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ABSTRACT 
A number of aircraft parameters such as attitude, altitude, airspeed, torque, etc. are currently collected and used by 
health usage monitoring system (HUMS) to identify regimes.  For each regime, a damage factor is assigned to each 
component that has usage.  These damage factors are assigned by the original equipment manufacturers (OEMs) 
based on measured stresses in the aircraft when undergoing a given maneuver.  Therefore, it is important that the 
regimes can be recognized correctly during the flight of the aircraft to avoid either underestimated or overestimated 
damages for the aircraft.  A number of studies have shown the effectiveness of some newly developed regime 
recognition algorithms.  As an extension to regime recognition to improve safety and/or reduce maintenance by 
predicting if the aircraft will be flown in a damaging way, a regime prediction approach is presented in this paper.  
This approach could be used to alert the pilot, who could then avoid flying the aircraft in those damaging regimes.  
Potentially, this extension could be used to alert if the power required is greater than the power available for some 
maneuvers such as heavy lift. 
 

INTRODUCTION1

A number of aircraft parameters such as attitude, 
altitude, airspeed, torque, etc. are currently collected 
and used by health usage monitoring system (HUMS) to 
identify regimes for structural usage monitoring.  Usage 
monitoring entails determining the actual usage of a 
component on the aircraft.  This allows the actual 
usage/damage from a flight to be assigned to that 
component instead of the more conservative worst-case 
usage.  By measuring the actual usage on the aircraft, 
the life of the components can be extended to their true 
lifetime.  Usage monitoring requires an accurate 
recognition of regimes, where a regime is the flight 
profile of the aircraft at each instant of the flight.  For 
each regime, a damage factor is assigned to each 
component that has usage.  These damage factors are 
assigned by the original equipment manufacturers 
(OEMs) based on measured stresses in the aircraft when 
undergoing a given maneuver.  It is important that the 
regimes can be recognized correctly during the flight of 
the aircraft to avoid either underestimated or 
overestimated damages for the aircraft.   
 
Studies have reported the effectiveness of newly 
developed algorithms for regime recognition.  Among 
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them, three recent ones are summarized here.  In the 
first paper [1], Teal et al. described a methodology for 
mapping aircraft maneuver state into the MH-47E basic 
fatigue profile flight regimes in a manner which ensures 
a conservative, yet realistic, assessment of critical 
component life expenditure.  They also presented the 
use of wind direction and magnitude estimation and 
inertial/air data blending to obtain high fidelity airspeed 
estimation at low speeds.  An accuracy rate of 90% 
based on time was reported.  This method basically is a 
logical test.  The system firstly identifies the maneuver 
based on flight dynamic data and general principles of 
tandem rotor helicopter flight which are derived from 
flight experience and mathematical models correlated 
with flight test results, then the aircraft maneuver state 
is mapped directly into one of the basic fatigue profile 
flight regimes.  The method is subject to the main 
weakness of logical test in dealing with the noisy 
measurement.  If the measured parameters were free of 
noise, logical tests would give accurate results.  In the 
second paper, Berry et al. [2] presented an regime 
recognition scheme implemented as a hierarchical set of 
elliptical function (EBF) neural networks.  Motivated to 
develop an automatic regime recognition capability as 
an enhancement to the US Army’s Vibration 
Management Enhancement Program (VMEP), the EBF 
neural networks were devised to simplify neural net 
training and to improve the overall performance.  The 
idea of using a hierarchical set of neural networks is to 
group individual regimes into regime groups, including 
an unknown regime group (regimes that cannot be 
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classified as any regimes in one of the first 10 regime 
groups).  Regimes in each group are classified by an 
individual net in the hierarchical set.  Regime 
recognition is carried out through a hierarchical process, 
e.g., if a regime cannot be classified as the first regime 
group by the top net in the hierarchy it will be passed to 
the lower level nets for further classification.  In the 
paper, a total of 141 regimes of Sikorsky’s S-92 
helicopter were grouped into 11 groups, including “level 
flight”, “auto”, “climb”, “dive”, and etc.  As reported in 
the paper, the EBF neural network regime recognition 
scheme gave near perfect classification results for “level 
flight” regimes.  However, the results for classification 
of all regime groups didn’t show a consistent 
effectiveness of the scheme.   For example, for “level 
flight” group the classification rate is 97.85% but it is 
33.18% for “turns” group.  Because of the low 
classification rates for some groups, the scheme gave an 
overall rate of 76.21%.  In addition to the requirement 
for a large amount of data to train a neural network, 
another variable that could affect the performance of the 
scheme is the way by which the regimes are grouped.  
Another limitation of neural network is that as it is a 
black-box methodology, little analytical insights can be 
gained to enhance the regime recognition process.  The 
third paper [3] viewed regime recognition as a data 
mining problem, i.e., mining the measured parameter 
data and mapping them to a defined flight profile.  
Following the approach of data mining, a hidden 
Markov model (HMM) based regime recognition 
algorithm was developed and reported.  The algorithm 
involves two major stages: model learning process and 
model testing process.  The learning process could be 
implemented off-board.  In this process, Gaussian 
mixture model (GMM) was used instead of unimodal 
density of Gaussian distribution in HMM.  Once the 
learning process is completed, new incoming unknown 
signal could be tested and recognized on-board. The 
developed algorithm was validated using the flight card 
data of an Army UH-60L helicopter.  The performance 
of this regime recognition algorithm was also compared 
with other data mining approaches using the same 
dataset.  Using the flight card information and regime 
definitions, a dataset of about 56,000 data points labeled 
with 50 regimes recorded in the flight card were 
mapped to the health and usage monitoring parameters.  
The validation and performance comparison results 
have showed that the hidden Markov model based 
regime recognition algorithm was able to obtain an 
accuracy rate of 99.94% for all the 50 regimes recorded 
in the flight card data and outperformed other data 
mining methods.           
 
It is clear that regime recognition can be done 
effectively, and this paper does not propose a new 
regime recognition algorithm.  Instead, it is proposed 

that an extension to regime recognition can lead to 
improved safety and/or reduced maintenance by 
predicting if the aircraft will be flown in a damaging 
way.  Regime prediction could be used to alert the pilot, 
who could then avoid flying the aircraft in those 
damaging regime.  Potentially, this extension could be 
used to alert if the power required is greater than the 
power available for some maneuvers such as heavy lift.   
 
The ability of regime prediction presented in this paper 
is built upon the integration of two major capabilities.  
The first capability is the ability to observe the rate of 
change in the flight parameters used in regime 
recognition by HUMS and predict their values by 
integrating these rates over time.  The second capability 
is the ability to recognize reliably the regimes given the 
predicted parametric data.  For example, in the IMD 
HUMS systems, there are 22 flight parameters that are 
used for regime recognition.  Some are discrete, such as 
weight on wheels, where as most of continuous, such as 
angle of bank (AOB).  If there was a damaging regime, 
say, right turn with AOB greater than 60 degrees, the 
AOB parameter could be input into a state observer.  
The state observer filters AOB and “observes” the 1st 
derivative of AOB.  For any given time τ in the future, 
the AOB parameter can be estimated as: 

[ ] ( )∫
τ
0 AOB+ AOB = AOB dE  

If, 10 seconds in the future, the expected angle of bank, 
and other estimated parameters indicate that the aircraft 
will be in AOB greater than 60 degrees regime, an alert 
could be given.  We can construct a state observer to 
predict the parametric data τ seconds into the future (1, 
2, 5, and 10 seconds) and calculate the error between the 
predicted regime and actual regime at that time.  We 
will focus on the error at state transitions, for example, 
when the aircraft enters a new regime, compared to 
when the predicted regime estimated a regime change, 
and if the predicted regime was correct.   
 
The regime prediction approach presented in this paper 
was implemented by integrating a Kalman filter as the 
state observer with an HMM based regime recognition 
algorithm and validated with the flight card data of an 
Army UH-60L helicopter.      
 

THE REGIME PREDICTION ALGORITHM 
The flowchart of the proposed regime prediction 
algorithm is presented in Figure 1.  As shown in Figure 
1, the Kalman filter is used as a state observer and takes 
on-board HUMS flight parameters X as inputs to 
estimate the rate of change dtdX over time.  By 
integrating the estimated rate of change, one could 
obtain the estimated parameter values X .  These 
estimated flight parameters are then input into an HMM 

τ+t



based regime recognition algorithm to predict the 
regimes τ time units from the current time point t into 
the future.    
 

Parameter Estimation 
, parameter estimation is a 

et

 

As shown in Figure 1
necessary step for regime prediction.  To predict the 
regimes, parameters have to be estimated first.  In our 
regime prediction algorithm, the Kalman filter [4] is 
used for parameter estimation.  The Kalman filter is a 
kimematic model that functions as a state observer.  The 
state observer reconstructs a state that is not directly 
measured.  In this case, we are using the Kalman filter 
to derive in real time, the first derivative of a parameter. 

This is done by applying a filter coefficient to the 
difference between predicted and the observed data. The 
filter gain is set optimally based on the measurement 
and system variance. The estimation process by the 
Kalman filter is explained next.      
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Figure 1.  The flowchart of the regime 
prediction algorithm   
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Time Update (“Prediction”) 
(1) Compute the predicted state estimate: 
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(2) Compute the Kalman gain 
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(5) Update the a posteriori covariance 
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 = parameter value at time 

pram total number of the 
parameters.  Since estimation of rate of change (ROC) 
for each parameter )(ia  is performed the same way, 
notation )(ia  is simpl  as a  in the following.   
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t each time step of the estimation process, a noisy 
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he workflow of the Kalman filter parameter estimation 
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measurement of the true parameter value is made.  
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m
t ℜ∈M .  Then the measurement can be  

tttz vHA +=  
 expressed as:

T

⎥
⎦

⎤
⎢
⎣

⎡
=

0
1

H tM

standard devi ents of a . 
 
 
T
is shown Figure 2.  
 

In Figure 2, the initial condition is initiated w
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ττ −− ttÂ  is used to produce a 

prior estimate 
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future as: 
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HMM Based Regime recognition    
 an HMM based The proposed regime prediction uses

regime recognition algorithm to predict regimes τ time 
units into the future using the flight parameters 
estimated by the Kalman filter.  There are a number of 
significant advantages of using HMM for regime 
recognition.  For the most important one, an HMM has a 
computationally tractable mathematic structure and as a 
result it normally provides reliable and optimal 
solutions.  As shown in the recent study [3], an HMM 
based regime recognition algorithm outperformed other 
methods including neural networks.  The regime 
recognition function in our regime prediction algorithm 
is performed by the same regime recognition algorithm 
presented in [3].  A detailed description of the HMM 
based regime recognition algorithm can be found in [3].    
 

VALIDATION OF THE ALGORITHM 
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Figure 2.  The workflow of the parameter 
estimation process  

In  paper, the proposed regime prediction algo
was validated using the Army UH-60L flight card data. 
Data was collected during a flight test and provided by 
Goodrich.  During the flight test, the pilots annotated 
detailed flight cards with actual event times as 
maneuvers were conducted during the flight.  The on-
board pilots maintained a detailed log of the maneuvers, 
flight conditions, and corresponding event times 
encountered during the mission flight.  A total of 50 
regimes were conducted with annotation in the flight 
test.  A limited amount of non-annotated actual fight 
data was used prior to the fight test to check the 
functionality of the HUMS system.  The recorded data 
was downloaded and processed after the flight test.  
 



 
Figure 3. Regime evolution of UH-60L 

 

 
Figure 4. Zoom-in of regime evolution 

 
For the Army UH-60L helicopter, a total of 90 
preliminary regimes were defined by OEM, and they 
were denoted by number from 1 to 90 in the system.  
Each regime with associated time information was 
recorded by pilot and data of 22 basic aircraft 
parameters were collected from sensors mounted on the 
aircraft, or sensors added to Goodrich’s IMD-HUMS for 
regime recognition.  These parameter data was used for 
the identification of events, control reversals, and 
regimes.  The parameter monitoring was performed 
during the whole ground-air-ground (GAG) cycles, 
from rotor start to rotor shutdown, and takeoff to 
landing.  A plot of sampled regime sequence is shown 
in Figure 3.  Figure 4 zooms in the part of the regime 
sequence. 
 
In preparing the data for the validation test, all 
parameter data was down sampled to 8 Hz and only 
continuous parameters were observed by the Kalman 
filter to estimate their first derivatives.  The list of the 
parameters used is provided in Table 1.       
 
 
 
 
 
 

able 1.  List of the parameters 

 Description 

T
Parameter ParameterNo. 

1 Airspeed Vh Fraction 
2 Altitude Rate 
3 Angle of Bank 
4 Lateral Acceleration 
5 Normal Acceleration 
6 Pitch Attitude 
7 Radar Altitude 
8 Roll Attitude 
9 Turbine Temperature 

10 Torque 
11 Corrected Normal Acceleration 
12 Vertical Acceleration 
13 Yaw Rate 
14 WOW Delayed 

 
he flight card data with all recorded parameter values 

et  be the total number of times that regime  is 

T
were used to train the HMM based regime recognition 
models.  Estimated parameter values were input to the 
trained HMM regime recognition models to obtain the 
predicted regimes.  The predicted regimes were then 
compared with the flight card recorded regimes to 
compute the prediction accuracy.      
 
L  ic  i
correctly predicted, in  the total number of times that 
regime i  to be pred ed, and N the total number of 
regimes, then the prediction accuracy is computed as a 
ratio as follows: 

ict

∑

∑
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=

=
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i
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n

c
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1Accuracy  Prediction  

The validation test was conducted for different 
prediction horizon τ values: 1, 2 5, 7, 10, 15, and 20 
seconds.   The result  are provided in Table 2. 
 

s

able 2.  Regime prediction accuracies at different 

Predication Accuracy 

T
prediction horizons 
Prediction  
Horizon  
(second) 

0 0.99430 
1 0.99173 
2 0.98345 
5 0.96284 
7 0.95180 

10 0.93057 
15 0.89439 
20 0.86396 

 



Note that in Table 2, the regime prediction accuracy for 

rom Table 2, it is not surprised to see that as the 

 

rom Figure 5, we can see that as the prediction horizon 

or HUMS regime prediction applications, we want to 

able 3.  Regimes and corresponding maneuvers 

0 prediction horizon is basically the regime recognition 
accuracy obtained by the HMM based regime 
recognition algorithm.   
 
F
prediction horizon increases, the accuracy for regime 
prediction decreases.  This decrease in prediction 
accuracy is due to the increase in parameter estimation 
errors by the Kalman filter.  Figure 5 shows the increase 
in parameter estimation errors computed as root mean 
squared error (RMSE) at different prediction horizons.    
   

Figure 5.  Parameter estimation errors vs. prediction
horizon 
 
F
increases the total RMSE increases dramatically.         
 
F
predict when the aircraft will enter severe or extreme 
regimes which would account for a large damage factor 
on the component.  These severe or extreme regimes 
include regimes related to severe pullout, extreme 
maneuver, and pullout to 3.0 G.  Unfortunately, the 
flight card data do not include these regimes.  For this 
study, we will use surrogate maneuvers to represent 
extreme and sever maneuvers.  These surrogate regimes 
and maneuvers are shown in Table 3. 
 
T
Regime Maneuver 
Regime 10 ard Flight  Right Sidew
Regime 11 Left Sideward Flight  
Regime 25 Level Flight up Between 0.9 and 

1.0 Vh 
Regime 44 Reversal in Autorotation Rudder 
Regime 50 Longitudinal Reversal in  

Partial Power Decent 
Regime 57 OB Level Left Turn 60 d A
Regime 61 Level Right Turn 60d AOB 
Regime 65 Descending Left Turn, 60d AOB 

A summary o r those 

able 4.  Prediction summary for regimes in Table 3 

f regime prediction accuracies fo
regimes listed in Table 3 is provided in Table 4.  
 
T

Prediction Horizon (second) Prediction 
Accuracy 1   2 5 7

10 0.9896 0.9845 0.9430 0.9223 
11 0.9963 0.9707 0.9487 0.9304 
25 0.9979 0.9959 0.9896 0.9855 
44 0.9922 0.9766 0.8906 0.8672 
50 0.9926 0.9559 0.9044 0.8897 
57 0.9972 0.9944 0.9861 0.9805 
61 0.9937 0.9874 0.9686 0.9560 

R
eg

im
e 

N
o.

 

65 0.9950 0.9900 0.9751 0.9652 

 0 10 15 2  
10 0.8860 0.8446 
11 0.9084 0.8938 
25 0.9793 0.9689 
44 0.8281 0.8047 
50 0.8603 0.7868 
57 0.9721 0.9582 
61 0.9308 0.8994 

R
eg

im
e 

N
o.

 

65 0.9502 0.9254 

0.7254 
0.8755 
0.9585 
0.7422 
0.7206 
0.9443 
0.8679 
0.9005 

 
rom Table 4, we can see that even though the 

 addition to how well the regime prediction algorithm 

able 5.  Detected regime transitions   
 (second) 

F
prediction accuracy varies for different regimes, it can 
reach 90% when the regimes were predicted less than 
five seconds into the future.  For regimes that are 
characterized by 60 degrees of AOB turns (regime 57, 
61, and 65), prediction accuracy can be over 93% even 
when the regimes were predicted 10 seconds into the 
future. 
 
In
is able to predict those severe regimes, one would also 
be interested in knowing whether it could predict when 
the aircraft is flown entering into a severe regime from 
other regimes.  Table 5 shows whether it was predicted 
when the aircraft was flown from other regimes entering 
into the server regimes listed in Table 3.  
 
T

Prediction HorizonRegime 
T  1 20 ransition 2 5 7 10 15 
11 => 10 Y Y Y Y Y Y N 
14 => 11 Y Y Y Y Y Y Y 
24 => 25 Y Y Y Y Y Y Y 
43 => 44 Y Y Y Y Y Y / 
49 => 50 Y N N N N N N 
56 => 57 Y Y Y Y Y Y Y 
60 => 61 Y Y Y Y Y Y Y 
63 => 65 
64 => 65 

Y 
Y 

Y 
Y 

Y 
Y 

Y 
Y 

Y 
Y 

Y 
Y 

Y 
Y 

 
Note that in Table 5, an entry “Y” indicates that the 
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regime transition was predicted and an entry “N” 

re generated by 
ssuming that anytime interval between the two regimes 

regimes were 
redicted 1 second into the future, all the transitions into 

hen regimes were predicted more than 1 second into 

the flight card validation test results, we 
an see that the regime prediction algorithm presented 

 inversely 
pacted by the errors of the parameter prediction but 

e recognition and prediction is 
mpling frequency.  Because of the inertia of the 

CONCLUSIONS 
 this paper, a regime prediction algorithm was 

presented as an e recognition to 

 prediction algorithm was validated using the 
ight card data of an Army UH-60L helicopter.  The 

he regime prediction algorithm 
resented in this paper is that not only could it be used 

indicates that the regime transition was not predicted.  A 
sign “/” indicates that transition from regime 43 to 44 
did not exist when the regimes were predicted 20 
seconds into the future because regime 44 was recorded 
for only 16 seconds on the flight card.   
 
Also note that the results in Table 5 we
a
in a regime transition on the flight card is recognized as 
the first regime.  For example, for regime transition 
11=>10, there was a time interval in which no data were 
recorded on the flight card.  It was assumed that regime 
11 was flown in this time interval.      
 
From Table 5, we can see that when the 
p
those severe regimes could be predicted.  Except for 
transition from regime 49 to 50, when the regimes were 
predicted up to 15 seconds into the future, all the 
transitions into those severe regimes could be predicted.   
 
For transition from regime 49 to 50, it was not predicted 
w
the future.  The reason for that was because there were 
only 0.126 seconds between regime 49 and regime 50.  
Therefore, when the regimes were predicted more than 
1 second into the future, the predicted parameters were 
updated with a slower rate since the rate of change was 
estimated based on larger time intervals.  For example, 
when the regimes were predicted 2 seconds into the 
future, it took 0.75 seconds to recognize that it was in 
regime 50.      
 
Overall, from 
c
in this paper predicted all 50 regimes in the flight card 
data with over 99% accuracy when the regimes were 
predicted 1 second into the future and over 93% 
accuracy when 10 seconds into the future.      
 
In general, the regime prediction accuracy is
im
not affected by the performance of the HMM based 
regime recognition algorithm.  Therefore, the real 
challenge toward further increasing the regime 
prediction accuracy for prediction over 10 seconds into 
the future lies in using more accurate models for 
parameter estimation. 
 
Another issue in regim
sa
aircraft, instantaneous maneuvers are not possible.  The 
aircraft, as a system, has a “bandwidth” (ability to 
complete an maneuver) of perhaps 1 to10 Hz.  Thus, if 
the acquisition system is sampling the aircraft at 20 Hz, 

all maneuvers could be reconstructed from the 
parametric data.  This also suggests that by sampling at 
greater than 20Hz, and constructing the appropriate 
system model, rate data can be reconstructed from a 
state observer, such as the Kalman filter.  In our 
validation test, the data were sampled as a rate of 8Hz.  
It is expected that for data with higher sampling 
frequency, the performance could be better. 
 
 

In
extension to regim

improve safety and/or reduce maintenance by predicting 
if the aircraft will be flown in a damaging way.  The 
regime prediction algorithm consists of two major 
components.  The first component is a state observer to 
observe the rate of change in the flight parameters and 
predict their values by integrating these rates over time.  
This component was implemented based upon the 
Kalman filter.  The second component is a regime 
recognition algorithm that takes the estimated 
parameters to predict reliably the regimes seconds into 
the future. 
 
The regime
fl
validation results with regime prediction up to 20 
seconds into the future were provided.  The regime 
prediction results showed that the regime prediction 
algorithm presented in this paper predicted all 50 
regimes in the flight card data with over 99% accuracy 
when the regimes were predicted 1 second into the 
future and over 93% accuracy when 10 seconds into the 
future.  However, as the regimes were predicted more 
than 15 seconds into the future, the accuracy was 
reduced to below 90%.  In general, the regime 
prediction accuracy is inversely impacted by the errors 
of the parameter prediction and not affected by the 
performance of the HMM based regime recognition 
algorithm.  To further improve the regime prediction 
accuracy for prediction over 15 seconds into the future 
one needs to search for more accurate models for 
parameter estimation. 
 
The significance of t
p
to alert the pilot, who could then avoid flying the 
aircraft in those damaging regime, but also potentially, 
could it be used to alert if the power required is greater 
than the power available for some maneuvers such as 
heavy lift. 
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