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Abstract— Updating probabilistic belief matrices as new might be constrained to some prespecified (but not doubly-
observations arrive, in the presence of noise, is a critical part stochastic) row and column sums. This paper addresses the
of many algorithms for target tracking in sensor networks. — hohlem of updating belief matrices by scaling in the face
These updates have to be carried out while preserving sum . - :
constraints, arising for example, from probabilities. This paper of uncertainty in th? system and the obser\{at|ons. .
addresses the problem of updating belief matrices to satisfy FOr example, consider the case of the belief matrix for a
sum constraints using scaling algorithms. We show that the system with three objects (labelled 1, 2 and 3). Suppose
?OnVefﬁlJ_ean ?ePaVif;f_ of the Sinkhordn Sca![i'ng”prgcessvd'used that, at some instant, we are unsure about their identities
or scaling belief matrices, can vary dramatically depending ; i
on whether the prior unscaled matrix is exactly scalable or (tagged X, Y_and_ Z) completely, and our belief matrix is
only almost scalable. We give an efficient polynomial-time algo- & 3 X 3 matrix with every element equal to 1/3. Let us
rithm based on the maximum-flow algorithm that determines ~ SUPpose the we receive additional information that object

whether a given matrix is exactly scalable, thus determining 3 is definitely Z. Then our prior, but constraint violating
the convergence properties of the Sinkhorn scaling process. matrix,
1

[y

We prove that the Sinkhorn scaling processalways provides ? ? 0 5 5 0
a solution to the problem of minimizing the Kullback-Leibler T 1 ;
distance of the physically feasible scaled matrix from the prior i1 (1) would logically scale to '05 65 (1)

constraint-violating matrix, even when the matrices are not Itﬁ §h th uti is simole in thi oo |
exactly scalable. We pose the scaling process as a linearly oug e solution Is simple in this case, it Is not clear

constrained convex optimization problem, and solve it using an  how one would scale an arbitrary rectangular matrix to
interior-point method. We prove that even in cases in which the prescribed row and column sums. A natural way is to

matrices are not exactly scalable, the problem can be solved to simply normalize alternately the rows and columns until
c—optimality in strongly polynomial time, improving the best o congiraints are met. This method of scaling by repeated
known bound for the problem of scaling arbitrary nonnegative o . -
rectangular matrices to prescribed row and column sums. normahzatl.on. is called t_he Sinkhorn scaling process [20].
However, it is not obvious that such a process would
l. INTRODUCTION always converge; and if it does, that it would converge
Identity management refers to the probabilistic managén a reasonable amount of time. It is also not clear what
ment of the identities of multiple interacting objects. hi the quality of the resulting solution is, whether the preces
has become an important problem in control with the adve@ways maintains the quality of its solution, or whether¢he
of large scale networks of systems, such as sensor networksght be faster methods of arriving at the same solution.
Our motivation for this work stems from distributed ideptit These are issues that we will address in this paper.
management algorithms in air traffic control and sensdsinkhorn iterations were first proposed as a method of scal-
networks [12]. ing matrices to make them doubly-stochastic. This method
The identity or belief matrix was proposed in [18] as avas shown to converge for different classes of matrices,
possible method of integrating information available ie thin [21], [20] and [17]. Its properties were analyzed, for the
system with external information which might be availablespecial case of matrices knownesctly scalablenatrices,
sporadically. The belief matrix is a matri®, in which in [3], [17] and [8]. This technique was analyzed further
elementsb;; represent the probability of objegt having and applied to the problem of identity management for Air
identity 7. Updating belief matrices as new informationTraffic Control in [10], [11].
is obtained is a crucial part of many algorithms in iden-The convergence behavior of the Sinkhorn scaling process
tity management. These require methods for constrainirfgr a nonnegative matrix depends greatly on the sparsity
matrices to prescribed row and column sums. While thstructure of the matrix, and can fall into one of two regimes.
belief matrix of the entire system is doubly-stochastie.( Most studies, such as those mentioned above, have been
each row sum and column sum is 1), in distributed identityestricted to only one of the two regimes, namely, the class
management, in which a particular sensor might only deteof exactly scalable matrices. Belief matrices in distrialit
a subset of the objects in the system, the belief matrigensor networks are sparse matrices, since most interactio

h y red by ONR MURI A  No. NOGO14.02 between objects are local. In addition, the type of local
is work was supported by greement No. -02- - . . - .
1-0720. H. Balakrishnan is supported by a Stanford Gradeelewship. information that is most desirable from a practlcal point



of view is identity-type informationj.e., information that scalable to row and column sumsand ¢ if and only if
determines the identity of one of the objects with certaintyfor every zero minorZ x L of A,

This is also the type of chal information that is m.ost 1) Yeperi > ZjeL ¢; gor’ Yiep i < ZjeLC ¢
likely to make the prior matrixnot exactly scalablg. In th.IS 2) Equality in (1) holds if and only if theZ® x L¢ minor
paper, we consider the general problem of scaling arbitrary

. . . is all zero as well.
rectangular nonnegative matrices to prespecified row and . . )
column sums A matrix A is almost scalablgo » andc if (1) holds.

The main contributions of this paper are as follows: Wflmost scalabilityis a weaker cond'ition thaexact scala-
prove that the Sinkhom scaling procesisvays converges ility. We sometimes refer to matrices that are almost but
to the sum-constrained matrix that minimizes the Kullback0t €xactly scalable asnly almost scalable

Leibler distance from the unscaled prior matrix, even whef- Sinkhorn Scaling Algorithm

the matrices are not exactly scalable (Section Il). This Algorithm 1: (Sinkhorn Scaling Algorithm):

property of the solution justifies the use of Sinkhorn saalin Given a nonnegativen x n matrix A, and specified vectors

in belief matrix updates. Because the convergence behaviofrthe row sumss« € R™) and column sumsc(e R"™), we

of the Sinkhorn scaling process can vary widely dependinigerate the following until convergence, with initial vas

on whether the matrix is exactly scalable or not, we give aagg) =a;;, andk = 1

efficient polynomial time algorithm that determines whethe
exact scalability is achievable, for an arbitrary nonnisgat ] "
rectangular matrix with prescribed row and column sums  Siréd row sumv; to the actual row sun _;_, a;;
(Section 1Il). The key contribution of this paper is to af;f_) =na,(;f_1)/(Z?:1 af;f_l))

show that the Sinkhorn scaling process may be posed as2) Multiply every element of the matrix from (1) by
a linearly constrained convex optimization problem. We the ratio of the desired column suem to the actual
show that, even when the matrix is not exactly scalable, an  column sum) " alf™)

i=1"ij

1) Multiply every eIementLgf_l) by the ratio of the de-
(k=1)

interior-point, or barrier method is a strongly polynomial a® — Cja(’?—) (Zml a(k—))

. . . . . N . . i ij i=1"ij
approximation ?Igorlthm which attains-optimality with |t can be shown that under the condition that the matris
complexity O(n” log(n/e)) for ann x n matrix. almost scalable, the Sinkhorn scaling process will corererg

Our approach to the problem is different from the only othef 5 unique matrix3 that satisfies the row and column sum
strongly polynomial approximation scheme for matrix balgonstraints. The following theorem is a unified statement
ancing [13], which proposes a modified Sinkhorn algorithmg the convergence of the Sinkhorn scaling process, from
we also compare the complexity of the two schemes angyious previous results in literature.
show that for the class of square matrices, the algorithm Theorem 1:([21], [20], [17], [13]): Consider A €
based on the barrier method has lower complexity. '!Rmx”,anonnegative matrix, and desired row sumsR"
Section V, we present some examples. and column sums: € R”. Then there exists a unique
1. SINKHORN SCALING matrix B € R™*™ which satisfies these prescribed row

) ) ] and column sums, wher8 = D;AD, for D; € R™*™
The Sinkhorn scaling procedure was proposed in [19] 8hd D, € R"*™, D, and D both diagonal, positive definite

a method for scaling positive matrices to doubly stochastig,atricesjf and only if A is exactly scalable. Furthermore, if
matrices. Since then, there have been several extensionsy@ apove is true. the Sinkhorn scaling4fwill converge to
treat the case of nonnegative matrices [21], to scaling pogych a matrixB. If A is only almost scalable but not exactly
itive rectangular matrices to prespecified row and columgcaaple, the Sinkhorn scaling would converge to a unique
sums [20], and to scaling nonnegative rectangular matric@S,it of the form lim s o ng)ADé’“) which satisfies the

to prespecified row and column sums [17]. “row and column constraints. However, the individual matrix
Unless other'W|se. speqﬁed, throgghout this paper, the p”gequencesDY“) and ng) would not converge. -
sum-constraint violating matrix is denoted by and the - N

sum-constrained belief matrix is denoted By The pre- B. Exact scalability vs. Almost scalability

specified row and column sums to be achieved are denotedwWe briefly address the practical implications of exact vs.
by r and ¢ respectively. Since the sum of all the elementalmost scalability to the Sinkhorn scaling process. It can b
in the matrix is both the sum of the row sums and the surshown that while for exactly scalable matricés, = 0 <

of the column sumsy_,; r; = >, ¢;. a;; = 0, for almost scalable matrices it is only true that
We first formalize a few definitions. Letl be anm x n a;; = 0 = b;; = 0. This implies that a matrix is almost but
matrix, andr € R™ andc € R™ be the prescribed row and not exactly scalable, if and only if there exists at least one
column sums. A zero minoZ x L of A is a matrix such elementa;; > 0 which has to be scaled to zerb; (= 0).

that for Z C {1,--- ,m} and L C {1,--- ,n}, the matrix Since the Sinkhorn scaling process tries to achieve this by
Azr = 0. Then, following the definitions in [13], we define multiplying repeatedly by a sequence of positive numbers,
the concepts oéxact scalabilityand almost scalability this clearly cannot be done in a finite number of steps. In

Definition 1: [13] A nonnegative matrixA is exactly practice, it could take a very long time to reach a desired



accuracy §;; < €). In Section Il we formulate an efficient arginf L(B, A\, p) = b;j = lekzaijew (5)
polynomial time algorithm that determines whether a matrix B €

is exactly or only almost scalable, which in turn determine¥Ve know that for an exactly scalable matrix, the Sinkhorn
the convergence behavior of the Sinkhorn scaling proces$rocess converges to a solutiégh= D; AD,, or in other

C. Kullback-Leibler distance as cost words, b;; = dy,a;;dy; where Dy = diag(dy,,--- ,di,,)

Given a matrix which represents oarpriori belief (4), 2ndDz = diag(dz,, -+, d>,). Therefore,
but violates physical constraints such as prespecified row bij = dy,ai;dz, whered;, = et do, = ¢ (6)
and column sums, we would like to compute the sum-
constrained (physically feasible) matrig that represents Satisfies the condition (5) for optimality. o
the closest distribution to the (infeasible) given disttibn. We also notice that3 satisfies the nonnegatlwty con-
In determining a suitable measure for this “distance”, wstraint. The second derivative 6fis 5 ab2 = 5,; > 0 which
need to bear the following in mind: if the given distributionimplies thatZ is indeed minimizedB is therefore a scaled
A satisfies the constraints (row and column sums equal fBatrix with row sums given by the vector and column
the prescribed values), then the scaled distribufioa: A;  sums by the vectoe, which can be expressed &5 AD:,
if there is noa priori distribution, no bias is introduced in Where D, and D, are diagonal, and! is exactly scalable.
B; and finally, B uses all the information available frosh, ~ Thus, from Theorem 1, the Sinkhorn iterations Afwill
but scrupulous care is taken not to make any assumptiofi@nverge tob.
not presented byd. Bearing all this in mind, a suitable SupposeA is almost scalable, but not exactly scalable.
measure is the Kullback-Leibler measure (also known akhen, as before, the Lagrangian is given by (3) and the

the KL-distance or the cross-entropy [5]) given by: dual by (4). Tabing derivatives of (4), we get
97'71 Xig oM @7 .,1 Xi g oM
Zzbul g 1) o =r ege a;;ets, a5 = ¢; ege a;je
Jj=11i=1

. . . . Therefore, for optimality, we require that the derivatives
This is sometimes also called the directed divergencedsinge equal to zero. Sincel is almost scalable, we know

it measures the divergence of distributihfrom distribu-  from Theorem 1 that the Sinkhorn iterations converge to

tion A), and is denoted by)(B || A). a solution of the formim;_.., D{*) ADS”, which satisfies
Our problem therefore reduces to the row and column sum constraints. Let us therefore
m i the limit of the Sinkhorn iterations
minimize Y7 Zj L bijlog consider ) o S o b
subject to ZF v _]1 m @ bij = limy_o0 dy, aidej . Using this in (5), we find that
Zglbz‘jzcjvjzlr“an L ) (k)
bij 20V i=1,m j=1-n by = e = i )

wherer € R™ and ¢ € R"™ are the prescribed row and satisfies the optimality conditions. Therefore, the limit o
column sums, the constraints on the matlix We use the the sequence of matrices generated by the Sinkhorn process
following convention throughout this papeblog0 = 0, minimizes the KL-distance from tha priori distribution.

Olog% =0, andalog § = oo, if a > 0. From the above, we arrive at the following theorem:

D. Sinkhorn scaling and the Kullback-Leibler distance Theorem 2:Given A € R™*", the optimal solution to

o . .
In this section, we prove that the Sinkhorn scaling proces( & B € R™, s alwaysthe solution to the Sinkhorn

always minimizes the KL-distance, irrespective of Whethe'rtera'i;On [f)roc_?ﬁs 1 hat if th i

the matrix is exactly scalable or only almost scalable. roo eorem 1 states that It the matrix is

Consider problem (2). We compute the Lagrangian dual &t least almost scalable, then the Sinkhorn process will
this problem. The Lagrangian is given by converge; the form of the solut|0n is eithé& = Dy AD,

or B = limp_o0 D( )AD , depending on whether the

matrix is exactly or only almost scalable. However, we have
L(B, A bi; 1 Al bi; Y o
(B, A1) Z Z ! Og + Z Z 2 shown that in either case ((6) for exact scalability and (7)

i for only almost scalability) the Sinkhorn scaling process
+ Z pj(c Z bij) ®) converges to the minimum KL-distance matrix that satisfies
the row/column constraints. (]
where \;, p; € R are the Lagrange multipliers. The This shows that from the information-theoretic perspegtiv
Lagrangian dual of this problem is Sinkhorn scaling gives us the best solution to the problem

of incorporating local information into belief matrices.
ZA ri + Zujc] ZZ eajjets (4)  E. Sinkhorn scaling and KL distance: some intuition
i=1j=1 That the Sinkhorn iterations minimize the Kullback-

Setting the denvatlves of with respect tob;; to zero, for Leibler distance from the priori distribution agrees with
optimality, we get intuition. Let us consider the argument:



The logarithm is a concave function, and the functiorA. Feasibility of scaling algorithm
f(t) = tlogt is strictly convex. We can use this property of  The feasibility of (2) is equivalent to the maximum-flow

the logarithm to prove thivg sum inequalityas in [5]. For problem on a graph with+n+2 nodes. Consider the graph
the sake of brevity, we only reproduce the relevant theorefj Fig. 1. The flow on source-adjacent and sink-adjacent

here. arcs is denoted by; and g; respectively. The flow on the
Theorem 3:([5], Log sum inequality): For nonnegative arc (i, ), i = 1,---m, j = 1,---n is denoted byb;;.
numbersay, az,- -, an andby, by, -+, by, Proposition 1:1f Y, r; = Y. ¢; = K, there exists a

n . n - feasible matrix scaling if and only if the maximum source-
Zbi log — > (Z bq',) log 21 bi (8) to-sink flow equalsk’.
a; -
i=1 i=1

S a Proof: Suppose the maximum flow equals. Then,
we have a flow in the network that saturates the source- and
with equality if and only if2 is a constant. m Sink-adjacent arcsi.@ f; = ri, g; = ¢;), does not violate

In the case of ann x n matrix, we can treat every row flow conservation, and does not violate capacity restristio
(or column) as a set of nonnegative numbers. The log suffis = 0 ¥{(é.Jj)| ai; = 0}). Therefore,

inequality implies that for every row, the set of possiblezj bij=fi=mri, Vie{l,--- m}

new rows that minimize the KL-distance are the ones il;_:z'.bij =gj=¢, Vj€ {1, ,.n} . o
which the elements of the new row are obtained by Sca”n\gmch is the definition of a feasible point for the optimiza-
all the elements of the old row by the same amount. B(tOn problem, whose elements are giventy.

this is exactly what the Sinkhorn iteration does at every SUppose the value of the maximum flow is less tihan
iteration - it scales the entire row by the same amoun ‘hen, the value Of_ every feasible flow in the_ network is
and the scaling factor is chosen in a way that satisfigdSO less thark'. Given such a flow, there exists at least
the row sum constraint. It then repeats this for the columfne unsaturated source-adjacent &g,

distributions. As long as this process of scaling rows and ? € {1,---,m} such thaty_; b;; <,

columns alternately converges (as it does, by Theorem ]\_Iy’hICh violates the row sum constraint. Therefore, every

the matrix it converges to will minimize the KL-distance. féasible flow in the network violates at least one of the
row sum constraints, which implies that there is no feasible

F. Complexity and convergence of Sinkhorn scaling matrix solution to the optimization, and hence no feasible

The Sinkhorn iterations are a natural way of scaling %Iutmn to the ?nkhornbfcalmg t?roc?fs. work - b
matrix to achieve prescribed row and column sums. Th € maximum Tow problem In bipartite NEwWorks can be

: - L solved inO(pqlog(q?/p)), wherep is the number of non-
complexity of each iteration is very small, and for anzero elements inl — (ay;), andgq is min{n, m} (2], [9]).

m X n matrix, simply involves dividingmn numbers by
their row sums or column sums. While Sinkhorn and others
([20], [21], [14], [17]) proved that the iterative procedur
converges for appropriate matrices, they did not study the
rate of convergence. Franklin and Lorenz [7] showed that
each iteration of Sinkhorn scaling for an exactly scalable
matrix is a contraction map in the Hilbert projective metric
and they concluded that the number of iterations is bounded
by O(L(A) - 1/¢), where L(A) is the binary input length
(the log of the ratio of the largest to smallest non-zero
elements ofA) and e is the desired accuracy in some
metric of interest. Thus the Sinkhorn iteration processiis a
approximation scheme, but is not polynomiallig(1/e),
even for positive, exactly scalable matrices. For an on|yFig. 1. Equivalence of feasibility problem to maximum-flow plerh
almost scalable matrix, there are no known bounds on thg |nfeasibility of an exactly scaled solution

rate of convergence of the Sinkhorn process.

We consider the case in which we might expect the
existence of an only almost scaled but not an exactly scaled
solution, i.e.,, a solutionB such thatb;; = 0 even though

For the Sinkhorn iterations to converge, at the very,;; # 0. As we might expect, this solution, although
least, the optimization problem (2) must be feasible. Wéeasible, can be theoretically reached by the Sinkhorn
first note that the feasibility check can be carried out irscaling process only after an infinite number of iterations.
polynomial time by identifying an equivalent problem [13].We formulate the infeasibility of an exactly scaled solatio
The feasibility test is equivalent to a check for almoshs the following equivalent network flow problem.
scalability. We also formulate an approximation that clseckWe are interested in checking whether there is some element
for the infeasibility of exact scalability. bi; such thata;; # 0 whose value is exactly zero in

Ill. FEASIBILITY OF THE PROBLEM



every feasible matrix scaling (assuming one exists). This Proof: The interior-point algorithm sequentially per-
is equivalent to asking if there is a feasible scaling sucforms outer iterations, and a centering step in every outer
that b;; > 0 V{(z,7)|a;; # 0}. While it is not possible iteration, which in turn involves a number of the Newton
to answer this question exactly, it is possible to check (isteps, and the total complexity can be derived, as in [d].
polynomial time) if there exists a feasible scaling suctt thaa, Discussion on the relative computational efficiency of

bij > € V{(i,j)|a;; # 0}, for arbitrarily small values of various algorithms for scaling
e. We work on the same graph as before (Figure 1), but

impose a lower bound afon the flow on arcg (7, j)|a;; #
0,i € {1,---m},j € {1,--- ,n}}. By the same argument

We have already seen that while the Sinkhorn process is
an approximate algorithm, it is not polynomiallisg(1/€).

. . ; For reasonably small and exactly scalable matrices, the
as before, the're. exists a ft_aa3|ble mat_nx scaliag_such Sinkhorn process is a very attractive option because of its
thatbi; > ev{(i, j)lai; # 0} if and only if the maximum o 50 ¢ computation and reasonable computational times.
flow equalsk. The problem of fmdmg the maximum rovy However, for larger or only almost scalable matrices (a

N a netvyork with arc lower bounds IS as hard as S_°|V'n%roperty that we have shown can be checked in polynomial
two maximum flow proplems [1] (Section 6.Flows with time), we need to use more general and efficient polyno-

lower bound} Both maximum flow problems are solved N mial approximation schemes. For the problem of scaling

bipartite graphs (one on the original graph, and_on_e ON Guare matrices to prescribed row and column sums, [13]
transformed graph); therefore, the complexity of finding a'aleveloped an iterative process that is a modification of

e-accurate solution tp th_e guestion of tr12e infeasibility of 3ihe Sinkhorn scaling process, and which has complexity
exactly scaled solution is alsd(pqlog(¢”/p)), where, as (n"log(1/e)) for ann x n matrix. This is the first (and,

beforg,p 'S the number of non-zero elemen'tsz'«nn: (“.ij,)_’ to our knowledge, only) existing strongly polynomial-time
andgq is min{n,m} [2]. We note that for this infeasibility algorithm for general matrix scaling. In this paper, we

check, which |Se—appr()_X|_mate, the r_unt|m<_a IS 'r.]dependemapproach the problem in an optimization framework and
of e. We &_1Iso note that it is not possible to identify the exac?ﬁlevelop an algorithm that scales nonnegative rectangular
element inJ3 that needs to be _zero - we can only ProV&natrices to prescribed row and column sums, with a com-
that such an element necessarily exists. plexity of O (1 log(n/c)) for square matrices.

IV. SCALING ALGORITHM BASED ON AN INTERIOR

POINT METHOD V. EXAMPLES

Let us denote the mn—dimensional vector We compare the performance of the Sinkhorn scaling

of the elements of the matrix B byz, ie, process and the barrier method through a few examples.

z = [bi1,b21, b1, b12, b2, -+ ,bmn]T. Similarly, Let us first consider a very basic example, demonstrative
let y = [a11,a01, -, Am1, @12, 092, -, amn]*. Then we Of the kind of scenarios we are likely to encounter during
can reformulate (2) as tracking and identity management in a small sensor
minimize 7" x; log £ network. Suppo;_e the_system has 4 objects (1,2,3 and
subject to —z; <0, i — 1. mn 9) 4) which are initially given the identities W, X, Y and
Cr—d Z. During the process of tracking multiple maneuvering

objects, when the objects come close to each other,

where Cx = d is the linear equality constraint derivedit becomes almost impossible to maintain the distinct
from the row and column sum constraints. We note that thgentities of the objects. Let us consider the case in which
elements ofC are zeros and ones. after repeated interaction between the objects, the belief
The optimization program (9) is a linear inequality conatrix is confused. Suppose, at this instant, one of the
strained problem, With_ linear equality cons_traints and 3gnsors notices a physical attribute of Object 4 which
convex cost. The barrier method solves this problem byistinguishes it as Z for certain. Then, our belief matrix

solving a sequence of equality constrained problems, usifgfore the observation and the prior (unscaled) distiiputi
Newton’s method. It is also called the interior-point m&tho after the observation are given by

since all the iterates aof are strictly feasiblej.e., they lie 01 0.1 03 05 01 0.1 03 0

in the relativeinterior of the feasible set. We have already| 902 04 03 0.1 02 04 03 0O

seen how the maximum-flow formulation can be used t0 o4 02 0.1 0.3 and 04 02 01 0

compute a feasible point® in polynomial time. Using 0.3 02 0.3 02 0.3 02 03 1

the techniques presented in [4] and [16], we can derive thEhe maximum-flow formulation of Section Il fells us
following theorem: that the prior matrix is almost but not exactly scalable to

Theorem 4:The complexity of scaling amxn matrixto  a doubly-stochastic matrix. We choose arof 1078, A
specified row and column sums using the proposed interiodfMdATLAB implementation of the Sinkhorn scaling process
point method with a logarithmic barrier and the KL-distancdakes 1.718 seconds (and 7105 iterations) to converge to
as the objective function i) (m?n?(m + n)?log(™2)). a solution, while an implementation of the interior-point
In particular, if n > m, we can equivalently bound the method in AMPL [6] using the MINOS [15] solver for the
complexity by O (nG log(%)). centering takes 0.0156 seconds to reach the same solution.



Finally, we present a 100 trial Monte Carlo simulationand to generate a feasible point. We then formulated an
over a range of matrix sizes, for two different cases equivalent convex optimization problem, and showed that
Sinkhorn scaling for only almost scalable matrices, and thihe interior-point method was strongly polynomial in com-
interior-point method, whose performance is independént plexity. We demonstrated through simulations that the pro-
scalability. The random matrices for the Sinkhorn scalingosed algorithm is not sensitive to the sparsity structdire o
were generated such that the elements of the prior matriike matrix, and performs better than the Sinkhorn algorithm

that had to be scaled to zero were no more than 0.1 in mag-
nitude,i.e., they only violated the exact scalability condition
weakly. The matrices for the interior-point method were g
a random combination of exact and only almost scalablg2]
matrices. The average computational times are plotted in
Figure 2. While the Sinkhorn scaling process would perform[3]
very well for exactly scalable matrices, there is a dramatic
deterioration in its performance when the prior matrix is
only almost scalablegvenif the elements that need to
be scaled to zero are small in magnitude. On the othels]
hand, the interior-point algorithm scales much better and
is independent of the scalability of the prior matrix, asgon 16]
as it is at least almost scalable.

In most sensor networks, the nodes are scattered over[d
large area. In the presence of a group management proto-
col [18], the scaling is carried out within a group, making [g]
the computation inherently distributed. The developmént o
a distributed algorithm for scaling matricesthin a group

. . e (9]
would be an interesting direction for further research.
a5 ‘ ‘ ‘ CPU ‘time vs‘. Matrix‘ size ‘ ‘ [10]
3k Almost scalable Sinkhorn
s 25
EI [11]
_g 154
sl 1 [12]
05 1
- [13]
oF 4
0% s ) s 2 % ) 3 2 s 50 [14]
Size of matrix (n x n)
[15]
Fig. 2. Computational time comparisons- Sinkhorn and Barriethous
VI. CONCLUSIONS (16]

The main aim of this paper is to develop efficient
algorithms for belief matrix maintenance, for the purpoke d17]
identity management in large, possibly distributed, syste
with multiple objects. We identified the chief problems agis]
being (1) the efficient scaling of large rectangular nonneg-
ative matrices to prescribed row and column sums, and
(2) the efficient diagnosis of the behavior of the easy-to-
implement Sinkhorn iterations. We began with an analysig®]
of the properties of the solution of the Sinkhorn process
for the case when the matrix is only almost scalable, ando]
showed that the process always minimized the Kullback-
Leibler distance, even if it was slow to converge. Wg,;
formulated a maximum-flow with lower bounds algorithm
to efficiently predict the behavior of the Sinkhorn process,

] R. Sinkhorn and P. Knopp.
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