j + β

4 (qj − qj+1)4.
In this case, the linear dispersion relation is absent and the mul-
tiscale analysis is not applicable. However, the phenomenon
of the renormalized dispersion relation still persists in thermal
equilibrium [Fig. 6(a)]. Furthermore, it can be seen from
Fig. 6(b) that the value of renormalization factor ηmeas is in
excellent agreement with those of ηL and ηN for a wide range
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FIG. 6. (Color online) (a) The renormalized dispersion relations
for the purely quartic chain in thermal equilibrium. The chain was
simulated with N = 256, β = 100, and H = 1000. Plotted is the
measured dispersion relation �meas

k [solid blue (dark gray) curve].
For comparison, also plotted are the theoretical predictions for the
renormalized dispersion relations ωL

k [Eq. (18)] (solid white curve),
ωM

k [Eq. (20)] (dashed blue curve), and ωN
k [Eq. (19)] (dash-dot black

curve). Note that ωL
k and ωN

k nearly overlap with each other. (b)
The renormalization factors as a function of the energy H for purely
quartic chains. The chain was simulated using the parameters of N =
256 and β = 100. Plotted is the renormalization factor ηmeas [Eq. (27)]
(red circles). For comparison, also plotted are the renormalization
factors ηL, ηN , and ηM from Eqs. (23), (24), and (25) with black
triangles, green hexagons, and blue squares, respectively. Note that
ηmeas, ηL, and ηN nearly overlap with each other.

of H in thermal equilibrium. As a natural extension of the
above results, it is interesting to study the renormalization
of dispersion relations for a purely quartic chain in the
nonequilibrium steady state case in future work.
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APPENDIX A: THE DERIVATION OF ωL
k [Eq. (18)]

THROUGH THE LAGRANGIAN METHOD

The Lagrangian for the β-FPU chain is

L =
N∑

j=1

1

2
q̇2

j −
(

1

2
(qj − qj+1)2 + β

4
(qj − qj+1)4

)
≡ T − W, (A1)

where T is the total kinetic energy and W is the total potential
energy,

T =
N∑

j=1

1

2
q̇2

j , W =
N∑

j=1

1

2
(qj − qj+1)2 + β

4
(qj − qj+1)4.

(A2)

After we substitute the multiwave expansion (8) into Eq. (A1),
the Lagrangian becomes,

L =
N−1∑
k=1

1

2
ω2

k |Qk|2 − W (Q). (A3)

The vanishing variation of Eq. (A3) with respect to Q
∗
k yields

the equation, ω2
kQk − ∂H/∂Q

∗
k = 0, where H = K + W , and

K is defined in Eq. (15). Hence, the dispersion relation is

ω2
k = ∂H/∂Q∗

k

Qk

, (A4)

by noting that Qk = Qk exp(−iωkt). After multiplying Q∗
k and

taking the thermal average for the numerator and denominator
of Eq. (A4), we can obtain exactly the same dispersion
relation as ωL

k in Eq. (18). In general, the Lagrangian
method is theoretically restricted to a weakly nonlinear regime
typical as a multiscale method. However, in the derivation of
dispersion relation (A4), we have not explicitly invoked the
weak nonlinearity assumption. It appears that the Lagrangian
method can be extended to a fully nonlinear regime to derive
the effective dispersion relation in the case of the thermalized
FPU chain. Our numerical results provide support to this
observation, as can be seen in the main text.
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APPENDIX B: THE DERIVATION OF ωN
k FOR

THE x-SPACE DRIVEN-DAMPED FPU CHAIN

Here, we present an intuitive argument linking the dis-
persion relation ωN

k (19) to ωL
k (18) in the nonequilibrium

steady state of an x-space driven-damped system under the
assumption that η̃N (k) is independent of mode k, where

η̃2
N (k) ≡ 〈

1
2 |Pk|2

〉/〈
1
2

(
ω

(0)
k

)2|Qk|2
〉
. (B1)

For the nonequilibrium steady state, the dispersion relation
ωN

k [Eq. (19)] cannot be directly derived from ωL
k by using

the energy equipartition theorem since the theorem no longer
holds. First, we can prove the validity of the equality

〈Q̇∗
kPk〉 = −〈Q∗

kṖk〉 (B2)

by using integration by parts,

〈Q̇∗
kPk〉 = 1

T

∫ T

0
Q̇∗

kPkdt = 1

T
Q∗

kPk|T0 − 1

T

∫ T

0
Q∗

kṖkdt

= 1

T
Q∗

kPk|T0 − 〈Q∗
kṖk〉 = −〈Q∗

kṖk〉,

where the term 1
T
Q∗

kPk|T0 vanishes for sufficiently large time
T if Q∗

kPk is assumed to be bounded for large times. Then the
dispersion relation ωL

k reduces to

(
ωL

k

)2 =
〈
Q∗

k
∂H
∂Q∗

k

〉
〈|Qk|2〉 = 〈Q∗

k(−Ṗk + σ ξ̂k − γ P̂k)〉
〈|Qk|2〉

= −〈Q∗
kṖk〉

〈|Qk|2〉 = 〈Q̇∗
kPk〉

〈|Qk|2〉 = 〈|Pk|2〉
〈|Qk|2〉 , (B3)

where σ ξ̂k = F{(σLξL,0, . . . ,0,σRξR)} and γ P̂k =
F{(γLp1,0, . . . ,0,γRpN )}, respectively. HereF{·} denotes the
Fourier transform. It can be shown that 〈σ ξ̂kQ

∗
k〉 vanishes and

we have numerically examined that γ P̂k are nearly orthogonal
to Q∗

k . If the renormalized factor η̃N (k) is independent of k,
from (B3) we can easily obtain the dispersion relation ωN

k

[Eq. (19)].
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FIG. 7. (Color online) (a) The energy flux fj,j−1 [Eq. (C1)]
and (b) the kinetic energy 〈p2

j 〉 for various driving strengths σR

corresponding to the systems in Fig. 3. The simulation for the
β-FPU chain is performed with parameters of N = 256, β = 100,
γL = γR = 1, and σL = 1 . The blue line with squares, magenta line
with triangles, green line with hexagons and red line with circles
correspond to (a) the flux profile and (b) the kinetic energy profile
for the system with driving strengths σR of 10, 7.07, 5 and 1.25,
respectively.

APPENDIX C: THE FLUX IN THE
NONEQUILIBRIUM STEADY STATE

OF AN x-SPACE DRIVEN-DAMPED FPU CHAIN

In order to study the renormalized dispersion, we need
to verify that the system reaches its steady state. In the
nonequilibrium steady state, clearly the energy flux is constant
over space [34,35]. In this system (30), the flux fj,j−1 is

fj,j−1 = 〈pj [(qj − qj−1) + β(qj − qj−1)3]〉, (C1)

where the bracket 〈·〉 stands for the long-time average.
Figure 7(a) displays the energy flux fj,j−1 corresponding to
some cases in Fig. 3. There is an equality on all fj,j−1 for
j = 2, . . . ,N from Fig. 7(a). This is indicative that these
systems have converged to the steady state. Figure 7(b)
displays the corresponding kinetic energy 〈p2

j 〉. It can be seen
from Fig. 7(b) that the kinetic energy profile becomes steeper
when the temperature at the right end becomes higher. We note
that the kinetic energy is shared equally among all 〈p2

j 〉 for the
FPU chain in thermal equilibrium. As expected, the system
deviates from thermal equilibrium as the temperature at one
side increases.
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