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Abstract— An algorithm for generating schedules of airport
runway operations that are robust to perturbations caused by
system uncertainty is presented. The algorithm computes a
tradeoff curve between runway throughput and the probability
that random deviations of aircraft from the schedule violate
system constraints and require intervention from air traffic
controllers. The algorithm accommodates various operational
constraints imposed by the terminal-area system such as
minimum separation requirements between successive aircraft,
earliest and latest times for each aircraft, precedence constraints
among aircraft and the limited flexibility in deviating from the
First-Come-First-Served (FCFS) order afforded to air traffic
controllers (a concept known as Constrained Position Shifting).
When the maximum allowable number of position shifts from
the FCFS order is bounded by a constant, the complexity of the
algorithm is O(n(L/ε)3), where n is the number of aircraft, L
is largest difference between the latest and earliest arrival time
over all aircraft, and ε is the desired output accuracy.

I. INTRODUCTION

The safe and efficient planning of airport operations are
an important part of the responsibility borne by the Air
Traffic Control (ATC) system. Research has shown that the
aircraft arrivals at the boundaries of the Air Route Traffic
Control Centers (ARTCCs or Centers) surrounding most
major airports are nearly-Poisson in nature [1]; this imposes
a substantial burden on the air traffic controllers, who have a
short period of time (about 45 min) to determine the landing
times and positions of aircraft in the landing sequence, and
to also issue the appropriate control actions necessary to
obtain the sequence [2,3]. Similar challenges are also faced
by controllers who are responsible for scheduling departure
runways at airports, where the surface taxi routes and airline
schedules constrain runway operations, in combination with
the downstream constraints (such as Miles-in-Trail restric-
tions) imposed by the terminal airspace [4].

The responsibilities of air traffic controllers are further
complicated by the presence of uncertainty in the system.
Controllers depend on predictions of the meter fix and
runway times of arrival (estimated using the time of crossing
the Center boundary and the Trajectory Synthesizer [2]) to
determine a suitable schedule for runway operations, and
there is uncertainty associated with these predictions. The
sources of this uncertainty include weather effects such as
winds, the limitations imposed by the precision of on-board
equipment, as well as the uncertainty in pushback times and
runway times of arrival for departing aircraft [5,6,7].
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The presence of uncertainty in the system motivates the
development of robust schedules for runway operations.
The notion of robustness is one that can be defined in
several ways. In the context of aircraft arrival and departure
sequences, the uncertainty in the system could result in the
aircraft violating important safety constraints, thereby neces-
sitating resequencing on the part of the air traffic controllers.
For this reason, we consider a runway sequence robust if
there is a high probability that an air traffic controller does
not have to intervene once the schedule has been determined.

Runway schedules need to satisfy the different operational
constraints that are imposed by the system. In this paper, we
present a technique to determine robust arrival and departure
schedules that can potentially improve runway productivity,
while still satisfying the various constraints required of any
practical solution. We show that the proposed method is com-
putationally efficient, with complexity that scales linearly
with the number of aircraft, and and as the cube of the largest
difference between the latest and earliest arrival time over all
aircraft.

The algorithm proposed in this paper is based on dy-
namic programming, using concepts from the algorithm for
scheduling arrival flows that was proposed in our earlier
work [8] for deterministic environments. However, the output
of the algorithm is not a single schedule as before, but a
tradeoff between the probability of controller intervention
(reliability) and the time to complete runway operations
for the given set of aircraft (makespan of the sequence).
The proposed solution gives system designers the ability to
set the appropriate threshold which determines the tradeoff
between robustness and efficiency. In addition to scheduling,
the proposed algorithm can be used to decide broader policy
issues such as the benefit (in terms of throughput and safety)
of introducing on-board or ground-based systems to decrease
the uncertainty in the system.

II. PROBLEM DESCRIPTION

The goal of algorithms for scheduling runway operations
is to increase the throughput of the runway system while
still satisfying the various safety and operational constraints
of the system. In this paper, we primarily use the example of
scheduling arrivals at a runway, but the techniques described
can also be utilized for departure runway scheduling.

A. Constraints
1) Minimum separation requirements: The primary con-

straint that air traffic controllers need to ensure in an arrival
sequence is that the inter-arrival spacings (time interval
between successive landings) equal or exceed the minimum



requirements specified by the Federal Aviation Administra-
tion (FAA). For reasons of safety, it is necessary that an
arriving aircraft does not face interference from the wake-
vortex of the aircraft landing in front of it. The risk posed by
the wake vortex depends on the sizes of both the leading and
trailing aircraft; therefore, the required time interval between
two landings depends on the sizes of the two aircraft. For
example, a small aircraft following a large aircraft needs
greater separation than that required by a large aircraft
following another large aircraft. The FAA also specifies
similar spacing restrictions between departure operations on
a runway, and between arrival and departure operations [9].

The most common approach to sequencing aircraft has
been to maintain the First-Come-First-Served (FCFS) or-
der [10], under which aircraft utilize the runway in order of
their estimated arrival times at the runway, and air traffic con-
trollers only enforce the minimum separation requirements.
The advantages to the FCFS schedule are that it is easy
to implement and reduces controller workload, and that it
maintains a sense of fairness.

A drawback of the FCFS sequence is that it may lead
to reduced runway throughput due to large spacing require-
ments [10]. Low runway throughput leads to congestion
around an airport and subsequent delays, compromising both
safety and efficiency. This provides an incentive to deviate
from the FCFS sequence to achieve sequences that lead to
maximum runway throughput. However, the terminal area
is an extremely dynamic environment, and resequencing
aircraft increases the workload of controllers [11]. Due to
limited flexibility, it might not be possible for air traffic
controllers to implement an optimal sequence that deviates
significantly from the FCFS order. However, the air traffic
controllers do have a certain degree of flexibility and can
quite easily shift an aircraft in the sequence by a small num-
ber of positions. This is the basic motivation for Constrained
Position Shifting (CPS) methods.

2) Limited flexibility: CPS, first proposed by Dear [12],
stipulates that an aircraft may be moved up to a specified
maximum number of positions from its FCFS order. We
denote the maximum number of position shifts allowed as
k (k ≤ 3 for most runway systems), and the resulting
environment as a k-CPS scenario. For example, in 2-CPS,
an aircraft that is in the 8th position in the FCFS order
can be placed at the 6th, 7th, 8th, 9th, or 10th position
in the new order. In addition to accommodating the limited
flexibility afforded to the controllers, the restricted deviation
from the FCFS order helps maintain a sense of fairness in
the perception of the aircraft operators, and also increases the
predictability of landing times and positions for the pilots. A
detailed description of CPS and its advantages can be found
in prior work by the authors [8], and references within.

3) Time-windows: While determining a schedule for the
runway, we need to account for the possible times that an
aircraft can utilize the runway. In the case of the scheduling
of aircraft landings, these times will correspond to the pos-
sible arrival times at the runway, corresponding to different
controller requests to the aircraft. There is typically an

earliest time at which the aircraft can reach the runway,
as well as a latest time [2]. In the case of departure
runway scheduling, these could be the result of traffic flow
management strategies, such as Ground Delay Programs at
destination airports, during which aircraft at origin airports
are assigned departure time windows [7,13]. In general,
however, it is not necessary that the arrival time-windows
of an aircraft belong to a connected set; our approach is
capable of handling situations in which an aircraft’s runway
time of arrival could lie in any one of a number of time
intervals [8].

4) Precedence relations: The final set of constraints to be
considered are precedence constraints, which are those of the
form “Aircraft i must land before aircraft j.” Such constraints
are important because in almost all current ATC automation
systems, overtaking is limited [14,15,16]; in addition, airlines
themselves may have preferences in precedence relations,
arising from their banking strategies [17].

B. Uncertainty
In prior work [8], we presented an algorithm to compute

the optimal sequence of runway operations, subject to the
constraints outlined above, in a deterministic environment.
However, the presence of uncertainty results in perturbed
schedules, with the aircraft no longer landing at the intended
landing times. This lack of precision can lead to the violation
of the minimum separation requirements between aircraft,
and require intervention by air traffic controllers to enforce
the safety minimums. The degree to which an aircraft is
likely to be perturbed from its scheduled arrival time at the
runway depends on the equipage of the aircraft. For example,
aircraft with precise Flight Management Systems (FMS) are
likely to be more accurate in meeting their scheduled times
than aircraft which are less equipped. There has been prior
experimental and simulation-based research on the ability
of aircraft, especially arrivals, to meet their Required Times
of Arrival (RTA) under different conditions. For example,
the standard deviation of the the meter fix crossing time
is about 100 sec for current Decision Support Tools with
voice-based communications, and is expected to be about
50 sec or less for aircraft equipped with FMS and datalink
communications [6,18,19]. The runway arrival time accuracy
(as predicted at the metering fix) has been measured to be
about (−2.9± 11.2) sec for FMS equipped aircraft (without
datalinks), and (5.5 ± 15.2) sec for conventional jets [20];
aircraft equipped with both FMS and datalinks are predicted
to have a runway arrival time error of ±5 sec or less [6]. It
is expected that in the Next Generation Air Transportation
System (NGATS), similar estimates of delivery accuracy of
aircraft will be available for different levels of equipage
and atmospheric conditions, both on the surface and in the
airspace [21].

The benefits of improved accuracy of arrivals were studied
by Meyn and Erzberger [6], who used stochastic simulations
for FCFS sequencing with parallel runway reassignments.
The problem of the minimizing the likelihood of spacings
being violated due to uncertainty was solved by adding a



buffer to the minimum inter-arrival separation requirements
and then solving the deterministic scheduling problem. In
such situations, the optimal size of the buffers can then
be computed by using the deterministic variant of CPS [8]
within a binary search routine. This form of buffering is
useful if all aircraft separations were buffered by some fixed
fraction. However, we would like to solve the more difficult
case in which all aircraft are not equally equipped (mixed
equipage), and the uncertainty associated with meeting the
scheduled times of arrival is not the same for all of them.
In such situations, buffering all aircraft could lead to sub-
optimal solutions.

Most prior research on the accuracy of aircraft arrivals
make the simplifying assumption that the inter-arrival spac-
ings in a sequence of aircraft landings are independent of
each other [6,22]. However, this assumption does not hold
true in practice. For example, in a sequence of three aircraft
(a, b, c), knowledge of the inter-arrival spacing between
a and b provides information about the arrival time of b,
which in turn affects the probability distribution of the inter-
arrival spacing between aircraft b and aircraft c. The exact
distribution of the inter-arrival spacing between two aircraft
is dependent on the inter-arrival spacing between all pairs
of aircraft that preceded them. However, it can be shown
that when there is a substantial difference in the accuracy
of equipped and non-equipped aircraft, it is sufficient to
consider all preceding spacings until the closest equipped
aircraft in the sequence. In this paper, we assume that
the inter-arrival spacing depends only on the immediately
preceding inter-arrival time. We believe that this will be
a reasonable approximation in the NGATS with increased
incentives to equip, and at least 50% of aircraft are likely to
be equipped, especially in congested terminal-areas [21].

In addition to the uncertainty associated with an aircraft
meeting its scheduled time at the runway, there is also the un-
certainty associated with the aircraft being able to be present
at the runway at a particular time. This implies that instead
of time-windows representing the times when an aircraft can
utilize the runway, there is a distribution representing the
probability that an aircraft can use the runway at a particular
time (for example, the probability that an aircraft can land at
a particular time, in the case of arrival flows into an airport).
Among the sources of this type of uncertainty are convective
weather effects like thunderstorms, during which pilots have
been observed to penetrate through the weather cell or divert
slightly from their original paths with some likelihood, rather
than a rerouting around the cell [23,24].

C. Robustness and reliability
There are several possible definitions of the robustness or

reliability of a schedule for runway operations. For example,
airlines schedule their flights in major hubs such that passen-
gers from a bank of arriving flights connect to (one or more)
departing flights. In such situations, airlines prioritize their
flights, and reliability is measured by the degree to which
aircraft maintain their order with respect to other aircraft in
the same bank, and not on the landing times [17]. We have

seen in Section II-A how precedence relations can account
for this form of airline prioritization. The more adverse
effect of uncertainty from an air traffic control perspective is
the violation of minimum separation requirements [6]. The
violation of these spacing constraints means that an air traffic
controller has to intervene to enforce spacing between the
two aircraft involved. This in turn may affect the schedule of
all the aircraft that follow, requiring interventions to readjust
the scheduled landing times of subsequent aircraft in the
sequence. Given a sequence of aircraft, the reliability of
a schedule can be measured in terms of the probability
that none of the inter-aircraft spacing constraints will be
violated, or in other words, the probability that a controller
intervention will not be required.

Let “ti↔ tj” represent the event that the minimum spacing
between two aircraft i and j (denoted δij) will not be violated
given that i is scheduled to land at ti and j is scheduled to
land at tj . If the scheduled arrival times are denoted s(·) and
the actual landing times are denoted a(·), then
ti↔ tj ⇒ {a(j) ≥ a(i) + δij| s(i) = ti ∧ s(j) = tj}.

Given a sequence of aircraft {i1, . . . , in} with correspond-
ing scheduled arrival times {ti1 , . . . , tin

}, we define the
reliability of the schedule, denoted by R(ti1 , . . . , tin

), as the
probability that none of the spacing requirements is violated.
R(ti1 , · · · , tin) = Pr{ti1 ↔ ti2 ∧ ti2 ↔ ti3 ∧ · · · ∧ tin−1 ∧ tin}

= Pr{tin−1↔ tin| ti1↔ ti2∧· · ·∧ tin−2↔ tin−1}

×Pr{ti1 ↔ ti2 ∧ · · · ∧ tin−2 ↔ tin−1}.

As explained in Section II-B, we assume that the inter-
arrival spacing between any pair of aircraft is conditionally
independent of the past history of arrivals, given the inter-
arrival spacing of the immediately preceding pair. In other
words, Pr{tin−1↔ tin|ti1↔ ti2∧· · ·∧tin−2↔ tin−1} = Pr{tin−1↔

tin|tin−2↔ tin−1}.
Pr{tin−1 ∧ tin | ti1 ↔ ti2 ∧ · · · ∧ tin−2 ↔ tin−1}

×Pr{ti1 ↔ ti2 ∧ · · · ∧ tin−2 ↔ tin−1}

= Pr{tin−1 ∧ tin | tin−2 ↔ tin−1}

×Pr{ti1 ↔ ti2 ∧ · · · ∧ tin−2 ↔ tin−1}

= Pr{tin−1 ∧ tin | tin−2 ↔ tin−1}

×Pr{tin−2 ↔ tin−1 | ti1 ↔ ti2 ∧ · · · ∧ tin−3 ↔ tin−2}

×Pr{ti1 ↔ ti2 ∧ · · · ∧ tin−3 ↔ tin−2}

= Pr{tin−1 ∧ tin | tin−2 ↔ tin−1}

×Pr{tin−2 ↔ tin−1 | tin−3 ↔ tin−2}

×Pr{ti1 ↔ ti2 ∧ · · · ∧ tin−3 ↔ tin−2}.

Continuing to successively condition and apply the as-
sumption of conditional independence, the reliability of a
sequence can be expressed as follows.

R(ti1 , · · · , tin) = Pr{t1↔ t2} × Pr{t2↔ t3 | t1↔ t2} × · · ·

· · · × Pr{tin−1↔ tin | tin−2↔ tin−1} (1)

The two objectives of increasing throughput (or minimiz-
ing makespan) and increasing reliability are conflicting: it



is possible to propose a sequence with very large buffers
in inter-aircraft separations to obtain a runway schedule that
would require no controller intervention but would take a
long time to complete; similarly, the most efficient (determin-
istic) schedule would maintain inter-aircraft spacings as close
to the minimums as possible, but would be very sensitive
to uncertainty. We therefore propose a technique that helps
us determine the tradeoff contours between reliability and
throughput for the runway operations scheduling problem.

In the context of a constrained optimization problem with
uncertain inputs, a robust solution is defined as one that
has low likelihood of violating the constraints while being
acceptably close to optimal [25]. In our case, given an
upper bound on the makespan, a robust schedule is one that
maximizes reliability.

D. Problem statement
We define the minimum time-separation matrix by ∆,

where the element δij is the minimum required time between
runway operations, if aircraft i lands before aircraft j.
Currently, these classes are defined based on the maximum
take-off weight [26] for scheduling runway operations, but
could be generalized to other classifications as well. In this
paper, we assume that the separations satisfy the triangle
inequality, that is, δik ≤ δij +δjk for all aircraft types i, j, k.
This condition is satisfied by the separation minimums in the
current system [9].

We represent precedence relations by an n × n matrix
{mij}, such that element mij = 1 if aircraft i must land
before aircraft j, and mij = 0 otherwise.

We identify two different forms of uncertainty:
1) For every aircraft i, the probability Pri(t) represents

the likelihood that aircraft i can utilize the runway at
time t.

2) For every aircraft i, we also consider the distribution
Pri(t|ti), which is the probability that aircraft i lands
at time t given that it was scheduled to land at time
ti. This distribution reflects the accuracy of the aircraft
navigation system, and the effect of uncertainty on an
aircraft’s schedule. We denote the probability density
function (p.d.f.) of this distribution as fi(t|ti).

Consolidating our objective and constraints, we can pose
the following problem:
Given n aircraft indexed 1, · · · , n, probability distribution
Pri(t) over the times at which aircraft i can land, separation
matrix ∆, precedence matrix {pij}, the maximum number
of position shifts k, and the p.d.f. fi(t|ti) for the delivery
accuracy of the aircraft at the runway, compute the k-CPS
sequence and corresponding times of runway utilization that
minimize the makespan of the sequence, while satisfying
the minimum level of reliability. Alternatively, compute the
runway utilization schedule that maximizes the level of
reliability, while possessing a makespan that is less than
a specified maximum value. The solution to this problem
allows us to determine the tradeoff between reliability and
throughput for the system.

For simplicity, we assume that the aircraft are labeled
(1, 2, · · · , n), according to their position in the FCFS
sequence. We also note that given any three consecutive
aircraft in the sequence (a–b–c), and their arrival time error
distributions fa(t|ta), fb(t|tb) and fc(t|tc), it is possible
to compute the probability distributions for Pr{ta ↔ tb},
Pr{tb ↔ tc} and Pr{tb ↔ tc | ta ↔ tb}. Due to limitations
of space, this paper is restricted to the case where Pri(t) = 1
for all t ∈ I(i), the set of times during which aircraft i is
allowed to land. The proposed technique can be extended
quite easily to more general probability distributions for
Pri(t).

III. DYNAMIC PROGRAMMING ALGORITHM

In prior work [8], we demonstrated that every k-CPS
sequence can be represented as a path in a directed graph
whose size is polynomially bounded in n and k. We now
briefly describe the structure of this network and its proper-
ties.

A. The CPS network
The network consists of n stages {1, · · · , n}, where each

stage corresponds to an aircraft position in the final sequence.
A node in stage p of the network represents a subsequence
of aircraft of length min{2k+1, p} where k is the maximum
position shift. For example, for n = 6 and k = 1, the
nodes in stages 3, · · · , 6 represent all possible sequences of
length 2k + 1 = 3 ending at that stage. Stage 2 contains
a node for every possible aircraft sequence of length 2
ending at position 2, while stage 1 contains a node for
every possible sequence of length 1 starting at position 1.
This network, shown in Figure 2, is obtained by finding
all sequence combinations of possible aircraft assignments
to each position in the sequence given in Figure 1. For
convenience, we refer to the last aircraft in a node’s sequence
as the final aircraft of that node.

Fig. 1. Possible aircraft assignments for n = 6, k = 1.

For each node in stage p, we draw directed arcs to all
the nodes in stage p + 1 that can follow it. For example,
a sequence (1–2–3) in stage 3 can be followed by the
sequences (2–3–4) or (2–3–5) in stage 4. This results in a
network where every directed path from a node in stage 1
to one in stage n represents a possible k-CPS sequence. For
example, the path (2) → (2–1) → (2–1–3) → (1–3–4) →
(3–4–6) → (4–6–5) represents the sequence 2–1–3–4–6–5.

Nodes such as (1–2–4) in stage 4 that cannot belong
to a path from stage 1 to stage n are removed from the
network. Finally, nodes that violate precedence constraints
are also eliminated to generate a “pruned” network that
may be significantly smaller than the original network. The
key properties of this network, as shown in [8], but stated
somewhat differently here are as follows.



Fig. 2. Network for n = 6, k = 1.

Lemma 1 (In [8]): Every possible k-CPS subsequence of
length 2k + 1 or less is contained in some node of the
network.

Corollary 1 (In [8]): Every feasible sequence (one that
satisfies maximum position shift constraints and precedence
constraints) can be represented by a path in the network from
a node in stage 1 to a node in stage n.

Lemma 2 (In [8]): Every path in the network from a node
in stage 1 to a node in stage n represents a feasible k-CPS
sequence.

B. Dynamic programming recursion
We use the following notation.

`(x) The last (final) aircraft of node x.
`′(x) The second from last aircraft of node x.
P (x) Set of nodes that precede x. (A node w is said

to precede x if arc (w, x) exists).
I(j) Set of times during which aircraft j is allowed

to land.
Let Jx(t1, t2) be the maximum reliability of a sequence

starting in stage 1 and ending in node x, given that `(x) is
scheduled to land at time t2 and `′(x) is scheduled to land
at time t1. The reliability of the sequence is as defined in
Equation 1. We would like to compute the value of J(·) for
all nodes in stage n.

Lemma 3: The values of J(·) are correctly computed by
the following recursion:

Jy(t`′(y), t`(y)) = max
x∈P (y)

max
t`′(x)∈I(`′(x))

˘

Jx(t`′(x), t`(x))

×Pr{t`(x) ↔ t`(y) | t`′(x) ↔ t`(x)}
¯

,

∀ t`(y) ∈ I(`(y)) : t`(y) ≥ t`(x) + δ`(x),`(y)

Proof: The proof follows standard techniques for
proving the validity of dynamic programming recursions, and
is presented here for completeness.

We first observe that, but construction, `(x) = `′(y) for
x ∈ P (y). Therefore,

Jy(t`′(y), t`(y)) = Jy(t`(x), t`(y))

Since Jy(t`(x), t`(y)) is the maximum value of reliability
over all paths leading to node y,

Jy(t`(x), t`(y)) ≥ Jx(t`′(x), t`(x))× Pr{t`(x)↔ t`(y) | t`′(x)↔ t`(x)}

∀ x ∈ P (y), t`′(x) ∈ I(`
′(x)), t`(x) ∈ I(`(x)), t`(y) ∈ I(`(y)),

where t`(x) − t`′(x) ≥ δ`′(x),`(x) and t`(y) − t`′(y) ≥ δ`′(y),`(y).

This means that, in particular,
Jy(t`′(y), t`(y)) ≥ max

x∈P (y)
max

t`′(x)∈I(`′(x))

˘

Jx(t`′(x), t`(x))

×Pr{t`(x) ↔ t`(y) | t`′(x) ↔ t`(x)}
¯

,

∀ t`(y) ∈ I(`(y)) : t`(y) ≥ t`(x) + δ`(x),`(y)

To complete the proof, we only need to show that the
above relationship can never hold as a strict inequality.
Suppose (for contradiction) that

Jy(t`(x), t`(y)) > Jx(t`′(x), t`(x))× Pr{t`(x)↔ t`(y) | t`′(x)↔ t`(x)}

∀ x ∈ P (y), t`′(x) ∈ I(`
′(x)), t`(x) ∈ I(`(x)), t`(y) ∈ I(`(y))

Given that the times are feasible and that all spac-
ings satisfy at least the minimum separation require-
ment, Pr{t`(x) ↔ t`(y) | t`′(x) ↔ t`(x)} > 0. Dividing by
this probability, we get

Jy(t`(x), t`(y))

Pr{t`(x) ↔ t`(y) | t`′(x) ↔ t`(x)}
> Jx(t`′(x), t`(x)),

∀ x ∈ P (y), t`′(x) ∈ I(`
′(x)), t`(x) ∈ I(`(x)), t`(y) ∈ I(`(y)).

This implies that

max
w∈P (y)

t
`′(w)

∈I(`′(w))

t`(w)∈I(`(w))

t`(y)∈I(`(y))

Jy(t`(w), t`(y))

Pr{t`(w)↔ t`(y) | t`′(w)↔ t`(w)}
> Jx(t`′(x), t`(x))

∀ x ∈ P (y), t`′(x) ∈ I(`
′(x)), t`(x) ∈ I(`(x)).

However, Jy(t`(w),t`(y))

Pr{t`(w)↔t`(y) | t`′(w)↔t`(w)}
is the reliability of

the subsequence of Jy(t`(w), t`(y)) that ends at node w and
time `′(w) and `(w). This contradicts the maximality of
Jx(t`′(x), t`(x)) for x = w.



We can now compute the value if Jy(·) for each node
in stage n by unrolling the recursion using the boundary
condition Jx(`′(x), `(x)) = Pr{`′(x) ↔ `(x)} for every
node x in stage 2 and for all `′(x) ∈ I(`′(x)) and `(x) ∈
I(`(x)).

C. Algorithm
Since the state space for J(·) is infinite, the recursion as

such is computationally not practical. In order to implement
the algorithm, we discretize all times into periods of length ε.
In practice, the accuracy of all measurements in the airspace
are of the order of seconds, so setting ε to a value between
1 and 10 seconds is reasonable. The pseudocode for the
algorithm is presented in Figure 3.

At the end of this procedure, the values of J for all nodes
in stage n are obtained for all feasible time periods. The
maximum reliability sequence for a given makespan t is the
maximum over all Jx(`′(x), `(x)) for `(x) = t.

This value can be computed for all periods of interest to
generate a curve that trades off makespan against reliability.
The corresponding schedule can be recovered by keeping
track of the argument of the maximization during the algo-
rithm.

D. Complexity
The number of arcs in the network is bounded as given

below.
Lemma 4 ([8]): The number of nodes in the net-

work is O(n(2k + 1)(2k+1)), and the number of arcs is
O(n(2k + 1)(2k+2)).

The algorithm loops through 3 time intervals (correspond-
ing to three aircraft) for each arc in the network. Given
a period length of ε, the total work done throughout the
algorithm is O((L/ε)3) per arc where L is the length of the
largest interval I(·) among all aircraft. In practice, the value
of the maximum position shift parameter k is usually 1, 2,
or 3, so the terms in k can be regarded as a constant. This
leads to the following complexity.

Lemma 5: The complexity of the proposed dynamic pro-
gramming algorithm is O(n(L/ε)3), where n is the number
of aircraft and L is the difference between the latest and
earliest arrival time over all aircraft, and ε is the desired
output accuracy.

Since there are relatively few types of aircraft
(3 different sizes of aircraft, each equipped or not
equipped), the probabilities Pr{`′(x) ↔ `(x)} and
Pr{t`(x) ↔ t`(y) | t`′(x) ↔ t`(w)} can be computed (either
through a simulation or analytically depending on the
distribution) and stored offline. The work done to compute
these probabilities needs to be done only once, and hence
is not part of the complexity expression.

IV. EXAMPLES

We consider the example of scheduling aircraft landings
on a single runway. Since the runway schedules are deter-
mined when the aircraft cross the Center boundary, there is
considerable inaccuracy in an aircraft meeting its scheduled

landing time. We model the distribution of the error (that is,
the difference between actual landing time and the scheduled
landing time as a triangular distribution, with the range
of the distribution determined by ±300 sec for aircraft not
equipped with an FMS, and ±150 sec for equipped aircraft.
The standard deviation of this distribution is approximately
120 sec for aircraft equipped with an FMS, and 60 sec for
those that are not equipped.

The times at which aircraft cross the Center boundaries are
generated using a Poisson distribution, as has been observed
in prior work by Willemain et al. [1]. Jet routes are assigned
based on traffic flow statistics and determine the precedence
relations, since aircraft along the same jet route are not
allowed to overtake each other [8]. The Trajectory Synthe-
sizer [2] provides an estimate of the estimated arrival time
at the runway along an appropriate jet route, in the absence
of any controller actions. Fuel considerations make speed-
ups of more than a minute inefficient, therefore the earliest
possible scheduled time of arrival is a minute before the
estimated time at the runway. The latest possible scheduled
time of arrival is chosen to be one hour after the estimated
time of arrival.

The aircraft belong to one of three categories based on
their Maximum Takeoff Weight (MTOW): Small, Large or
Heavy, and can be either equipped with FMS or be controlled
by pilots. Using the MTOW classification of aircraft, the
FAA specifies separation distance requirements during IFR
approaches. These separation requirements can be used to
determine the minimum separation required between landing
times, assuming typical aircraft speeds, and a 5 nmi final
approach path [9]. A representative matrix of minimum time
separations is given in the table below.

Trailing Aircraft
Leading Aircraft Heavy Large Small

Heavy 96 157 196
Large 60 69 131
Small 60 69 82

One approach to accommodating the uncertainty in arrival
times is to buffer the required separation requirements. The
size of this buffer is set to 12 sec if both the leading and
trailing aircraft are equipped with an FMS, and 24 sec if at
least one of them is not equipped. The FCFS sequence is
then determined by maintaining the order of the estimated
runway times of arrival, but by enforcing the minimum
spacing requirements with the appropriate buffering. We use
this FCFS order with buffering as the baseline makespan with
which to determine improved schedules. This is the minimum
acceptable makespan. The probability of this FCFS sequence
being feasible (i.e., none of the separation requirements is
violated) is the baseline value of the robustness. We use the
ratio of the probability of a schedule being feasible to the
probability of FCFS sequence as the measure of reliability
or robustness of the schedule. We represent the throughput
of the schedule as the number of aircraft divided by the
time taken to complete the schedule (the makespan). We can
then use the dynamic programming algorithm to compute the
tradeoff curve between throughput and robustness.



procedure FindReliability:
begin

Set J(·) for all nodes in the network to −∞;
for each node y in stage 2 do do

for each `(y) ∈ I(`(y)), `′(y) ∈ I(`′(y)) : t`(y) − t`′(y) ≥ δ`′(y),`(y) do
Jy(`′(y), `(y))← Pr{`′(y)↔ `(y)};

for each stage p = 2, · · · , n− 1 do
for each node x in stage p do

for each `(x) ∈ I(`(x)), `′(x) ∈ I(`′(x)) : t`(x) − t`′(x) ≥ δ`′(x),`(x) do
for each arc (x, y) do

for each `(y) ∈ I(`(y)) : t`(y) − t`(x) ≥ δ`(x),`(y) do
Jy(`(x), `(y)) = max {Jy(`(x), `(y)),

Jy(`′(x), `(x))× Pr{t`(x) ↔ t`(y) | t`′(x) ↔ t`(x)}
¯

;
end

Fig. 3. Algorithm for computing the minimum makespan.

We present an example that illustrates the potential of the
proposed technique to produce robust schedules. We consider
a sequence of 20 aircraft landing on a single runway, gen-
erated using a Poisson distribution at the rate of 45 aircraft
an hour. The sequence of aircraft along with their weight
classes, equipage and arrival times in the FCFS schedule
with buffering are presented in Table I. The landing times in
the FCFS schedule satisfy the separation requirements, but
do not necessarily form the most robust schedule, even for
the FCFS landing order. We can compute the tradeoff curve
between the throughput and reliability to determine a more
robust FCFS sequence. Similarly, we compute the tradeoff
between reliability and throughput for k = 1 and k = 2.
The results are plotted in Figure 4, and are representative
of the type of output we would like to produce using the
proposed algorithm. We note that the FCFS makespan can
be achieved with a substantially higher level of reliability,
and a greater throughput can be achieved with the same level
of reliability. We also note that the tradeoff improves as we
move from FCFS to 1-CPS, and as we proceed to 2-CPS.
The schedules (with landing times) are presented in Table I
for sequences which have the same makespan as the baseline
FCFS sequence with buffering.

The technique presented in this paper is amenable to a
real time implementation since the computation time (once
internal data structures have been created) for 1-CPS or 2-
CPS is less than 1 sec for a half-hour time horizon for up to
50 aircraft.

V. CONCLUSIONS

We have presented an approach for determining the trade-
off between reliability or robustness and throughput, while
scheduling single runway operations under Constrained Po-
sition Shifting. The approach we present can handle prece-
dence constraints that could arise from operational con-
straints or airline preferences, and take into account restric-
tions on possible arrival times of aircraft. The proposed
Dynamic Programming approach can accommodate several
sources of uncertainty which have been identified, and is
computationally efficient enough for a real-time application.
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Fig. 4. (Top) Reliability-throughput tradeoff contours for the scenario
presented. (Bottom) The tradeoff contours in a semi-log scale.

We believe that this technique will be valuable both in assess-
ing the benefits of equipping aircraft with advanced Flight
Management Systems, and in determining robust schedules
for runway operations.
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