SGFW and RDCM 00000000000000000000 Computational Guarantees

Contribution/Summary

1

Generalized Stochastic Frank-Wolfe Algorithm with Stochastic "Substitute" Gradient for Structured Convex Optimization

Haihao (Sean) Lu, Robert M. Freund

MIT

INFORMS Phoenix, November 2018

Paper on arXiv (and in review):

"Generalized Stochastic Frank-Wolfe Algorithm with Stochastic "Substitute" Gradient for Structured Convex Optimization"

SGFW and RDCM

Computational Guarantees

Contribution/Summary

Overview/Results

- Introduction
 - Problem of Interest
 - Examples in Statistical and Machine Learning
 - Literature Review
 - Primal-Dual Structure
- Stochastic Generalized Frank-Wolfe and Randomized Dual Coordinate Mirror Descent
 - Substitute Gradient
 - Stochastic Generalized Frank-Wolfe (SGFW)
 - Randomized Dual Coordinate Mirror Descent (RDCMD)
 - Equivalence of SGFW and RDCMD
- Computational Guarantees of SGFW and RDCMD
 - $O(1/\varepsilon)$ Sublinear Convergence Rate
 - First-Order Methods Naturally Minimize a Primal-Dual Gap
 - Randomized Coordinate Descent for Nonsmooth Functions
 - Linear Convergence when the regularizer is Strongly Convex
 - Extensions/Discussions
- Contributions/Summary

Computational Guarantees

Contribution/Summary

Problem of Interest

The problem of interest is

$$\mathbf{P}: \qquad \min_{\beta} P(\beta) := \frac{1}{n} \sum_{j=1}^{n} l_j(x_j^T \beta) + R(\beta) ,$$

- $l_j(\cdot)$ is a univariate loss function
- *R*(·) is a regularizer and/or an indicator function of a feasible region *Q* and/or a penalty term, coupling constraints, etc.
- In standard Frank-Wolfe setting, $R(\cdot)$ is an indicator function

SGFW and RDCM

Computational Guarantees

Contribution/Summary

Assuptions

Assumptions

For j = 1,..., n, the univariate function l_j(·) is strictly convex and γ-smooth, namely for all a and b,

$$|\dot{l}_j(a) - \dot{l}_j(b)| \leq \gamma |a - b|$$

2 dom $R(\cdot)$ is bounded, and the subproblem

$$\min_{\beta} c^{\mathsf{T}}\beta + R(\beta)$$

attains its optimum and can be easily solved for any c

 $0 \in \operatorname{dom} R(\cdot)$

 SGFW and RDCM

Computational Guarantees

Contribution/Summary

Examples in Statistical and Machine Learning

LASSO

$$\min_{\beta} \quad \frac{1}{2n} \sum_{j=1}^{n} (y_j - x_j^T \beta)^2$$

 $s.t. \quad \|\beta\|_1 \leq \delta \ ,$

where $l_j(\cdot) = \frac{1}{2}(y_j - \cdot)^2$ and $R(\beta) := I_{\{\|\beta\|_1 \le \delta\}}(\beta)$ (Here $I_Q(\cdot)$ is the indicator function on the set Q.)

Sparse Logistic Regression

$$\min_{\beta} \frac{1}{n} \sum_{j=1}^{n} \ln(1 + \exp(-y_j x_j^T \beta)) + \lambda \|\beta\|_1 ,$$

where $l_j(\cdot) = \ln(1 + \exp(-y_j \cdot))$, $R(\beta) = \lambda \|\beta\|_1 + I_{\{\|\beta\|_1 \le \ln(2)/\lambda\}}(\beta)$

Matrix Completion

$$\min_{eta \in \mathbb{R}^{n imes p}} \quad rac{1}{2|\Omega|} \sum_{(i,j) \in \Omega} (M_{i,j} - eta_{i,j})^2$$

s.t. $\|\beta\|_* \leq \delta$,

where $I_{(i,j)}(\cdot) = \frac{1}{2}(\cdot - M_{i,j})^2$ and $R(\beta) = I_{\{\|\beta\|_* \le \delta\}}(\beta)$

More examples can be found in [Jaggi 2013].

Computational Guarantees

Contribution/Summary

Frank-Wolfe and Generalized Frank-Wolfe

In the traditional Frank-Wolfe setting $R(\cdot)$ is an indicator function of a bounded set Q, and the Frank-Wolfe update is:

Traditional Frank-Wolfe Method

$$ilde{eta}^i \in rgmin_{eta \in \mathcal{Q}} \left\{
abla f(eta^i)^{\mathsf{T}}eta
ight\} \ \ ext{and} \ \ eta^{i+1} = (1 - lpha_i)eta^i + lpha_i ilde{eta}^i$$

In the generalized Frank-Wolfe setting where $R(\cdot)$ can be any convex function, the Generalized Frank-Wolfe update is:

Generalized Frank-Wolfe Method

$$\tilde{\beta}^i \in \arg\min\left\{\nabla f(\beta^i)^T\beta + R(\beta)\right\} \text{ and } \beta^{i+1} = (1 - \alpha_i)\beta^i + \alpha_i \tilde{\beta}^i$$

Computational Guarantees

Contribution/Summary

Stochastic Frank-Wolfe Method

In the stochastic setting, we can only compute an unbiased estimator \tilde{g}^i of the gradient $\nabla f(\beta^i)$, and the update is

Stochastic Frank-Wolfe Method

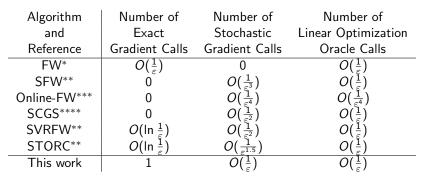
$$\tilde{\beta}^i \in \arg\min_{\beta \in \mathcal{Q}}\left\{ (\tilde{g}^i)^{\mathcal{T}}\beta \right\} \ \ \text{and} \ \ \beta^{i+1} = (1-\alpha_i)\beta^i + \alpha_i \tilde{\beta}^i$$

SGFW and RDCM

Computational Guarantees

Contribution/Summary

Stochastic Frank-Wolfe Method



*[Frank, Wolfe 1956], **[Hazan, Luo 2016], ***[Hazan, Kale 2012], ****[Lan, Zhou 2016]

Computational Guarantees

Contribution/Summary

Conjugate Function

Recall the definition of the conjugate of a function $f(\cdot)$:

$$f^*(y) := \sup_{x \in \mathsf{dom}_f(\cdot)} \{ y^T x - f(x) \} .$$

Proposition: Conjugate Functions

If $f(\cdot)$ is a closed convex function, then $f^{**}(\cdot) = f(\cdot)$. Furthermore:

- If (·) is γ-smooth with domain ℝ^p with respect to the norm || · || if and only if f*(·) is 1/γ-strongly convex with respect to the (dual) norm || · ||*.
- **2** If $f(\cdot)$ is differentiable and strictly convex, then the following three conditions are equivalent:

•
$$y = \nabla f(x)$$

•
$$x = \nabla f^*(y)$$
, and

•
$$x^T y = f(x) + f^*(y)$$
.

SGFW and RDCM

Computational Guarantees

Contribution/Summary

11

Primal-Dual Structure

The original problem is

$$\mathbf{P}: \qquad \min_{\beta} P(\beta) := \frac{1}{n} \sum_{j=1}^{n} l_j(x_j^T \beta) + R(\beta) \; .$$

Denote $X := [x_1^T; x_2^T; ...; x_n^T]$. Then the corresponding dual problem is

D:
$$\max_{w} D(w) := -R^* \left(-\frac{1}{n} X^T w \right) - \frac{1}{n} \sum_{j=1}^n l_j^*(w_j) .$$

Define the convex/concave saddle-function $\phi(\cdot, \cdot)$:

$$\phi(\beta, w) := \frac{1}{n} w^T X \beta - \frac{1}{n} \sum_{i=1}^n l_i^*(w_i) + R(\beta) .$$

We can write P and D in saddlepoint minimax format as:

P:
$$\min_{\beta} \max_{w} \phi(\beta, w)$$
 and **D**: $\max_{w} \min_{\beta} \phi(\beta, w)$.

SGFW and RDCM

 Computational Guarantees

Contribution/Summary 00

Stochastic Generalized Frank-Wolfe

and

Randomized Dual Coordinate Mirror Descent

SGFW and RDCM

Computational Guarantees

Contribution/Summary

"Substitute" Gradient

The problem of interest is

$$\mathbf{P}: \qquad \min_{\beta} P(\beta) := \frac{1}{n} \sum_{j=1}^{n} l_j(x_j^{\mathsf{T}}\beta) + R(\beta) \ .$$

The gradient of the first term is

$$\frac{1}{n}\sum_{j=1}^{n}\dot{l}_{j}(x_{j}^{T}\beta)x_{j} = \frac{1}{n}\sum_{j=1}^{n}\dot{l}_{j}(s_{j})x_{j} \text{ where } s_{j} = x_{j}^{T}\beta$$

It is too expensive to update $x_j^T \beta$ for all j = 1, ..., n in each iteration when *n* is large. "Substitute" gradient *d* is computed by

$$d=\frac{1}{n}\sum_{j=1}^n \dot{l}_j(s_j)x_j, \ j=1,\ldots,n \ .$$

- We will only update one s_j in each iteration
- As a result *d* will not in general be an unbiased estimator of the gradient

SGFW and RDCM

Computational Guarantees

Contribution/Summary

Stochastic Generalized Frank-Wolfe Method with Substitute Gradient

Stochastic Generalized Frank-Wolfe with Substitute Gradient(SGFW)

Initialize with $\bar{\beta}^{-1} = 0$, $s^0 = 0$, and substitute gradient $d^0 = \frac{1}{n} X^T \nabla L(s^0)$, with step-size sequences $\{\alpha_i\} \in (0, 1], \{\eta_i\} \in (0, 1]$.

SGFW and RDCM

Computational Guarantees

Contribution/Summary

Stochastic Generalized Frank-Wolfe Method with Substitute Gradient

Stochastic Generalized Frank-Wolfe with Substitute Gradient(SGFW)

Initialize with $\bar{\beta}^{-1} = 0$, $s^0 = 0$, and substitute gradient $d^0 = \frac{1}{n} X^T \nabla L(s^0)$, with step-size sequences $\{\alpha_i\} \in (0, 1], \{\eta_i\} \in (0, 1]$.

SGFW and RDCM

Computational Guarantees

Contribution/Summary

Stochastic Generalized Frank-Wolfe Method with Substitute Gradient

Stochastic Generalized Frank-Wolfe with Substitute Gradient(SGFW)

Initialize with $\bar{\beta}^{-1} = 0$, $s^0 = 0$, and substitute gradient $d^0 = \frac{1}{n} X^T \nabla L(s^0)$, with step-size sequences $\{\alpha_i\} \in (0, 1], \{\eta_i\} \in (0, 1]$.

SGFW and RDCM

Computational Guarantees

Contribution/Summary

Stochastic Generalized Frank-Wolfe Method with Substitute Gradient

Stochastic Generalized Frank-Wolfe with Substitute Gradient(SGFW)

Initialize with $\bar{\beta}^{-1} = 0$, $s^0 = 0$, and substitute gradient $d^0 = \frac{1}{n} X^T \nabla L(s^0)$, with step-size sequences $\{\alpha_i\} \in (0, 1], \{\eta_i\} \in (0, 1]$.

SGFW and RDCM

Computational Guarantees

Contribution/Summary

Stochastic Generalized Frank-Wolfe Method with Substitute Gradient

Stochastic Generalized Frank-Wolfe with Substitute Gradient(SGFW)

Initialize with $\bar{\beta}^{-1} = 0$, $s^0 = 0$, and substitute gradient $d^0 = \frac{1}{n} X^T \nabla L(s^0)$, with step-size sequences $\{\alpha_i\} \in (0, 1], \{\eta_i\} \in (0, 1]$.

SGFW and RDCM

Computational Guarantees

Contribution/Summary

Stochastic Generalized Frank-Wolfe Method with Substitute Gradient

Stochastic Generalized Frank-Wolfe with Substitute Gradient (SGFW)

Initialize with $\bar{\beta}^{-1} = 0$, $s^0 = 0$, and substitute gradient $d^0 = \frac{1}{n} X^T \nabla L(s^0)$, with step-size sequences $\{\alpha_i\} \in (0, 1], \{\eta_i\} \in (0, 1]$.

SGFW and RDCM

Computational Guarantees

Contribution/Summary

Stochastic Generalized Frank-Wolfe Method with Substitute Gradient

Stochastic Generalized Frank-Wolfe with Substitute Gradient (SGFW)

Initialize with $\bar{\beta}^{-1} = 0$, $s^0 = 0$, and substitute gradient $d^0 = \frac{1}{n} X^T \nabla L(s^0)$, with step-size sequences $\{\alpha_i\} \in (0, 1], \{\eta_i\} \in (0, 1]$.

SGFW and RDCM

Computational Guarantees

Contribution/Summary

Stochastic Generalized Frank-Wolfe Method with Substitute Gradient

Remarks

- SGFW takes place completely in the primal space
- We used two step-size sequences:
 - $\{\eta_i\}$ is used to update the s_{j_i} values
 - $\{\alpha_i\}$ is used to update the $\bar{\beta}^i$ values

SGFW and RDCM

Computational Guarantees

Contribution/Summary

Randomized Dual Coordinate Mirror Descent

The Dual Problem

$$\max_{w} D(w) := -R^* \left(-\frac{1}{n} X^T w \right) - \frac{1}{n} \sum_{j=1}^n l_j^*(w_j) .$$

- D(w) may not be differentiable, but it is strongly convex.
- Let us define $L^*(w) := \sum_{j=1}^n l_j^*(w_j)$ and $\tilde{\beta}^i \in \arg \min_{\beta} \left\{ \left(\frac{1}{n} (w^i)^T X \beta + R(\beta) \right) \right\}$,

then it turns out

$$g^i := \frac{1}{n} \left(X \widetilde{\beta}^i - \nabla L^*(w^i) \right) \in \partial D(w^i) .$$

Therefore

$$ilde{g}^{i} \leftarrow rac{1}{n} \left(x_{j_{i}}^{T} ilde{eta}^{i} - \dot{I}_{j_{i}}^{*}(w_{j_{i}}^{i})
ight) e_{j_{i}}$$

is a coordinate of a subgradient of D(w) at w^i .

SGFW and RDCM

Computational Guarantees

Contribution/Summary

Randomized Dual Coordinate Mirror Descent

Randomized Dual Coordinate Mirror Descent (RDCMD)

Define the prox function $h(w) := \frac{1}{n} \sum_{j=1}^{n} l_{j}^{*}(w_{j})$. Initialize with $w^{0} = \arg \min_{w} \frac{1}{n} \sum_{j=1}^{n} l_{j}^{*}(w_{j})$ and step-size sequences $\{\alpha_{i}\} \in (0, 1]$ and $\{\eta_{i}\} \in (0, 1]$. (Optional: set $\bar{\beta}^{-1} = 0$.)

For iterations i = 0, 1, ... **Compute Randomized Coordinate of Subgradient of** $D(\cdot)$ at w^i Compute $\tilde{\beta}^i \in \arg \min_{\beta} \left\{ \left(\frac{1}{n} (w^i)^T X \beta + R(\beta) \right) \right\}$

Choose random index. Choose $j_i \in \mathcal{U}[1, ..., n]$ Compute subgradient coordinate vector: $\tilde{g}^i \leftarrow \frac{1}{n} \left(x_{j_i}^T \tilde{\beta}^i - \dot{I}_{j_i}^* (w_{j_i}^i) \right) e_{j_i}$

Update dual variable: Compute $w^{i+1} = \arg \min_{w} \left\{ \left\langle -\eta_i \tilde{g}^i, w - w^i \right\rangle + D_h(w, w^i) \right\}$

SGFW and RDCM

Computational Guarantees

Contribution/Summary

Randomized Dual Coordinate Mirror Descent

Randomized Dual Coordinate Mirror Descent (RDCMD)

Define the prox function $h(w) := \frac{1}{n} \sum_{i=1}^{n} l_i^*(w_i)$. Initialize with $w^0 = \arg \min_w \frac{1}{n} \sum_{i=1}^{n} l_i^*(w_i)$ and step-size sequences $\{\alpha_i\} \in (0, 1]$ and $\{\eta_i\} \in (0, 1]$. (Optional: set $\bar{\beta}^{-1} = 0$.)

For iterations i = 0, 1, ... **Compute Randomized Coordinate of Subgradient of** $D(\cdot)$ at w^i Compute $\tilde{\beta}^i \in \arg \min_{\beta} \left\{ \left(\frac{1}{n} (w^i)^T X \beta + R(\beta) \right) \right\}$

Choose random index. Choose $j_i \in \mathcal{U}[1, ..., n]$ **Compute subgradient coordinate vector:** $\tilde{g}^i \leftarrow \frac{1}{n} \left(x_{j_i}^T \tilde{\beta}^i - \dot{l}_{j_i}^* (w_{j_i}^i) \right) e_{j_i}$

Update dual variable: Compute $w^{i+1} = \arg \min_{w} \left\{ \left\langle -\eta_i \tilde{g}^i, w - w^i \right\rangle + D_h(w, w^i) \right\}$

SGFW and RDCM

Computational Guarantees

Contribution/Summary

Randomized Dual Coordinate Mirror Descent

Randomized Dual Coordinate Mirror Descent (RDCMD)

Define the prox function $h(w) := \frac{1}{n} \sum_{i=1}^{n} l_i^*(w_i)$. Initialize with $w^0 = \arg \min_w \frac{1}{n} \sum_{i=1}^{n} l_i^*(w_i)$ and step-size sequences $\{\alpha_i\} \in (0, 1]$ and $\{\eta_i\} \in (0, 1]$. (Optional: set $\bar{\beta}^{-1} = 0$.)

For iterations i = 0, 1, ... **Compute Randomized Coordinate of Subgradient of** $D(\cdot)$ at w^i Compute $\tilde{\beta}^i \in \arg \min_{\beta} \left\{ \left(\frac{1}{n} (w^i)^T X \beta + R(\beta) \right) \right\}$

Choose random index. Choose $j_i \in \mathcal{U}[1, ..., n]$ **Compute subgradient coordinate vector:** $\tilde{g}^i \leftarrow \frac{1}{n} \left(x_{i_i}^T \tilde{\beta}^i - \dot{l}_{i_i}^* (w_{i_i}^i) \right) e_{i_i}$

Update dual variable: Compute $w^{i+1} = \arg \min_{w} \left\{ \left\langle -\eta_i \tilde{g}^i, w - w^i \right\rangle + D_h(w, w^i) \right\}$

SGFW and RDCM

Computational Guarantees

Contribution/Summary

Randomized Dual Coordinate Mirror Descent

Randomized Dual Coordinate Mirror Descent (RDCMD)

Define the prox function $h(w) := \frac{1}{n} \sum_{i=1}^{n} l_i^*(w_i)$. Initialize with $w^0 = \arg \min_w \frac{1}{n} \sum_{i=1}^{n} l_i^*(w_i)$ and step-size sequences $\{\alpha_i\} \in (0, 1]$ and $\{\eta_i\} \in (0, 1]$. (Optional: set $\bar{\beta}^{-1} = 0$.)

For iterations i = 0, 1, ... **Compute Randomized Coordinate of Subgradient of** $D(\cdot)$ at w^i Compute $\tilde{\beta}^i \in \arg \min_{\beta} \left\{ \left(\frac{1}{n} (w^i)^T X \beta + R(\beta) \right) \right\}$

Choose random index. Choose $j_i \in \mathcal{U}[1, ..., n]$ **Compute subgradient coordinate vector:** $\tilde{g}^i \leftarrow \frac{1}{n} \left(x_{j_i}^T \tilde{\beta}^i - \dot{l}_{j_i}^* (w_{j_i}^i) \right) e_{j_i}$

Update dual variable: Compute $w^{i+1} = \arg \min_{w} \left\{ \left\langle -\eta_i \tilde{g}^i, w - w^i \right\rangle + D_h(w, w^i) \right\}$

SGFW and RDCM

Computational Guarantees

Contribution/Summary

Recall the Bregman Distance

$$D_h(w, w^i) := h(w) - h(w^i) - \langle \nabla h(w^i), w - w^i \rangle$$

SGFW and RDCM

Computational Guarantees

Contribution/Summary

Randomized Dual Coordinate Mirror Descent

Randomized Dual Coordinate Mirror Descent (RDCMD)

Define the prox function $h(w) := \frac{1}{n} \sum_{i=1}^{n} l_i^*(w_i)$. Initialize with $w^0 = \arg \min_w \frac{1}{n} \sum_{i=1}^{n} l_i^*(w_i)$ and step-size sequences $\{\alpha_i\} \in (0, 1]$ and $\{\eta_i\} \in (0, 1]$. (Optional: set $\bar{\beta}^{-1} = 0$.)

For iterations i = 0, 1, ... **Compute Randomized Coordinate of Subgradient of** $D(\cdot)$ at w^i Compute $\tilde{\beta}^i \in \arg \min_{\beta} \left\{ \left(\frac{1}{n} (w^i)^T X \beta + R(\beta) \right) \right\}$

Choose random index. Choose $j_i \in \mathcal{U}[1, ..., n]$ **Compute subgradient coordinate vector:** $\tilde{g}^i \leftarrow \frac{1}{n} \left(x_{j_i}^T \tilde{\beta}^i - \dot{l}_{j_i}^* (w_{j_i}^i) \right) e_{j_i}$

Update dual variable: Compute $w^{i+1} = \arg \min_{w} \left\{ \left\langle -\eta_i \tilde{g}^i, w - w^i \right\rangle + D_h(w, w^i) \right\}$

SGFW and RDCM

Computational Guarantees

Contribution/Summary

Randomized Dual Coordinate Mirror Descent

Remarks

- RDCMD takes place completely in the dual space.
- We also used two step-size sequences:
 - $\{\eta_i\}$ is used in the prox subproblem updates of w^i
 - $\{\alpha_i\}$ is used in the optional accounting to update the $\bar{\beta}^i$ values

SGFW and RDCM

Computational Guarantees

Contribution/Summary

Equivalence Lemma

Equivalence Lemma

GSFW and RDCMD are equivalent as follows: the iterate sequence of either algorithm exactly corresponds to an iterate sequences of the other.

- In the deterministic case, [Bach 2015] showed that the Frank-Wolfe method for the primal problem is equivalent to mirror descent algorithm for the dual problem under some assumptions
- This provides a new primal interpretation of a randomized dual coordinate descent type of algorithm first introduced in [Shalev-Shwartz, Zhang 2013].

Computational Guarantees

Contribution/Summary 00

Computational Guarantees

Computational Guarantees

SGFW and RDCM

Computational Guarantees

Contribution/Summary

First, Some New Metrics

Let

$$M := \max_{\beta \in \mathsf{dom}_{R}(\cdot)} \max_{j=1,\ldots,n} \{ |x_j^T \beta| \} ,$$

then $M < +\infty$ if dom $R(\cdot)$ is bounded. Moreover, when $||x_j||$ is bounded for any j, M is independent of n.

• Let $W \subset \mathbb{R}^n$ be the set of "optimal *w* responses" to values $\beta \in \text{dom}R(\cdot)$ in the saddle-function $\phi(\beta, w)$, namely:

$$\mathcal{W} := \{ \hat{w} \in \mathbb{R}^n : \hat{w} \in \arg \max_w \phi(\hat{\beta}, w) \text{ for some } \hat{\beta} \in \operatorname{dom} R(\cdot) \} \ .$$

Let D_{max} be any upper bound on D_h(ŵ, w⁰) as ŵ ranges over all values in W:

$$D_h(\hat{w},w^0) \leq D_{\mathsf{max}} \;\; \mathsf{for \; all} \;\; \hat{w} \in \mathcal{W} \;.$$

SGFW and RDCM

Computational Guarantees

Contribution/Summary

An Upper Bound on D_{\max}

Proposition: Upper bound on D_{\max}

It holds that

$$D_{\max} \leq \gamma M^2$$
 .

• However, a much smaller value of D_{\max} can often be easily derived based on the structure of $l_j(\cdot)$. For example, in logistic regression we have simply that $D_{\max} = \ln(2)$.

Computational Guarantees

Contribution/Summary

Convergence Guarantees when $R(\cdot)$ is not Strongly Convex

Theorem: Convergence Guarantees when $R(\cdot)$ is not Strongly Convex

Consider SGFW (or RDCMD) with step-size sequences $\alpha_i = \frac{2(2n+i)}{(i+1)(4n+i)}$ and $\eta_i = \frac{2n}{2n+i+1}$ for i = 0, 1, ... Denote

$$ar{w}^k = rac{2}{(4n+k)(k+1)} \sum_{i=0}^k (2n+i) w^i$$

It holds for all $k \ge 0$ that

$$\mathbb{E}\left[P(\bar{\beta}^k) - D(\bar{w}^k)\right] \leq \frac{8n\gamma M^2}{(4n+k)} + \frac{2n(2n-1)D_{\max}}{(4n+k)(k+1)}$$

Computational Guarantees

Contribution/Summary

Convergence Guarantees when $R(\cdot)$ is not Strongly Convex

Theorem: Convergence Guarantees when $R(\cdot)$ is not Strongly Convex

Consider SGFW (or RDCMD) with step-size sequences $\alpha_i = \frac{2(2n+i)}{(i+1)(4n+i)}$ and $\eta_i = \frac{2n}{2n+i+1}$ for i = 0, 1, ... Denote

$$ar{w}^k = rac{2}{(4n+k)(k+1)} \sum_{i=0}^k (2n+i) w^i$$

It holds for all $k \ge 0$ that

$$\mathbb{E}\left[P(\bar{\beta}^k) - D(\bar{w}^k)\right] \leq \frac{8n\gamma M^2}{(4n+k)} + \frac{2n(2n-1)D_{\max}}{(4n+k)(k+1)}$$

We prove this theorem through the dual lens.

Computational Guarantees

Contribution/Summary

Randomized Dual Coordinate Mirror Descent

Randomized Dual Coordinate Mirror Descent (RDCMD)

Define the prox function $h(w) := \frac{1}{n} \sum_{i=1}^{n} l_i^*(w_i)$. Initialize with $w^0 = \arg \min_w \frac{1}{n} \sum_{i=1}^{n} l_i^*(w_i)$ and step-size sequences $\{\alpha_i\} \in (0, 1]$ and $\{\eta_i\} \in (0, 1]$. (Optional: set $\bar{\beta}^{-1} = 0$.)

For iterations i = 0, 1, ... **Compute Randomized Coordinate of Subgradient of** $D(\cdot)$ at w^i Compute $\tilde{\beta}^i \in \arg \min_{\beta} \left\{ \left(\frac{1}{n} (w^i)^T X \beta + R(\beta) \right) \right\}$

Choose random index. Choose $j_i \in \mathcal{U}[1, ..., n]$ **Compute subgradient coordinate vector:** $\tilde{g}^i \leftarrow \frac{1}{n} \left(x_{j_i}^T \tilde{\beta}^i - \dot{l}_{j_i}^* (w_{j_i}^i) \right) e_{j_i}$

Update dual variable: Compute $w^{i+1} = \arg \min_{w} \left\{ \left\langle -\eta_i \tilde{g}^i, w - w^i \right\rangle + D_h(w, w^i) \right\}$

- Previous work on dual coordinate methods need extra assumptions (such as $R(\cdot)$ is strongly convex) and extra mechanics to obtain primal certificates.
- However, first-order methods (stochastic or deterministic, accelerated or non-accelerated, mirror descent or dual averaging) should naturally reduce the primal-dual gap bound, and it is a matter of seeing where this is manifest.

SGFW and RDCM

Computational Guarantees

Contribution/Summary

Proof Technique: First-Order Methods (FOM) Naturally Minimize the Primal-Dual Gap Bound, continued

• In standard proof for FOM, one always ends up with

$$D(w) - D(\bar{w}^k) \leq \sum_{i=0}^k \gamma_i (D(w) - D(w^i)) \leq \sum_{i=0}^k \gamma_i \langle g^i, w - w^i \rangle \leq \cdots$$

Actually we have

$$\sum_{i=0}^{k} \gamma_i \langle \boldsymbol{g}^i, \boldsymbol{w} - \boldsymbol{w}^i \rangle = \sum_{i=0}^{k} \gamma_i \langle \nabla_{\boldsymbol{w}} \phi(\tilde{\beta}^i, \boldsymbol{w}^i), \boldsymbol{w} - \boldsymbol{w}^i \rangle$$
$$\geq \sum_{i=0}^{k} \gamma_i \left(\phi(\tilde{\beta}^i, \boldsymbol{w}) - D(\boldsymbol{w}^i) \right) \geq \phi(\bar{\beta}^k, \boldsymbol{w}) - D(\bar{\boldsymbol{w}}^k) ,$$

• Choosing $w = \arg \min_{w} \phi(\bar{\beta}^{k}, w)$, the right-hand-side becomes $P(\bar{\beta}^{k}) - D(\bar{w}^{k})$.

SGFW and RDCM

Computational Guarantees

Contribution/Summary

Proof Technique: Randomized Coordinate Mirror Descent for Non-smooth Function

- There are many results on randomized coordinate descent types of methods for smooth optimization, but not for non-smooth optimization due to the lack of smoothness (used to upper-bound the function).
- One can think of a randomized coordinate of a subgradient as an unbiased estimator of an exact subgradient (up to a scalar multiple). Recall that

$$\tilde{g}^{i} \leftarrow \frac{1}{n} \left(x_{j_{i}}^{T} \tilde{\beta}^{i} - \dot{I}_{j_{i}}^{*}(w_{j_{i}}^{i}) \right) e_{j_{i}} ,$$

whereby

$$n \cdot \mathbb{E}[\tilde{g}^i] = g^i \in \partial D(w^i)$$
.

 We use the new analysis for stochastic mirror descent algorithm for non-smooth optimization in [Lu 2017].

Computational Guarantees

Contribution/Summary

Convergence Guarantees when $R(\cdot)$ is not Strongly Convex

Theorem: Convergence Guarantees when $R(\cdot)$ is not Strongly Convex

Consider SGFW (or RDCMD) with step-size sequences $\alpha_i = \frac{2(2n+i)}{(i+1)(4n+i)}$ and $\eta_i = \frac{2n}{2n+i+1}$ for i = 0, 1, ... Denote

$$ar{w}^k = rac{2}{(4n+k)(k+1)} \sum_{i=0}^k (2n+i) w^i$$

It holds for all $k \ge 0$ that

$$\mathbb{E}\left[P(\bar{\beta}^k) - D(\bar{w}^k)\right] \leq \frac{8n\gamma M^2}{(4n+k)} + \frac{2n(2n-1)D_{\max}}{(4n+k)(k+1)}$$

• We prove the theorem through the dual lens.

Computational Guarantees

Contribution/Summary

Relative Strong Convexity

Definition: Relative Strong Convexity [Lu, Freund, Nesterov 2018]

 $f(\cdot)$ is μ -strongly convex relative to $h(\cdot)$ if for any x, y, there is a scalar μ for which

$$f(y) \ge f(x) + \langle \nabla f(x), y - x \rangle + \mu D_h(y, x).$$

- This is a stronger definition than h(·) is strongly convex with respect to a norm and f(·) is strongly convex with respect to that norm.
- But it is only with this stronger definition that we have a linear convergence result for the mirror descent algorithm ([Lu, Freund, Nesterov 2018]), but see also [Hanzely and Richtarik 2018].

Computational Guarantees

Contribution/Summary

Coordinate-Wise Relative Smoothness

Definition: Coordinate-Wise Relative Smoothness (Adapted from [Hanzely and Richtarik 2018])

 $f(\cdot)$ is coordinate-wise σ -smooth relative to a separable convex reference function $h(\cdot)$ if there is a scalar σ such that for any x, scalar t and coordinate j and $y = x + te_j$ we have

$$f(y) \leq f(x) + \langle \nabla f(x), y - x \rangle + \sigma D_h(y, x).$$

Contribution/Summary

Convergence Guarantees when $R(\cdot)$ is Strongly Convex

Theorem: Convergence Guarantees when $R(\cdot)$ is Strongly Convex

Assume D(w) is σ coordinate-wise smooth relative to h(w). Consider the Randomized Dual Coordinate Mirror Descent method with step-size $\eta_i = \frac{1}{\sigma}$ and $\alpha_i = \frac{\sigma^i}{\sigma^{i+1} - (\sigma - 1/n)^{i+1}}$. Denote

$$\bar{w}^k \leftarrow \frac{1}{\sum_{i=0}^k \left(\frac{n\sigma}{n\sigma-1}\right)^i} \sum_{i=0}^k \left(\frac{n\sigma}{n\sigma-1}\right)^i w^i ,$$

then we have

$$\mathbb{E}\left[P(\bar{\beta}^k) - D(\bar{w}^k)\right] \leq \frac{D_{\max}}{\left(1 + \frac{1}{n\sigma - 1}\right)^k - 1} \leq \frac{\gamma M^2}{\left(1 + \frac{1}{n\sigma - 1}\right)^k - 1}.$$

A simpler (but looser) bound is simply

$$\frac{D_h(x,x^0)}{\left(1+\frac{1}{n\sigma-1}\right)^k - 1} \le n\sigma \left(1 - \frac{1}{n\sigma}\right)^k D_h(x,x^0) .$$
43

Computational Guarantees

Contribution/Summary

Convergence Guarantees when $R(\cdot)$ is Strongly Convex

Corollary

(1) If $R(\cdot)$ is not separable, let $\sigma = \frac{\lambda_{\max}(XX^{T})}{n\mu\gamma} + 1$, then the Theorem implies

$$\mathbb{E}\left[P(\bar{\beta}^k) - D(\bar{w}^k)\right] \leq \frac{M^2 \lambda_{\max}(XX^T)}{\mu} \left(1 - \frac{\lambda_{\max}(XX^T)}{\mu\gamma}\right)^k$$

(2) If $R(\cdot)$ is separable, let $\sigma = \frac{\max_j ||X_j||_2^2}{n\mu\gamma} + 1$, then the Theorem implies

$$\mathbb{E}\left[P(\bar{\beta}^k) - D(\bar{w}^k)\right] \leq \frac{M^2 \max_j \|X_j\|_2^2}{\mu} \left(1 - \frac{\max_j \|X_j\|_2^2}{\mu\gamma}\right)^k.$$

SGFW and RDCM

Computational Guarantees

Contribution/Summary

Some Discussions/Extensions

- Both the algorithm and the analysis can be easily extended to the mini-batch setting.
- We can also generalize the algorithm and analysis to non-uniform sampling.
- When R(·) is strongly convex, we can also achieve accelerated linear convergence by utilizing the technique developed in [Lin, Lu, Xiao 2015].
- The unaccelerated version of [Lin, Lu, Xiao 2015] can be viewed as randomized dual coordinate mirror descent with the reference function $h(w) = \frac{1}{n} \sum_{j=1}^{n} l_j^*(w_j) + \frac{\lambda}{2} ||w||^2$ for some λ , while we here use randomized dual coordinate mirror descent with reference function $h(w) = \frac{1}{n} \sum_{j=1}^{n} l_j^*(w_j)$.

Contribution/Summary

Contribution/Summary:

- Stochastic Generalized Frank-Wolfe Method with Substitute Gradient
- Randomized Dual Coordinate Mirror Descent Algorithm
- Equivalence of SGFW and RDCMD, which leads to new primal interpretations of dual coordinate methods
- $O(\frac{1}{\epsilon})$ Stochastic Frank-Wolfe Method
- Linear convergence result when $R(\cdot)$ is strongly convex
- We show that these FOMs inherently reduce the primal-dual gap bound
- Computational guarantees for randomized coordinate descent for minimizing non-smooth functions

SGFW and RDCM

Computational Guarantees

Contribution/Summary

References

- Francis Bach, Duality between subgradient and conditional gradient methods
- Filip Hanzely and Peter Richtárik, Fastest rates for stochastic mirror descent methods
- Elad Hazan and Satyen Kale, Projection-free online learning
- Elad Hazan and Haipeng Luo, Variance-reduced and projection-free stochastic optimization
- Martin Jaggi, Revisiting Frank-Wolfe: Projection-free sparse convex optimization
- Guanghui Lan and Yi Zhou, Conditional gradient sliding for convex optimization
- Qihang Lin, Zhaosong Lu, and Lin Xiao, An accelerated randomized proximal coordinate gradient method and its application to regularized empirical risk minimization
- Haihao Lu, " relative-continuity" for non-lipschitz non-smooth convex optimization using stochastic (or deterministic) mirror descent
- Haihao Lu, Robert M Freund, and Yurii Nesterov, Relatively smooth convex optimization by first-order methods, and applications
- Zhaosong Lu and Lin Xiao, On the complexity analysis of randomized block-coordinate descent methods
- Yu Nesterov, Efficiency of coordinate descent methods on huge-scale optimization problems
- Peter Richtarik and Martin Takac, Iteration complexity of randomized block-coordinate descent methods for minimizing a composite function
- Shai Shalev-Shwartz and Tong Zhang, Stochastic dual coordinate ascent methods for regularized loss minimization
- Shai Shalev-Shwartz and Tong Zhang, Accelerated proximal stochastic dual coordinate ascent for regularized loss minimization