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Abstract

A stochastic linear hybrid system is said to be observable if the hybrid state of the system is uniquely
determined from the output. In this paper, we derive the conditions for the observability of stochastic linear
hybrid systems by exploiting the information obtained from system noise characteristics. Having established
the necessary criteria for observability, we study the effect of these conditions on estimator design, and also
find bounds on the switching times of the system to achieve guaranteed estimator performance. We then
apply these results to the estimation of a two-mode aircraft trajectory.

1 Introduction

The tracking of aircraft trajectories is a problem that has been approached with some success using hybrid
systems models [1]. Related problems of interest to us are the ability to estimate the hybrid states of such
systems from their outputs, and also the design of estimators for such systems.

The problem of observability, namely, the ability to estimate or reconstruct the actual state of a system given
its output, is well-known and has been studied extensively, both for continuous systems [2] as well as for discrete
ones [3, 4]. More recently, several researchers have approached the problem of observability of hybrid systems.
A practical problem that has received increasing research attention recently is the extension of these concepts
to stochastic hybrid systems. In this paper, we address the issue of observability of a class of stochastic hybrid
systems – systems where the continuous dynamics are affected by white Gaussian noise.

Alessandri and Coletta [5] proposed a Luenberger observer design methodology for deterministic linear hybrid
systems, and proved that the error converges if the discrete state evolution is known. Balluchi et al. [6]
developed a method of combining location observers for discrete state estimation with Luenberger observers
for continuous state estimation for linear systems, such that they can guarantee the exponential convergence of
the estimation error. Bemporad et al. [7] defined the concept of incremental observability of continuous-time
linear hybrid systems, using the solutions of a mixed-integer linear program. Recently, Vidal et al. [8] derived
observability conditions for linear hybrid systems with continuous-time continuous-state dynamics, given in the
form of rank conditions similar to those for continuous-time linear system observability.

For stochastic systems, the definition of observability in its classical form, as proposed by Kalman for systems
with no noise, fails; we therefore need to find a meaningful interpretation of observability for systems with
random noise. Baram and Kailath [9] proposed the concept of estimability as a better criterion to gauge
stochastic linear systems. While this is one way of approaching the problem, we try to extend the definition of
observability to include stochastic hybrid systems.

An important class of problems associated with applications in multi-target tracking [1] and speech recognition
[10] pertains to the estimation of discrete-time Markov jump linear systems. Cost and do Val [11] analyzed
such systems with finite Markov states and deterministic continuous dynamics, and derived the observability
condition that the solution to the coupled Riccati equation associated with the quadratic control problem has
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a stabilizing solution. Vidal et al. [12] derived observability conditions for jump linear systems based on rank
tests similar to those of deterministic linear hybrid systems.

The first part of this study is motivated by the results of Vidal et al. [12]. They proposed the notion of
indistinguishability as: two initial states are indistinguishable if the corresponding outputs in free evolution are
equal. This approach results in elegant rank tests for the observability of stochastic jump linear systems. Since
in the design of estimators for aircraft tracking we have knowledge of not just the system dynamics, but also
the noise covariances, we try to exploit this additional knowledge to improve our ability to differentiate between
state trajectories. Since the output sequences of stochastic systems might be different from the same initial
condition, we extend the notion of indistinguishability [12] for such systems, and based on our definition, we
derive conditions for the observability of discrete-time stochastic linear hybrid systems. The latter part of this
paper applies the approach of Balluchi et al. [6], so far used in the design of hybrid observers for deterministic
hybrid systems with continuous-time state evolution, to discrete-time stochastic hybrid systems and estimator
design.

This paper is organized as follows: Section 2 presents the observability conditions of discrete-time stochastic
jump linear systems. In Section 3, we obtain conditions on the system parameters that would guarantee the
exponential convergence of hybrid estimators. Examples and conclusions are presented in Sections 4 and 5
respectively.

2 Observability of discrete-time stochastic linear hybrid systems

In this section, inspired by Vidal et al. [12], we extend the concepts of indistinguishability, observability of
the hybrid initial state, and discrete transition times as defined in [12] and derive more general observability
conditions for discrete-time stochastic linear hybrid systems using the knowledge of noise covariances.

We consider a discrete-time stochastic linear hybrid system

H :





xk+1 = A(qk)xk + wk(qk)
yk = C(qk)xk + vk(qk)

qk+1 = δ(qk, γk)
, k ∈ {0, 1, · · · } (1)

where k is a non-negative integer (k ∈ N); xk ∈ Rn and yk ∈ Rp are the continuous state and output variables
respectively; qk ∈ {1, 2, · · · , N} is the discrete state, γk ∈ {γ1, · · · , γm} is a discrete control input, and δ(·, ·) is
a deterministic discrete transition relation which governs the discrete state evolution. We assume the event time
at which a discrete transition occurs is unknown. The system parameters A(qk) ∈ Rn×n and C(qk) ∈ Rp×n

for qk ∈ {1, 2, · · · , N} are real matrices. We assume that the initial state xk0 is an unknown, zero-mean
white Gaussian random variable with covariance E[xk0x

T
k0

] = Π0 and that the process noise wk(qk) and the
measurement noise vk(qk) are uncorrelated, zero-mean white Gaussian sequences with the covariance matrices
E[wk(qk)wk(qk)T ] = ρ(qk)I and E[vk(qk)vk(qk)T ] = σ(qk)I respectively. These random sequences are assumed
to be uncorrelated with the initial state, i.e., E[xk0wk(qk)T ] = E[xk0vk(qk)T ] = 0. I denotes the identity
matrix. Since the state evolution of a hybrid system has continuous trajectories as well as discrete jumps, we
define a hybrid time trajectory:

Definition 1 (Hybrid time trajectory) A hybrid time trajectory is a sequence of intervals

[k0, k1 − 1][k1, k2 − 1] · · · [ki, ki+1 − 1] · · ·

where ki(i ≥ 1) is the time at which i-th discrete state transition occurs.

Before deriving the observability conditions, we review the definition of observability for discrete-time stochastic
linear hybrid systems [12]:

Definition 2 (Observability of discrete-time stochastic linear hybrid systems) A discrete-time linear hybrid
system H is observable on [k0, k0 + K] if the hybrid state (qk, xk) for k ∈ [k0, k0 + K] is uniquely determined
from the output sequence YK = [yT

k0
· · · yT

k0+K ]T , where K ∈ N.
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Vidal et al. [12] developed rank tests for the observability of stochastic jump linear systems of the form
described by H (Eq.(1)) using the notion of indistinguishability. Since we know the noise covariances as well
as the system dynamics for a stochastic system, we use this additional knowledge to obtain a more general
condition. Since the output sequences of stochastic systems could be different from the same initial condition,
we extend the notion of indistinguishability [12] as follows:

Definition 3 (Indistinguishability of discrete-time stochastic linear hybrid systems) A discrete-time linear hy-
brid system H is indistinguishable on [k0, k0 +K] if there exist output sequences YK and Y ′K on k ∈ [k0, k0 +K]
starting from any two different hybrid states (qk0 , xk0) and (q′k0

, x′k0
), whose covariances are equal.

2.1 Observability of the hybrid initial state

In this section, using a procedure similar to that in [12], we derive the conditions under which the hybrid initial
state (qk0 , xk0) can be uniquely determined from the output sequence {yk} on [k0, k1 − 1] (k1 − 1 ≤ k0 + K),
i.e., before the first discrete transition occurs. We define κi := ki+1 − ki (i ≥ 0) as the sojourn time, which
denotes how long the system stays in a discrete state after the i-th discrete transition. Based on Definition 2
and Definition 3, we get the following lemma:

Lemma 1 The hybrid initial state of a discrete-time linear hybrid system H is observable if and only if it is
distinguishable.

Proof: The proof follows directly from Definition 2 and Definition 3. ¤
In order to check if the hybrid initial state is indistinguishable, we have to compute the covariance of output
sequence Yκ0 on [k0, k1−1]. The output sequence starting from the hybrid initial state (qk0 , xk0) on [k0, k1−1]
is

Yκ0(qk0) = Oκ0(qk0)xk0 + Tκ0(qk0)Wκ0(qk0) + Vκ0(qk0) (2)

where
Oκ0(qk0) = [C(qk0)

T (C(qk0)A(qk0))
T · · · ((C(qk0)A(qk0))

k1−1)T ]T

Tκ0(qk0) =




0 0 0 · · · 0
C(qk0) 0 0 · · · 0

C(qk0)A(qk0) C(qk0) 0 · · · 0
...

C(qk0)A(qk0)
k1−k0−2 C(qk0)A(qk0)

k1−k0−3 · · · C(qk0) 0




Wκ0(qk0) = [wk0(qk0)
T wk0+1(qk0)

T · · ·wk1−1(qk0)
T ]T

Vκ0(qk0) = [vk0(qk0)
T vk0+1(qk0)

T · · · vk1−1(qk0)
T ]T

Oκi(qki) ∈ Rpκi×n is the extended observability matrix for the linear system in Eq.(1) [12] and Tκ0(qk0) is a
Toeplitz matrix.

If rank[Oκ0(qk0)] = n, i.e., the linear system (A(qk0), C(qk0)) is observable and κ0 ≥ n, then a least-squares
solution (which we denote by x̂k0(qk0)) to Eq.(2) can be determined uniquely.

x̂k0(qk0) = O†κ0
(qk0)Yκ0(qk0) = xk0 +O†κ0

(qk0)Tκ0(qk0)Wκ0(qk0) +O†κ0
(qk0)Vκ0(qk0) (3)

where O†κ0
(qk0) = (OT

κ0
(qk0)Oκ0(qk0))

−1OT
κ0

(qk0). The last two terms on the right hand side of Eq.(3) represent
the estimation error due to the process noise and the measurement noise. Similarly, the output sequence from
another hybrid initial state (q′k0

, x′k0
) over [k0, k1 − 1] is

Yκ0(q
′
k0

) = Oκ0(q
′
k0

)x′k0
+ Tκ0(q

′
k0

)Wκ0(q
′
k0

) + Vκ0(q
′
k0

) (4)

From Lemma 1, in order that the hybrid initial state of a discrete-time stochastic linear hybrid system be
observable, it should be distinguishable, i.e., the covariances of Yκ0(qk0) and Yκ0(q

′
k0

) satisfy:

E[Yκ0(qk0)Yκ0(qk0)
T ] 6= E[Yκ0(q

′
k0

)Yκ0(q
′
k0

)T ] (5)
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where
E[Yκ0(qk0)Yκ0(qk0)

T ] = Oκ0(qk0)Π0Oκ0(qk0)
T + ρ(qk0)Tκ0(qk0)T T

κ0
(qk0) + σ(qk0)I

E[Yκ0(q
′
k0

)Yκ0(q
′
k0

)T ] = Oκ0(q
′
k0

)Π0Oκ0(q
′
k0

)T + ρ(q′k0
)Tκ0(q

′
k0

)T T
κ0

(q′k0
) + σ(q′k0

)I (6)

Then, the discrete initial state can be uniquely determined from the covariance of the output sequence and the
continuous initial state can also be uniquely determined using Eq.(3). In order to reduce the required κ0 for
observability (the sojourn time in the discrete state qk0 required for observability of the hybrid initial state), we
define τ as the minimum integer which satisfies rank[Oτ (qk)] = n(∀qk ∈ {1, 2, · · · , N}), and τ̄ = max τ (similar
to the joint observability index used in [12]). Then, we have the following condition for the observability of the
hybrid initial state:

Lemma 2 (Observability of the hybrid initial state) If (A(qk), C(qk)) are observable for each qk ∈ {1, · · · , N}
and κ0 ≥ τ̄ , the hybrid initial state (qk0 , xk0) is observable if and only if

Oτ̄ (qk0)Π0Oτ̄ (qk0)
T + ρ(qk0)Tτ̄ (qk0)T T

τ̄ (qk0) + σ(qk0)I
6= Oτ̄ (q′k0

)Π0Oτ̄ (q′k0
)T + ρ(q′k0

)Tτ̄ (q′k0
)T T

τ̄ (q′k0
) + σ(q′k0

)I

for all qk0 6= q′k0
∈ {1, · · · , N}.

Proof: Since the linear system in each discrete state is observable and κ0 ≥ τ̄ , the initial continuous state can
be uniquely determined using Eq.(3) if the initial discrete state is identified.
(if) Since the covariances of the output sequences for each discrete state are distinct, the initial discrete state
is uniquely determined by checking the covariance of the output sequence.
(only if) The proof follows directly from Definition 3. ¤
We show through the following simple example how a noise free unobservable discrete-time linear hybrid system
may be rendered observable, if each discrete state has different measurement noise covariances.

Example: Consider a discrete-time linear hybrid system with two discrete states

q1 :
{

xk+1 = xk

yk = c1xk + v1
q2 :

{
xk+1 = xk

yk = c2xk + v2

where c1 6= 0, c2 6= 0, and c1 6= c2. The covariance of the initial state is E[x0x
T
0 ] = π0 ∈ R+. v1 and v2 are

uncorrelated, zero-mean white Gaussian sequences with covariances E[v1v
T
1 ] = σ1 6= 0 and E[v2v

T
2 ] = σ2 6= 0

respectively. If v1 = v2 = 0, the hybrid system is unobservable because two different hybrid initial states
(q1, x0) and (q2,

c1
c2

x0) generate the same output sequences [8]. However, if v1 and v2 are not identically zero
and have different covariances, then we can uniquely determine the hybrid initial state. If we consider the case
in which the actual hybrid initial state is (q1, x0), the output and its covariance are

y = c1x0 + v1, E[yyT ] = π0c1c
T
1 + σ1 (7)

Next, if the actual hybrid initial state is (q2,
c1
c2

x0), the output and its covariance are

y = c2( c1
c2

x0) + v2, E[yyT ] = π0c1c
T
1 + σ2 (8)

Since σ1 6= σ2, we can determine the discrete initial state uniquely. For instance, if the output comes from q1,
then the estimate of the initial state is x̂0 = x0 + v1

c1
.

2.2 Observability of the discrete transition times

Lemma 2 gives the condition for the hybrid initial state to be observable, over a time interval up to, but not
including the first transition. In this section, we focus without loss of generality on deriving the conditions
under which the first discrete transition time k1 can be uniquely determined from the output sequence YK on
[k0, k0 + K]; the times of the ensuing transitions ki(i ∈ {2, . . . }) can be computed in the same way [12]. We
define observability of the first discrete transition time as follows:

Definition 4 (Observability of the first discrete transition time) The first discrete transition time of a discrete-
time linear hybrid system H is observable on [k0, k0 + K] if it can be determined uniquely from the output
sequence YK = [yT

k0
· · · yT

k0+K ]T .
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If there is a discrete transition at time k1, the output at time k1 and its covariance are

yk1 = C(qk1)A(qk0)
k1−k0xk0 + C(qk1)Fκ0(qk0)Wκ0(qk0) + vk1(qk1)

E[yk1y
T
k1

] = C(qk1)A(qk0)
k1−k0Π0(A(qk0)

k1−k0)T C(qk1)
T

+ρ(qk0)C(qk1)Fκ0(qk0)Fκ0(qk0)
T C(qk1)

T + σ(qk1)I
(9)

where Fκ0(qk0) := [A(qk0)
k1−k0−1 A(qk0)

k1−k0−2 · · · I]. If there is no state transition at time k1, the output at
time k1 and its covariance are

yk1 = C(qk0)A(qk0)
k1−k0xk0 + C(qk0)Fκ0(qk0)Wκ0(qk0) + vk1(qk0)

E[yk1y
T
k1

] = C(qk0)A(qk0)
k1−k0Π0(A(qk0)

k1−k0)T C(qk0)
T

+ρ(qk0)C(qk0)Fκ0(qk0)Fκ0(qk0)
T C(qk0)

T + σ(qk0)I
(10)

In order that the transition at time k1 be observable, the covariances of yk1 ’s in Eq.(9) and Eq.(10) should be
different. Thus, the observability condition of the first discrete transition time is:

Lemma 3 (Observability of the first discrete transition time) The first discrete transition time is observable if
and only if

C(qk1)A(qk0)
k1−k0Π0(A(qk0)

k1−k0)T C(qk1)
T

+ρ(qk0)C(qk1)Fκ0(qk0)Fκ0(qk0)
T C(qk1)

T + σ(qk1)I
6= C(qk0)A(qk0)

k1−k0Π0(A(qk0)
k1−k0)T C(qk0)

T

+ρ(qk0)C(qk0)Fκ0(qk0)Fκ0(qk0)
T C(qk0)

T + σ(qk0)I

for all qk 6= q′k ∈ {1, · · · , N}.

Proof: The proof follows by construction.

Therefore, from Lemma 2 and Lemma 3, the hybrid initial state and the first discrete transition time can
be uniquely determined. The remaining state trajectories can be determined by repeating the procedure. For
ki (i ≥ 1), the x̂ki will be given from the initial state estimate [12]. Thus, we have the following observability
condition:

Theorem 1 A discrete-time linear hybrid system H is observable if and only if it satisfies Lemma 2 and
Lemma 3.

Proof: The proof follows directly from Lemma 2 and Lemma 3. ¤
This test needs the operations of multiplication and addition of matrices which are system parameters and
noise covariances, the computation is straightforward with computational complexity depending on data size.

3 Design of estimators for stochastic hybrid systems

Having established conditions for the observability of stochastic linear hybrid systems, we would like to design
estimators for those observable systems, and also quantify values of system parameters that would guarantee
performance (exponential convergence, in our case). We extend the design methods proposed by Balluchi et al.
[6] for hybrid systems with continuous-time, continuous state dynamics to encompass discrete-time stochastic
hybrid systems.

A hybrid estimator finds estimates q̂ and x̂ for the current discrete state q and the continuous state x respec-
tively. In this section, we first describe the structure of the hybrid estimator, and then analyze the continuous
component of the estimator in detail to obtain bounds on the time between discrete transitions of state which
would guarantee exponential convergence of our hybrid estimator. Throughout this paper, all norms, unless
specified otherwise, are 2-norms.

Definition 5 (Exponential convergence of a hybrid estimator) Given a hybrid system H with N discrete modes,
we say that a hybrid estimator is exponentially convergent if its discrete state estimate q̂ exhibits correct iden-
tification of the discrete-state transition sequence of the original system after a finite number of steps; the
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continuous state estimate at any instant has a unique mean and convergent covariance; and the mean of the
estimation error, ζ̄ = E[x̂− x] converges exponentially to the set ‖ζ̄‖ ≤ M0 with a rate of convergence µ,
where M0 is the steady-state error bound, and |µ| < 1. In other words, the estimator is convergent if, for any
switching time ki,

q̂k = qk, ∀k > K, K ∈ N+ (11)
‖ζ̄k‖ ≤ µ(k−ki)‖ζ̄ki

‖+ M0,∀k > ki (12)

3.1 Structure of the hybrid estimator

We design the hybrid estimator as a combination of a discrete observer to detect the discrete state switches, and
an estimator to estimate the continuous dynamics, as proposed in [6]. In the rest of this paper, we assume that
we have a discrete observer that correctly identifies the discrete state, either immediately after a switch takes
place, or with a known time delay ∆ after a discrete transition. A discrete observer could be constructed using a
bank of N estimators as a residual generator [1, 6] – even in this case, we could further increase the probability
of correct discrete-state identification by enforcing a decision time delay ∆ on the discrete observer. This would
be possible only if the system were observable in the sense of a stochastic hybrid system, as explained earlier.
In this section, we design a least-squares estimator in the form of N Kalman filters for the continuous state
estimate. Although the underlying system in [6] is continuous-time and deterministic, the design methodology
of [6] adapts well to discrete-time stochastic hybrid systems, as we show here.

3.2 Discrete-time Kalman filter

We consider a hybrid system of the form described in Eq.(1). For the sake of simplicity of notation, we replace
A(qk) and C(qk) with Al and Cl, where l ∈ {1 . . . N}. We can then write the equations for the least-square
estimator of a linear stochastic system as

x̂k+1 = (Al −KlCl)x̂k + KP,k,lyk, k ≥ 0 (13)

where l is the estimated discrete state, and KP,k,l is the optimal Kalman filter gain for mode l, given by

KP,k,l = AlPkCT
l (Rl + ClPkCT

l )−1 (14)

and Pk satisfies the discrete Riccati recursion

Pk+1 = AlPkAT
l + Ql −KP,k,l(Rl + ClPkCT

l )KT
P,k,l, P (0) , Π0 (15)

Theorem 2 ([13]): The Discrete Algebraic Riccati Equation (DARE) has a stabilizing solution that is unique
if and only if

{Al, Cl} is detectable (16)

{Al, Q
1/2
l } is controllable on the unit circle. (17)

Any such solution is positive definite.

If these conditions are satisfied for every discrete state i ∈ {1 . . . N}, we can design a bank of N steady-state,
exponentially convergent Kalman filters to estimate the continuous state of the system.
We can then show that, for a given discrete state i, correctly identified,

x̂k+1 = (Al −KlCl)x̂k + Klyk (18)

ζ̂k+1 = (Al −KlCl)ζ̂k (19)

Clearly, ζ̂ is exponentially convergent if
(Al −KlCl) is stable (20)
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3.3 Error dynamics

In this section, we follow the methodology of [6] to determine the evolution of the estimation error across the
discrete transition sequence. Let us consider two consequent discrete transitions of H, occurring at times ki

and ki+1. Suppose the transition at time ki+1 was from discrete state m to l, and was detected at time k′i+1

such that k′i+1 − ki+1 ≤ ∆. Similarly, k′i − ki ≤ ∆. This is illustrated in Fig.(1).

k k’ k’

switch detect switch detect

q = m q = l

q = m q = m~ ~ ~

q = l q = l

q = l

i ki i+1i+1

Figure 1: Illustration of the transition sequence

We are interested in the region k ∈ {k′i, k′i + 1, . . . , k′i+1}. Since we assume that by time-step k′i the discrete
state has been identified correctly, for the exponential convergence of the estimation error on k′i to k′i+1 :

1. The error converges exponentially between k′i and ki+1; and

2. The error divergence between ki+1 and k′i+1 due to wrong discrete state estimation does not upset the
exponential convergence of the error on k′i to k′i+1.

Following the methodology of [6], dividing the time interval between k′i and k′i+1 into two regions, we get error
dynamics of the form

ζ̄k+1 = (Am −KmCm)ζ̄k

k ∈ {k′i, . . . , ki+1 − 1} (21)
ζ̄k+1 = (Am −KmCm)ζ̄k + [(Am −Al)−Km(Cm − Cl)]x̄k

k ∈ {ki+1, . . . , k
′
i+1 − 1} (22)

where x̄ = E[x]. The second term in Eq.(22) arises because a Kalman filter designed for the discrete state m
is being used to estimate the dynamics of the discrete state l. Combining Eqs. (21) and (22), we express the
error dynamics by

ζ̄k+1 = (Am −KmCm)ζ̄k + uk, k ∈ {k′i, . . . , k′i+1 − 1} (23)

where

uk =
{

0, k ∈ {k′i, . . . , ki+1 − 1}
((Am −Al)−Km(Cm − Cl))x̄k, k ∈ {ki+1, . . . , k

′
i+1 − 1} (24)

From this, we get

ζ̄k+1 = (Am −KmCm)k+1−k′i ζ̄k′i + [(Am −KmCm)k−k′i : . . . I]




uk′i
...
uk


 (25)

∥∥ζ̄k+1

∥∥ =

∥∥∥∥∥∥∥
(Am −KmCm)k+1−k′i ζ̄k′i + [(Am −KmCm)k−k′i : . . . I]




uk′i
...
uk




∥∥∥∥∥∥∥
(26)
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This gives us

∥∥ζ̄k+1

∥∥ =

∥∥∥∥∥∥
(Am −KmCm)k+1−k′i ζ̄k′i +

k−k′i∑

l=0

(Am −KmCm)k−k′i−luk′i+l

∥∥∥∥∥∥
, k ∈ {ki+1, . . . , k

′
i+1 − 1} (27)

≤
∥∥∥(Am −KmCm)k+1−k′i ζ̄k′i

∥∥∥ +

∥∥∥∥∥∥

k−k′i∑

l=0

(Am −KmCm)k−k′i−luk′i+l

∥∥∥∥∥∥
, k ∈ {ki+1, . . . , k

′
i+1 − 1}(28)

Lemma 4 Given a matrix A ∈ Rn×n with all distinct eigenvalues,

‖At‖ ≤ k(A)αt(A), ∀t ≥ 0 (29)

where α(A) is the maximal absolute value of the eigenvalues of A, and k(A) = ‖Q‖‖Q−1‖, the condition number
of A under the inverse, where Q−1AQ = J , the Jordan canonical form.

Proof: The proof follows that for the continuous-time case ( [6], [14]). From this we can show that for t ≥ 0, if
m is the size of the largest Jordan block of A,

‖At‖ ≤ mk(A)αt(A) max
tr

αr(A)
, 0 ≤ r ≤ m− 1, (30)

When A has all distinct eigenvalues, this reduces to Eq.(29). ¤
Further simplification of Eq.(28) using Lemma 4 gives us

∥∥ζ̄k+1

∥∥ ≤ k(Am − Cm)[α(Am −KmCm)]k+1−k′i
∥∥ζ̄k′i

∥∥
+ k(Am − Cm)max ‖uk‖ (k − ki+1), k ∈ {ki+1, . . . , k

′
i+1} (31)

Since k′i+1 − ki+1 ≤ ∆, if

‖uk‖∞ ≤ U = max ‖(Am −Al)−Km(Cm − Cl)‖1 X (32)

such that X ≥ ‖x‖∞, X > 0, we can write
∥∥ζ̄k+1

∥∥ ≤ k(Am − Cm)[α(Am −KmCm)]k+1−k′i
∥∥ζ̄k′i

∥∥ +
√

nU∆k(Am − Cm) (33)

Lemma 5 Consider a hybrid system with a single discrete state, in which the discrete-time evolution of the
continuous state variable is given by

xk+1 = ηxk, |η| < 1 (34)

Suppose the state x is subject to resets x(ts) = aηx(ts − 1) + b, occurring at switching times {ts}, with a ≥ 1
and b ≥ 0. Then the evolution of x can be described by

xk = ηk−ts−1xts−1 , k ∈ {ts−1, . . . , ts − 1} (35)
xts = aηts−ts−1xts−1 + b (36)

Let us also assume there exists a lower bound β on the time between resets, i.e., ts − ts−1 ≥ β ≥ 1, for all

s > 1. Then, if xt0 > 0 and µ = η(
logη a

β +1) such that |µ| < 1, then x(k) converges exponentially to the set
[0, b

1−ηβ ] with a rate of convergence greater than or equal to µ.

Proof: The proof is similar to the proof of Lemma 3 in Balluchi et al.([6]). We can show that if the above
conditions are satisfied, then

xts < µ(ts−t0)xt0 +
b

1− ηβ
(37)

This implies that the state xts after every reset is bounded above exponentially by rate µ, and converges to
the set [0, b

1−ηβ ]. Since the inter-reset dynamics decays exponentially with rate η, and |η| ≤ |µ|, the evolution
between resets is also bounded above by an exponential with rate µ. ¤
Using Eqs.(16), (17), (20), (32) and (33) with Lemma 4 and Lemma 5, we arrive at the following theorem:
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Theorem 3 Consider a stochastic linear hybrid system of the form in Eq.(1), a steady-state error bound M0

and rate of convergence µ, |µ| < 1, |α(Am − KmCm)| ≤ |µ| for all m = 1 . . . N , where α(A) is the maximal
absolute value of the eigenvalues of A. Let k(A) = ‖Q‖‖Q−1‖, the condition number of A under the inverse,
where Q−1AQ = J , the Jordan canonical form. Then if the following seven conditions are satisfied:

1. The system is observable under the definition in Section 2

2. {Am, Cm} couples are observable for all m = 1 . . . N

3. {Am, Q
1/2
m } couples are controllable for all m = 1 . . . N

4. (Am −KmCm) is stable for all m = 1 . . . N with all distinct eigenvalues

5. There exists X > 0 such that ‖xk‖∞ ≤ X, k = 1, 2, ... such that

‖uk‖∞ ≤ U = max ‖(Am −Al)−Km(Cm − Cl)‖1 X (38)

6. The discrete decision time, ∆ satisfies the relation

∆ ≤ M0√
nUmax[k(Am −KmCm)]

(39)

7. The time between switching events, β satisfies the conditions

β > βmin + ∆, where (40)

βmin > max[
1

| log µ| log
∣∣∣∣
(

1−
√

nU∆k(Am −KmCm)
M0

)∣∣∣∣ ,

max
log[k(Am −KmCm)]
| log[α(Am −KmCm)]| ] (41)

we can design a hybrid estimator that converges to within the steady-state bound M0 with a rate of convergence
greater than or equal to µ.

Proof: The proof follows directly from the fact that the error dynamics are bounded by Eq.(33), which is in
the form of Eq.(36) in Lemma 5. Applying Lemma 5 for the appropriate values of a, b and η, we can prove
Theorem 3. Conditions (2)-(4) are needed for convergence of the estimators, while condition (1) is needed for
the detection of the switch and for the design of the discrete observer. ¤

Corollary 1 If Conditions (1)-(6) of Theorem 3 are satisfied, then, given a steady-state error bound M0 and
a rate of convergence µ, we can design an estimator that converges exponentially to M0 with a rate of at least
µ if the time between switching events is at least β = βmin + ∆, where

βmin = max
[

1
| log µ| log

∣∣∣∣
(

1−
√

nU∆k(Am −KmCm)
M0

)∣∣∣∣ , max
log[k(Am −KmCm)]
| log[α(Am −KmCm)]|

]
(42)

Remark 1 : An important difference between the continuous-time hybrid systems analyzed in [6] and the
discrete-time hybrid systems that we consider is that we can no longer make M0 arbitrarily small by simply
changing the value of ∆ such that Eq.(39) is still satisfied - the discrete nature of the system restricts ∆ to
values in N.

4 Example: Aircraft Trajectory

We apply the above design criteria to the design of an estimator for the switched, linearized trajectory of an
aircraft. We consider two discrete states, both coordinated turns, but with different angular velocities, one
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with a turn rate of 2◦ per second, and the other with a turn rate of 5◦ per second, which represent aircraft
trajectories composed of slow turns and sharp turns. For brevity, we only include two discrete state example
in this paper but we have successfully designed hybrid estimators for aircraft trajectory tracking and conflict
detection and resolution problems with multiple discrete states such as constant velocity straight flight modes
with different noise characteristics and coordinated turn modes with various angular velocities. The dynamics
of a coordinated turn is given by

xk =




1 sin ωT
ω 0 − 1−cos ωT

ω
0 cos ωT 0 − sin ωT
0 1−cos ωT

ω 1 sin ωT
ω

1 sin ωT 0 cos ωT


 xk−1 +




T 2

2 0
T 0
0 T 2

2
0 T


 uk−1 + wk (43)

yk =
[

1 0 0 0
0 0 1 0

]
xk + vk (44)

where x = [ x1 ẋ1 x2 ẋ2 ] where x1 and x2 are the position coordinates, u = [ u1 u2 ]T where u1 and u2

are the velocity components, ω is the turn rate, T is the sampling interval, w is the process noise, and v is the
sensor noise. We choose an operating velocity of 150 knots. We find that for an instantaneous discrete decision
time, the time between discrete transitions should be at least 8 seconds to guarantee exponential convergence
with a rate of 0.99. The comparison of the bounds is shown in Figure (2(a)). We also note that by Lemma (5)
the norm of the mean error does not have to be monotonic, but if the conditions explained above are satisfied,
it will be bounded by an exponential of rate µ. This is also seen in the example.
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Figure 2: (a) Exponential convergence of error. (b) Convergence of error when modes have same dynamics but
different noise characteristics. The triangles denote discrete transition times (µ = 0.99, M0 = 0, and T = 2sec).

As explained in the Section 2, Lemma 2, identical dynamics with different noise characteristics in each discrete
state might still make the system observable in the stochastic hybrid context. We demonstrate this by design-
ing an exponentially convergent hybrid estimator for a switched aircraft trajectory - the two discrete states
correspond to 2◦ per second turns with different process noise covariances. This is shown in Figure (2(b)).

5 Conclusions

In this paper, we have extended the definition of observability to include stochastic linear hybrid systems, and
have used prior knowledge of system noise characteristics to improve the observability conditions for a discrete-
time stochastic linear hybrid system. We have also found bounds on the time between discrete transitions
to guarantee the exponential convergence of hybrid estimators for such systems. An interesting direction for
future work would be the extension of these results to hybrid systems with continuous state resets.
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