Engineering Notes

Probabilistic Modeling of Runway Interdeparture Times

Ioannis Simaiakis† and Hamsa Balakrishnan‡
Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
DOI: 10.2514/1.G000155

I. Introduction

THE Erlang distribution has been used to model the runway service process in queuing models of air traffic operations [1–3] since its use was first proposed by Hengsbach and Odoni [4]. It has been shown to offer certain computational advantages because it can be viewed as a sum of exponential distributions. However, there have been few prior efforts to validate Erlang distribution assumptions using operational data, and even those have only been performed informally with aggregate or low-fidelity data [5].

This Note uses high-fidelity surface surveillance data to model the probability distributions of runway service times and examine the goodness of fit of the Erlang distribution. For this, probabilistic models for the runway service times are derived from empirical departure throughput distributions and empirical departure time distributions. The results are compared in terms of bias, goodness of fit, and computational advantages. The analysis has implications to both the modeling of airport operations and to the estimation of airport capacities.

II. Data Sources

The Aviation System Performance Metrics (ASPM) database maintained by the Federal Aviation Administration records the wheels-off and wheels-on times of all domestic flights in the U.S. [6]. These reports are obtained automatically through a system called Aircraft Communications Addressing and Reporting System (ACARS) for the major carriers and are inferred for the others [7].

While a valuable data source, ASPM presents several challenges for using operational data, and even those have only been performed informally with aggregate or low-fidelity data [5].

Aircraft data are not of sufficient fidelity to identify instances in which there is be taking off with zero interdeparture time. In addition, the ACARS data are rounded to the nearest minute [7], and due to this quantization, the empirical departure time distributions and empirical departure time distributions. This Note presents these techniques for the case of Boston Logan International Airport (BOS) for the 22L, 22L, 22R runway configuration in 2011.

III. Estimation of Service Time Distributions from Departure Throughput

The first step in the analysis was the extraction of instances in which there was persistent departure demand and to fit an Erlang distribution to support the throughput seen during these instances. Persistent demand in this case was identified by 15 min periods during which there were more than 22 aircraft taxiing out [8]. The empirical throughput distribution over these instances is shown in red in Fig. 1 (left).

Suppose the service times were generated from an Erlang distribution (k, μ), where $k \in \mathbb{N}_+$ and $\mu > 0$ were the shape and rate parameters, respectively. The probability density function of the service times was then given by

$$g_{rm}(t; k, \mu) = \frac{(\mu t)^{k-1}e^{-\mu t}}{(k-1)!}, \quad t > 0$$

The parameters of the Erlang distribution were estimated from the throughput data using an approximation based on the method of moments. Let μ_1 and μ_2 denote the first and second moments of the empirical runway throughput distribution f_{rm}. Assume the runway service times were drawn from the Erlang distribution (k, μ). When there were exactly i takeoffs in the time interval Δ, there were at least $(i - 1)k + 1$ and no more than $(i + 1)k - 1$ occurrences of a Poisson random variable with rate $k\mu\Delta$. In the first case, the first $k - 1$ occurrences corresponding to the ith takeoff occurred in the previous time period, and in the latter, the last $k - 1$ occurrences corresponded to the $(i + 1)$th takeoff that took place in the next time period. Summing over all these possibilities yields the following expressions for the mean and variance of the throughput distributions:

$$\mu_1 = \sum_{i=0}^{\infty} \left(i \left(\sum_{j=(i-1)k+1}^{(i+1)k-1} \frac{k = j}{k} \cdot e^{(-k\mu\Delta)} \cdot \frac{(k\mu \cdot \Delta)^j}{j!} \right) \right)$$

$$\mu_2 = \sum_{i=0}^{\infty} \left(i^2 \left(\sum_{j=(i-1)k+1}^{(i+1)k-1} \frac{k = j}{k} \cdot e^{(-k\mu\Delta)} \cdot \frac{(k\mu \cdot \Delta)^j}{j!} \right) \right)$$

The method of moments (MOM) determines the values of the parameters k and μ by matching the previous expressions to the empirical data. Since k is constrained to be a natural number, the following approximation is made: The parameter μ is obtained by numerically solving Eq. (2) as a function of increasing values of k. For each pair $(\mu, k\mu)$, the error of Eq. (3) is calculated. The iterations are stopped when the absolute error increases. Any further increase in k would imply a further decrease in variance and a larger absolute error in the value of the second moment. The empirical f_{rm} and fitted f_{rm} throughput distributions are shown in Fig. 1. The estimated parameters (k, μ) of the Erlang distribution g_{rm} are $(6, 3.92)$. The distribution g_{rm} has an average service time of 1.5 min with variance 0.4 min2.

Received 16 July 2013; revision received 30 December 2013; accepted for publication 31 December 2013; published online 29 April 2014. Copyright © 2013 by Hamsa Balakrishnan and Ioannis Simaiakis. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission. Copies of this paper may be made for personal or internal use, on condition that the copier pay the $10.00 per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923; include the code 1533-3884/14 and $10.00 in correspondence with the CCC.

†Associate Professor, Department of Aeronautics and Astronautics. 77 Massachusetts Ave., Room 33-328; hamsa@mit.edu. Associate Fellow AIAA.

AIAA Early Edition / 1
IV. Estimation of Service Time Distributions from Interdeparture Times

If the departure queue has sufficient load that an aircraft takes off as soon as the runway is available, the service time equals the interdeparture time. Such a queue is described as a queue with pressure. To estimate the condition that implies a queue with pressure, the length of the departure queue beyond which interdeparture times do not change significantly with the number of aircraft in the queue is identified. A nonparametric method, namely, the Kruskal–Wallis one-way analysis of variance, is used to compare the distributions of service time distributions when an aircraft takes off with different departure queue sizes behind it. For the case of BOS in the 22L, 27 | 22L, 22R configuration, the analysis suggests a value of 5, as shown in Fig. 2. This means that when the departure queue size is 5 or more the interdeparture time equals the service time.

It is worth noting that the obtained set of service times does not consist of independent samples, since two consecutive takeoffs may be correlated. For example, a heavy aircraft departure in a 15 min interval does not significantly impact the departure throughput because the controllers use the separation behind it to perform runway crossings [12]. Similarly, when there are no heavy departures in the queue, a controller might perform a sequence of nonheavy departures followed by a sequence of runway crossings. Such correlations between consecutive interdeparture times motivate the definition of capacity over a long time period (for instance, the saturation capacity, the practical hourly capacity, and the sustained capacity are all defined over 1 h) [13]. To get independent samples of service time distributions, sets of service times that are 15 min apart are randomly sampled. The 15 min value is also consistent with throughput estimates and has been found to provide a good compromise between length and persistent demand through the duration of the time period [3,12,14,15].

The empirical distribution for the service times of departures for which the departure queue size is five or more and for which takeoff at least 15 min apart is shown in Fig. 3. The figure shows that the service time distributions have a long tail despite having a queue with pressure. The support of the distribution is seen to start around 50 s, and not 60 s as would be expected. The reason for this difference is that interdeparture times are measured at wheels off and not at the start of the takeoff roll, at which separation is applied. The mode of the distribution is found to be 68 s. The distribution exhibits also a second distinct peak at around 100 s, which is attributed to heavy aircraft departures.

V. Probabilistic Modeling of Service Times

Four potential fits to the empirical service time distributions are compared:

1. First is the maximum likelihood estimate (MLE) Gamma distribution g_{gl}, which estimates the maximum likelihood parameters of a Gamma distribution to fit the empirical distribution in Fig. 3.

2. Next is the displaced exponential distribution fit g_{de}, given by

 $g_{\text{de}}(x; \phi, d) = \begin{cases}
 \phi \cdot e^{-\phi (x-d)} & \text{if } x \geq d \\
 0 & \text{otherwise}
 \end{cases}$

 (4)

 Fig. 3 Empirical service time probability distribution for departures of 22L, 27 | 22L, 22R at BOS.
The displaced exponential distribution is often used in traffic engineering applications because it assumes that there is a minimum headway \(d\) between vehicles, in addition to a probabilistic quantity \([16]\). It could potentially be a good model for the runway service time distribution since it reflects the minimum required separation between successive departures. The parameters \((\phi, d)\) of the displaced exponential distribution are estimated using the MOM:

\[
d + \frac{1}{\phi} = \mathbb{E}[S]; \quad \frac{1}{\phi^2} = \text{var}(S) \quad (5)
\]

3. Third is the Erlang distribution \(g_{er}\) from applying an approximate MOM to fit an Erlang distribution to the observed service times. The resulting Erlang distribution has a mean \(\mathbb{E}[L_k]\) and variance \(\sigma^2\) such that

\[
\mathbb{E}[L_k] = \frac{k}{\lambda} = \mathbb{E}[S]; \quad \sigma^2 = \frac{k}{\lambda^2} = \frac{\mathbb{E}[S]^2}{\left(\mathbb{E}[S]/\text{var}(S) + 0.5\right)} \approx \text{var}(S)
\]

4. Finally, there is the Erlang distribution fit \(g_{er}\) obtained from the empirical throughput, as seen in Fig. 1. The parameters in the current case were estimated to be \((6, 3.92)\). While \(f_{se}\) comprises all departure throughput observations in saturation (more than 22 departures taxing out), the service time distribution shown in Fig. 3 comprises independent samples of interdeparture times given a queue with pressure. The Erlang distributions \(g_{er}\) and \(g_{rm}\) model the same quantity but are estimated differently. Their similarity demonstrates that the estimated departure throughput under persistent demand and the interdeparture times given a queue with pressure are consistent with each other.

Estimating the service time distribution from the throughput distribution appears to accurately calculate not only the mean and the variance of the departure throughput but also the mean and variance of the interdeparture time given a queue with pressure. On the other hand, Fig. 4 suggests that the displaced exponential is a better fit to the empirical service times than an Erlang distribution. This hypothesis is tested by using the estimated parameters \((k, \lambda)\) of the fitted \(f_{de}\) distribution to derive a displaced exponential distribution with the same mean and variance:

\[
\tilde{g}_{de}(x; \tilde{k}, \tilde{\lambda}) = \begin{cases} \tilde{\phi} \cdot e^{-\tilde{\phi}(x-\tilde{d})} & \text{if } x \geq \tilde{d} \\ 0 & \text{otherwise} \end{cases}
\]

such that \(\tilde{d} = \frac{1}{\tilde{\phi}} = \frac{1}{\mu} \) and \(\frac{1}{\tilde{\phi}^2} = \frac{1}{k\mu^2}\)

\[
(8)
\]

The parameters are calculated to be \((0.91, 0.62)\), which are, as expected, similar to those of \(g_{de}\) [Fig. 4 (right)]. The corresponding \(f_{de}\) is shown in Fig. 5 (left) and is a good match to the empirical distribution. Figure 5 (right) shows that \(f_{de}\) has a smaller Kullback–Leibler (KL) divergence (a measure of the difference between two probability distributions \([17]\)) from the actual throughput

![Fig. 4](https://example.com/fig4.png) (Top) service time probability distribution fits for departures of runway configuration 22L, 27 | 22L, 22R at BOS; (bottom) distribution parameters.

![Fig. 5](https://example.com/fig5.png) (Left) empirical departure throughput distribution \(f_{se}\) and fits \(f_{rm}\) and \(f_{de}\) for 22L, 27 | 22L, 22R at BOS; (right) comparison of distributions.
VII. Need for Sampling Runway Service Times

Figure 3 shows the empirical distribution g_{rw} of the sampled service times, given a queue with pressure. Suppose this distribution was used to generate the corresponding throughput distribution f_{sf} in a 15 min period. Consider the alternative distribution g_{sa} of all service times, given a queue with pressure. The corresponding throughput distribution f_{sa} in a 15 min period can be similarly generated.

The left and right parts of Fig 6 compare f_{sf} and f_{sa} to the empirical distribution f_{rw}. The comparisons show that f_{sa} has lower variance than f_{rw} due to its use of dependent observations. Figure 6 (right) shows that f_{sa} has a higher KL distance from f_{rw} than f_{sf}, illustrating the need to sample interdeparture times.

VIII. Effect of Fleet Mix on Runway Service Times

Heavy jets are expected to have a runway service time of about 2 min (120 s), on account of the increased wake vortex separation required behind them. Figure 7 shows the empirical service time distributions parameterized by the type of aircraft taking off. Heavy jets are seen to have longer service times (a mean of 119 s, and the mode of the distribution is at 105 s) than nonheavy aircraft (a mean service time of 87 s), as expected given their separation requirement.

Since the service time is measured as the difference between successive wheels-off times, it is less on average than the required separation at the start of the takeoff roll, since heavy aircraft tend to have longer roll times.

Finally, these findings can be compared to prior estimates of jet departure capacity [18], which concluded that the departure throughput does not depend on heavy aircraft. By contrast, Fig. 7 shows that heavy aircraft tend to be separated from subsequent departures for longer than nonheavy aircraft. However, Fig. 7 does not show the

distribution, when compared to f_{rw}. It is therefore conjectured that g_{de} accurately represents the service time distribution. It models the minimum service time requirement, the observed tail of the empirical service time distribution, and the associated departure throughput distribution.

IX. Applications to Other Airports

Because of the limited availability of ASDE-X data, service times for departures from runway 17R at Dallas–Fort Worth International Airport (DFW) were analyzed for 11 days from 2009. Runway configuration 17C, 17L, 18R | 17R, 18L, 18R was in use during these periods, and the queue size was at least four aircraft. The empirical distribution of service times is shown in Fig. 8 and is seen to be qualitatively similar to the service time distributions for BOS (Fig. 3). The mode of the distribution is 55 s, and it exhibits a long tail extending to more than 200 s. As more data become available, this analysis can be replicated for more runways and airports.

X. Conclusions

This Note determined probabilistic models of runway service times using high-fidelity surface surveillance data. First, a modeling framework was developed for estimating Erlang service times distributions from the empirical departure throughput distributions. Subsequently, it was shown how empirical service time distributions can be derived from high-fidelity surface surveillance data. Three parametric distributions were fitted to the empirical distribution. For the case of the airport BOS, the analysis also showed that a displaced exponential distribution may be a better match to empirical service time distributions than the Erlang distribution. However, the Erlang distribution was found to accurately model the means and variances of the empirical service time and throughput distributions, as well as the tail of the service time distribution. It was also shown that its parameters can be accurately derived from the empirical departure throughput distribution. These features, combined with its computational benefits, supported the Erlang service time distribution assumption for queuing models of airport operations.

A complete representation of the runway service process, incorporating the impact of exogenous variables (arrival crossings, airspace route availability, propeller-driven aircraft procedures, etc.),
would require a complex hidden Markov model with both exogenous and endogenous variables.

Acknowledgments

This work was funded in part by the National Science Foundation Cyber-Physical Systems:Large:ActionWebs, award number 0931843.

References

